
P
I

D

DEVICE

INITIAL

A n I n t r o d u c t i o n t o :

A C C O L
(F o r m e r l y k n o w n a s " T h e A C C O L T e x t b o o k ")

���������	
����

D4056 Issue: January, 2001

The information in this document is subject to change without notice. Every effort has been
made to supply complete and accurate information. However, Bristol Babcock assumes no
responsibility for any errors that may appear in this document.

Bristol Babcock does not guarantee the accuracy, sufficiency or suitability of the software
delivered herewith. The Customer shall inspect and test such software and other materials to
his/her satisfaction before using them with important data.

There are no warranties, expressed or implied, including those of merchantability and fitness
for a particular purpose, concerning the software and other materials delivered herewith.

 Request for Additional Instructions

Additional copies of instruction manuals may be ordered from the address below per attention
of the Sales Order Processing Department. List the instruction book numbers or give the
complete model, serial or software version number. Furnish a return address that includes
the name of the person who will receive the material. Billing for extra copies will be according
to current pricing schedules.

ACCOL is a trademark and Bristol is a registered trademark of Bristol Babcock. Other
trademarks or copyrighted products mentioned in this document are for information only, and
belong to their respective companies, or trademark holders.

Copyright (c) 2001, Bristol Babcock, 1100 Buckingham St., Watertown, CT 06795. No part of
this manual may be reproduced in any form without the express written permission of Bristol
Babcock.

Notice
Copyright Notice

i

A Few Words About Bristol Babcock

For over 100 years, Bristol® has been providing innovative solutions for the measurement
and control industry. Our product lines range from simple analog chart recorders, to
sophisticated digital remote process controllers and flow computers, all the way to turnkey
SCADA systems. Over the years, we have become a leading supplier to the electronic gas
measurement, water purification, and wastewater treatment industries.

On off-shore oil platforms, on natural gas pipelines, and maybe even at your local water
company, there are Bristol Babcock instruments, controllers, and systems running year-in
and year-out to provide accurate and timely data to our customers.

Getting Additional Information

In addition to the information contained in this manual, you may receive additional
assistance in using Bristol Babcock products from the following sources:

Contacting Bristol Babcock Directly

Bristol Babcock's world headquarters are located at 1100 Buckingham Street, Watertown,
Connecticut 06795, U.S.A. Our main phone numbers are:

(860) 945-2200
(860) 945-2213 (FAX)

Regular office hours are Monday through Friday, 8:00AM to 4:30PM Eastern Time, excluding
holidays and scheduled factory shutdowns. During other hours, callers may leave messages
using Bristol's voice mail system.

Telephone Support - Technical Questions

During regular business hours, Bristol Babcock's Application Support Group can provide
telephone support for your technical questions.

For technical questions regarding ACCOL, ACCOL Workbench, Open BSI products
(as well as ACCOL DOS-based Tools, or UOI) call (860) 945-2286. Before you call,
please find out the version of software you are using.

For technical questions regarding Bristol's OpenEnterprise product, call (860) 945-2501 or
e-mail openenterprise@bristolbabcock.com

For technical questions regarding Bristol's Enterprise Server® / Enterprise
Workstation® products, call (860) 945-2286.

For technical questions regarding Network 3000 hardware products call (860) 945-2502.

For technical questions about ControlWave call (860) 945-2244 or (860) 945-2286.

You can e-mail the Application Support Group at: bsupport@bristolbabcock.com

The Application Support Group also maintains a bulletin board for downloading software
updates to customers. To access the bulletin board, dial (860) 945-2251 (Modem settings:
14.4K baud maximum, No parity, 8 data bits, 1 Stop bit.)

ii

For assistance in interfacing Bristol Babcock hardware to radios, contact Communication
Technologies in Orlando, FL at (407) 629-9463 or (407) 629-9464.

Telephone Support - Non-Technical Questions, Product Orders, etc.

Questions of a non-technical nature (product orders, literature requests, price and delivery
information, etc.) should be directed to the nearest regional sales office (listed below) or to
your local Bristol sales office or Bristol-authorized sales representative.

U.S. Regional Sales Offices Principal International Sales Offices:
Northeast (Watertown) (860) 945-2262 Bristol Babcock Ltd (UK): (441) 562-820-001
Southeast (Birmingham) (205) 980-2010 Bristol Babcock, Canada: (416) 675-3820
Midwest (Chicago) (630) 571-6052 Bristol Meci SA (France): (33) 2-5421-4074
Western (Los Angeles) (909) 923-8488 Bristol Digital Sys. Australasia Pty. Ltd. 61 8-9455-9955
Southwest (Houston) (713) 685-6200 BBI, S.A. de C.V. (Mexico) (525) 254-2131

Please call the main Bristol Babcock number (860-945-2200) if you are unsure which office
covers your particular area.

Visit our Site on the World Wide Web

For general information about Bristol Babcock and its products, please visit our site on the
World Wide Web at: www.bristolbabcock.com

Training Courses

Bristol Babcock’s Training Department offers a wide variety of courses in Bristol hardware
and software at our Watertown, Connecticut headquarters, and at selected Bristol regional
offices, throughout the year. Contact our Training Department at (860) 945-2343 for course
information, enrollment, pricing, and schedules.

iii

Who Should Read This Manual?

This manual is intended for use by new ACCOL users. It describes the basic
concepts in ACCOL, and provides examples of the major structures used by the
ACCOL programmer.

It assumes familiarity with the following subjects:

� Use of personal computers, including clicking with a mouse, using dialog
boxes, list boxes, menus, etc.

� Windows 98 or Windows NT operating system.

As a minimum, users should have the following additional manuals available, when
reading this manual:

� ACCOL II Reference Manual (document# D4044) which contains detailed
descriptions of all ACCOL modules.

� ACCOL Workbench User Manual (document# D4051) which contains detailed
instructions on using ACCOL Workbench to create an ACCOL load.

� Network 3000 Communications Configuration Guide (document# D5080)
which contains an overview of communications using Bristol Babcock
networks, and a guide to troubleshooting communication problems.

NOTE

This book should not be considered a substitute for ’hands-
on’ experience with ACCOL Workbench and Network 3000
controllers.

New users should strongly consider attending one or more
training courses offered by Bristol Babcock. Contact our
Training Department at the number listed on page ii for
more information.

BLANK PAGE

Table of Contents

v

Chapter 1 - What is ACCOL? ... 1-1

Chapter 2 - What Are Signals? .. 2-1

Chapter 3 - What Are Modules?... 3-1

Chapter 4 - What Are ACCOL Tasks? ... 4-1

Chapter 5 - What Are Data Arrays? .. 5-1

Chapter 6 - What Is Process I/O? ... 6-1

Chapter 7 - How Are Communication Ports Used?... 7-1

Chapter 8 - What Should I Know About Memory? ... 8-1

Chapter 9 - What Are Signal Lists?... 9-1

Chapter 10 - What Are Archive Files?... 10-1

Appendix A - Creating A Sample ACCOL Load... A-1

Appendix B - Working with Floating Point Numbers.. B-1

Glossary.. G-1

BLANK PAGE

Chapter 1 - Introduction: What is ACCOL?

An Introduction to ACCOL Page 1-1

What is ACCOL?

ACCOL is an acronym which stands for
Advanced Communications and Control-
Oriented Language. The initial concept for
ACCOL was developed at Bristol in the
early 1970s, and has since become the
standard software programming language
for Bristol Babcock Network 3000-series
devices. Several newer generations of the
language have been developed since then.

The current versions of the ACCOL
language, as well as the ACCOL Tools
software, which is used to create programs
in the language, have incorporated
numerous features and improvements
suggested by our customers, and are
markedly different from the initial version.
All are rooted in the initial concept of
ACCOL, however, which was to create a
high-level programming language which
used a ‘modular’ approach for monitoring
and control of process control applications.

What is Network 3000?

Network 3000 is the name for a product family of Bristol Babcock digital remote
process controllers, and auxiliary equipment, which includes the DPC 3330, DPC
3335, RTU 3310, and RTU 3305 remote process controllers, as well as GFC 3308-series
flow computers1 and the EGM 3530-xx TeleFlow™ / RTU 3530-xx TeleRTU series2 flow
computers and RTUs. Network 3000-series controllers are utilized in a wide variety of
measurement and control applications throughout the water, waste water, and natural
gas pipeline industries.

These controllers collect data from field instrumentation such as pressure transmitters,
flow meters, electrical contacts and switches. The incoming data is received through
connection points on process I/O boards in the controller.3 Based on the incoming data,

1
 Network 3000 controllers are often referred to as simply ’33xx controllers’ because of the ’33’ in the model number.

2 3530 TeleFlow and TeleRTU units only support a subset of ACCOL modules and features. Task slip
counts and rate information, communication statistics, and crash blocks are not available. See the ACCOL
II Reference Manual (D4044) and contact Bristol Babcock Application Support for more information.
3 The term ‘I/O’ is an abbreviation for input/output and refers to data coming in, and going out, of a particular
device. The ‘Process I/O board’ is an electronic device (board/card) in the controller through which data comes in and
out from field instrumentation (the process).

Chapter 1 - Introduction: What is ACCOL?

Page 1-2 An Introduction to ACCOL

the controllers can execute pre-programmed instructions to control a process.

For example, in response to data collected from field instruments, the controller can
issue commands to open valves when a certain pressure is reached, or to start
compressors or pumps if a flow rate decreases below setpoint. All of these pre-
programmed instructions are written using ACCOL.

In addition to directly controlling a process, a Network 3000 controller can serve as a
node in a communications network. Each controller (node) can thus share its data with
other controllers.

Data is sent to the network through one or more of the controller’s communication
ports. If controllers are located near each other, network connections can be ‘hard-wired’
with cables. Controllers which are far away can communicate through dial-up modems
using either dedicated phone lines or the public telephone system. For some applications,
radio or satellite links may be appropriate.

Typically, one or more PC workstations is also connected to the network. These
workstations generally include ACCOL Tools software to allow for ACCOL
programming, as well as Open Bristol System Interface (BSI) Utilities software. The
Open BSI Utilities are a collection of programs which facilitate communication with the
controller network by the ACCOL Tools, and by third-party applications. Open BSI
Utilities also allow an operator to collect and view data from the network, and to monitor
the status of network communications. Separate utilities may be purchased which allow
scheduled data collection, and file export capability to third-party applications such as
Microsoft Excel spreadsheets or data bases such as Microsoft Access.

Often, the PC workstations are also equipped with Supervisory Control and Data
Acquisition (SCADA) or Human-Machine Interface (HMI) software packages which
allow the presentation of data to an operator in the form of graphical displays, trends,
and printed logs or reports. The PC workstation can use one of several different packages
for this purpose including Iconics Genesis software, Intellution® FIX® software, or
Bristol Babcock’s own OpenEnterprise software.

Chapter 1 - Introduction: What is ACCOL?

An Introduction to ACCOL Page 1-3

How Are the Controllers Programmed?

ACCOL programming is done using a set of software programs referred to as the
ACCOL Tools. The most important program in the ACCOL Tools software set is
ACCOL Workbench. ACCOL Workbench, is a Windows-based tool which combines the
necessary functions for ACCOL program generation, with the cut, paste, search, and
replace capabilities of a text editor.

The ACCOL programmer uses ACCOL Workbench to construct an ACCOL source file.4

The ACCOL source file consists of ASCII text, and has a file extension of (.ACC).

When editing the source file, the programmer selects from a large set of pre-programmed
ACCOL software module templates and control statements which can be inserted in
the source file. These modules and statements perform common mathematical,
communication, and process control functions.5

Each module receives a series of input
values, upon which it performs
certain calculations. It then generates
a series of output values which may
be used by other modules. For
example, the PID3TERM module
generates outputs which allow
proportional, integral, and derivative
control over an input value.

Each module includes a set of module terminals which are used to specify the inputs
and outputs of the module. The name of an ACCOL signal or, in some cases, just a
numerical value, is entered on the required module terminals. Signals are software
structures which allow data to be passed between modules.6 Each signal has a specific
name which should reflect the type of data it holds. For example, if a signal is used to
store the level of water in water tank number 3, the signal should have a name such as
TANK3.WATER.LEVL. Each signal name, as well as certain characteristics associated
with the signal such as its initial value, engineering units, etc. must be defined in the
ACCOL source file. A typical ACCOL source file includes several hundred signals;
however, depending upon the complexity of the system, thousands of signals may be
used.

4
 The ACCOL source file can also be edited directly with any ASCII text editor. AccolCAD software, available separately

from Bristol Babcock, can also be used to generate the ACCOL source file. Notes For Older Network 3000 Products:
Different methods for program generation exist for older model controllers; these units use an older DOS-based set of
ACCOL Tools which include the ACCOL II Batch Compiler (ABC) and ACCOL II Interactive Compiler (AIC). These
older tools are not discussed in this manual.
5 There are numerous modules and control statements to choose from. For information on particular modules and
control statements see the ACCOL II Reference Manual (document# D4044).
6 For users familiar with other high-level programming languages such as BASIC or ‘C’, signals can be thought of as
‘variables’. In some industries, they are referred to as ‘tags’.

Chapter 1 - Introduction: What is ACCOL?

Page 1-4 An Introduction to ACCOL

By entering the same signal name on terminals of different modules, a connection
between the modules is established, and the modules are said to be ‘wired’ together.7 In
this way, the output of one module serves as the input to another module; allowing data
values to be shared between modules.

The programmer combines the appropriate modules and control statements together into
functional blocks called ACCOL Tasks. ACCOL tasks provide a way to divide up the
source file, and make it more manageable. Although an ACCOL source file can
theoretically include more than 100 tasks, most ACCOL programmers find that using a
few tasks, say less than ten, is most efficient. Each ACCOL task executes at a user-
defined rate, and with a user-defined priority. In this way tasks which perform critical
process control operations can take precedence over tasks which perform less important
calculations.

The ACCOL source file may include other structures which allow for data storage and
management, such as signal lists and data arrays. These subjects will be discussed
later in this manual.

7 The modules, terminals, signals, and the connections between them all exist in the software program which executes in
the controller. There are no physical modules to be wired together. Unless otherwise noted, whenever these terms are
used in this book, they refer to software structures in the ACCOL, not physical hardware devices.

Chapter 1 - Introduction: What is ACCOL?

An Introduction to ACCOL Page 1-5

Once the ACCOL source file has been completed,
it must be translated into a format which is
compatible with the Network 3000 series
controller. To perform this translation, the
ACCOL programmer initiates an ACCOL
Workbench ‘build’ command. If there are no
errors in the ACCOL source file, the ‘build’
command generates an intermediate ACCOL
Object File8 (.ACO), and a final ACCOL Load
File (.ACL).

All of the modules and statements originally
entered in the ACCOL source file, are stored as
machine-readable instructions in the ACCOL
Load file. The ACCOL Load file, generally
referred to as simply the ACCOL load, may
then be downloaded into the memory of the
Network 3000-series controller.9

Once in memory, the controller will begin executing each of the machine-readable
instructions in the ACCOL load, in order to perform whatever measurement and control
duties are required for its particular application.

8
 The ACO file is useful only for certain ACCOL Tools, it may NOT be edited by the user.

9 Downloading is performed using the Open BSI Downloader.

BLANK PAGE

Chapter 2 - What Are Signals?

An Introduction to ACCOL Page 2-1

What Are Signals?

Signals are the primary vehicle by which data is passed from module to module in the
ACCOL load. They are similar to ‘variables’ in other programming languages. The
ACCOL programmer uses signals to specify the inputs to, and outputs from, ACCOL
modules. By placing an ACCOL signal name on a module terminal, that terminal is said
to be ‘wired’ to that signal. Placing that same signal name on another terminal
establishes a connection between the modules; the value of a signal on an output
terminal of one module serves as an input to another module, and so on.

This section will describe the five different types of signals: logical, logical alarm, analog,
analog alarm, and string. A special set of signals created by the system, called system
signals will also be discussed. Before covering these topics, however, it’s important to
discuss signal naming conventions, and signal characteristics.

Signal Naming Conventions

Every signal has a unique name. Signal names are divided up into three parts as shown
below:

base_name.extension.attribute

The signal base_name can be from 1 to 8 characters in length, and must begin with a
letter.1 The remaining characters can be any mixture of numbers and letters.

The signal extension can be any mixture of 0 to 6 letters or numbers.

The signal attribute can be any mixture of 0 to 4 letters or numbers.

Note the presence of periods ‘.’ between the base name and extension, and between the
extension and attribute. These serve as separator characters between each part of the
signal name, and are always required. If the signal contains no attribute, the signal
name should include an ending period, i.e. ‘base.extension.’ and if neither an extension,
nor an attribute is used, the signal name should have two ending periods, i.e. ‘base..’
Here are some examples of valid ACCOL signal names:

STATION1.TEMP.DEGC
PUMP4.STATUS.
TANK3..LEVL
POWRFAIL..
PUMP3425.STATUS.FAIL

1 The only exception to this rule is for system signals. All system signals have a base name beginning with the character
‘#’. System signals are created by the ACCOL Tools, and are used for specific ‘housekeeping’ duties. The ACCOL
programmer can use system signals, but cannot create them.

Chapter 2 - What Are Signals?

Page 2-2 An Introduction to ACCOL

The reason signals are divided up into three
parts is that it allows a greater level of
organization for signals.

In the figure, at right, the Open BSI
DataView utility is being used to search for
all signals which share the common
extension ‘LEVEL’. The same type of search
could be conducted based on base names or
attributes.

Characteristics Common to All Signals

Every ACCOL signal has a set of characteristics associated with it. Depending upon the
type of signal (logical, logical alarm, analog, analog alarm, or string) the characteristics
may vary, however, every signal, no matter which type, shares the characteristics
described below:

Initial State or Value This is the starting value, as specified in the ACCOL
source file, which this signal will have when the
ACCOL load is initially downloaded into the Network
3000 controller. The signal will maintain its initial
state or value, until such time as it is changed, either
manually, through the intervention of an operator, or
via control instructions in the ACCOL load.

Manual Inhibit/Enable Flag The manual inhibit/enable flag is a status value,
associated with the signal, which determines whether
or not an operator can change the value of the signal.
The value of a manually enabled signal can be altered
by an operator. When a signal is manually inhibited,
however, an operator cannot change the signal’s
value, without first manually enabling the signal.

Control Inhibit/Enable Flag The control inhibit/enable flag is a status value,
associated with the signal, which determines whether
or not the execution of ACCOL control logic (modules,
tasks, etc.) can change the value of the signal. The
value of a control enabled signal can be altered by

Chapter 2 - What Are Signals?

An Introduction to ACCOL Page 2-3

ACCOL control logic. When a signal is control
inhibited, however, control logic cannot change the
signal’s value. This flag is sometimes referred to as
‘AUTO/MANUAL’.

Base name Text Every signal has a base name. If desired, a descriptive
text message may be associated with the base name.
The full text of this message is only visible in those
SCADA/HMI packages which are specifically
equipped to display it. The base name text for a
particular base name is shared by all signals with the
same base name.

For example, if the base name COMPRSR2 has
descriptive text of ‘COMPRESSOR NUMBER 2’, and
the ACCOL source file contains two signals with a
base name of COMPRSR2:

 COMPRSR2.POWER.STAT and
COMPRSR2.RUN.TIME,

then both those signals will share the common base
name descriptive text of ‘COMPRESSOR NUMBER 2’.

Base name text can be defined in the *BASENAMES
section of the ACCOL source file, -OR- it can be
defined via a separate string signal. (String signals
will be discussed later in this section.)

ACCOL supports six levels of security access (1 to 6), with 6 being the highest level. Each
level has, associated with it, a security code. Any operator using Open BSI Utilities, or
certain ACCOL Tools must sign-on with one of these security codes. Once signed on, the
operator is then allowed access to system functions which accept a security level less
than or equal to his or her security level. For example, an operator with security level 4
has access to functions requiring level 1 to 4, but is prohibited from accessing functions
requiring security level 5 or 6.

Read Priority The Read Priority value specifies the minimum
security level an operator must sign on with, in order
to view (i.e. read the value of) this signal.

Write Priority The Write Priority value specifies the minimum
security level an operator must sign on with, in order
to change the value of (i.e. write to) this signal.

Chapter 2 - What Are Signals?

Page 2-4 An Introduction to ACCOL

Additional signal characteristics vary depending upon the signal type, and will be
described, below:

Logical Signals

Logical signals can only have two possible values: ON or OFF.2

Logical signals are therefore used for data which can only have two possible states. For
example, if a valve is either OPENED or CLOSED, its value can be stored in a logical
signal. Similarly, if a pump is either ON or OFF, a logical signal could be used to store
its value. Logical signals are also useful in the creation of Boolean logic expressions.

Logical signals have the following characteristics: (in addition to those described under
Characteristics Common to All Signal Types).

ON/OFF Text In certain on-line tools (in Open BSI, for example) the state of a
logical signal is shown as ‘ON’ if the signal is ON, and ‘OFF’ if
the signal is OFF. A signal’s ON/OFF text may be changed,
however, to better represent the signal’s function. For example, it
may be desirable to edit this text in the source file so that the ON
text is ‘ACTIVE’, and the OFF text is ‘FAILED’. Both the ON text
and OFF text may be up to six characters in length.

LOC/GLB Flag Certain HMI/SCADA packages will only collect data from signals
which are alarms, or are specified as global signals ‘GLB’. These
packages will ignore signals specified as local ‘LOC’. This flag,
therefore, allows the user to designate whether or not such
packages should collect data from this signal.

RBE Flag Report by Exception (RBE) is a method of data collection, used by
certain HMI/SCADA packages, which will cause data from
signals to be collected only if the signal value changes. This
minimizes the amount of message traffic in the system. By
default, signals are NOT RBE signals.

Logical Alarm Signals

Logical Alarm Signals are similar to logical signals, except that when they change state,
they generate an alarm message.3 These signals are used to store data which is more

2 The controller stores an OFF as the number ‘0’ and an ON as the number ‘1’.
3 Alarm messages are immediately transmitted out of the controller’s slave port, to the next highest node in the
network, until they reach whatever device is used to notify the operator of the alarm (PC Workstation, printer, etc.)

Chapter 2 - What Are Signals?

An Introduction to ACCOL Page 2-5

critical to the operation of a process, for example, a logical alarm signal might be used to
indicate that a pump or compressor has failed.

Logical alarm signals have the following characteristics: (in addition to those described
under Characteristics Common to All Signal Types).

ON/OFF Text See description under Logical Signals.

RBE Flag See description under Logical Signals. NOTE: In general, alarm
signals should NOT be designated as RBE signals.4

Alarm Priority Alarm signals can also be further classified based on the severity of
the alarm condition. This severity level is called the alarm priority.
There are four possible priority levels, which will be discussed in
ascending level of importance. The choice of which signals should
have a given alarm priority is entirely at the discretion of the
programmer.

Event - Signals specified as event alarms are used to indicate
normal, everyday occurrences.

Operator Guide - Signals specified as operator guide alarms
are used to indicate everyday occurrences as well, however,
they are slightly more important than events.

Non-Critical - Signals specified as non-critical are used to
indicate problems which, while not serious enough to cause
damage to a plant or process, require corrective action by an
operator.

Critical -Signals specified as critical are used to indicate
dangerous problems which require immediate operator
attention, and corrective action.

Alarm Type The type of an alarm specifies under what conditions the signal
enters an alarm state. There are three possible choices:

Alarm ON - with this choice, an alarm message is generated
when the signal turns ON, and a ‘return to normal’ alarm
message is generated when the signal turns OFF.

4
 Alarms are always reported before RBE change reports, therefore, if a signal is collected both as an alarm, and as an

RBE change, there is a possibility that an older RBE message could arrive after an alarm message, thereby overwriting
newer data with older data. Because of this interaction of the two data collection methods, it is recommended that alarm
signals NOT be designated as RBE signals. For more information on Report by Exception, see the ACCOL II Reference
Manual (document# D4044).

Chapter 2 - What Are Signals?

Page 2-6 An Introduction to ACCOL

Alarm OFF - with this choice, an alarm message is generated
when the signal turns OFF, and a ‘return to normal’ alarm
message is generated when the signal turns ON.

Change of State - with this choice, an alarm message is
generated anytime the signal changes state from ON to
OFF, or from OFF to ON.

Alarm Inhibit/
 Enable Flag The alarm inhibit/enable flag is a status value, associated with the

signal, which determines whether or not alarm messages will be
transmitted. Setting this flag to ‘Enable’ allows transmission of alarm
messages to occur. Setting this flag to ‘Inhibit’ prevents the
transmission of alarm messages from this signal.

Analog Signals

Analog signals are used to store numerical data. Examples of such data might include,
temperature readings, pressure readings, or flow totals. The numerical data is stored as
4-byte floating point numbers in IEEE format.5 The non-zero numerical value of an
analog signal can range from:

+1.175494 x 10-38 to +3.402823 x 1038

Analog signals have the following characteristics: (in addition to those described under
Characteristics Common to All Signal Types).

LOC/GLB Flag Certain HMI/SCADA packages will only collect data from signals
which are alarms, or are specified as global signals ‘GLB’. These
packages will ignore signals specified as local ‘LOC’. This flag,
therefore, allows the user to designate whether or not such
packages should collect data from this signal.

RBE Flag Report by Exception (RBE) is a method of data collection, used by
certain HMI/SCADA packages, which will cause data from
signals to be collected only if the signal value changes. This
minimizes the amount of message traffic in the system. By
default, signals are NOT RBE signals.

RBE Deadband Analog signals which have been designated as RBE signals may

5 See Appendix B for more information on working with floating point numbers.

Chapter 2 - What Are Signals?

An Introduction to ACCOL Page 2-7

have an associated deadband.6 The deadband represents a
range, above and below the last reported value of the signal, in
which changes to the signal will not be reported. If the signal
goes out of this range, for a period of time long enough to be
detected by an RBE scan, then an exception has occurred, and
the change will be reported.

Units Text Units text specifies the engineering units for this particular
signal. Up to six characters of units text may be defined. Typical
examples of units text include: ‘HOURS’, ‘FEET’, ‘INCHES’, and
‘PSIG’.

Analog Alarm Signals

Analog Alarm Signals are similar to analog signals, except that when the signal value
exceeds certain pre-defined alarm limits, an alarm message is generated. These signals
are used to store data which is more critical to the operation of a process, for example, an
analog alarm signal might be used for temperature or pressure readings of critical
system components.

Analog alarm signals have the following characteristics: (in addition to those described
under Characteristics Common to All Signal Types).

Units Text See description under Analog Signals.

RBE Flag See description under Analog Signals. NOTE: In general, alarm
signals should NOT be designated as RBE signals.7

RBE Deadband See description under Analog Signals.

Alarm Enable/
Inhibit Flag See description under Logical Alarm Signals.

Alarm Limits
 and
Deadbands An analog alarm signal generates an alarm message when the value

6 The concept of deadbands is explained in more detail in the discussion of alarm limits for analog alarm signals, later
in this section.
7 Alarms are always reported before RBE change reports, therefore, if a signal is collected both as an alarm, and as an
RBE change, there is a possibility that an older RBE message could arrive after an alarm message, thereby overwriting
newer data with older data. Because of this interaction of the two data collection methods, it is recommended that alarm
signals NOT be designated as RBE signals. For more information on Report by Exception, see the ACCOL II Reference
Manual (document# D4044).

Chapter 2 - What Are Signals?

Page 2-8 An Introduction to ACCOL

of the signal exceeds a pre-defined alarm limit. Up to four alarm
limits may be defined; every analog alarm signal must have at least
one limit defined, or else the signal will never generate an alarm
message.

The four alarm limits are the high alarm limit, the high-high alarm
limit, the low alarm limit, and the low-low alarm limit. Each of these
alarm limits can be specified in the ACCOL source file as either a
constant, or as an ACCOL signal. In general, specifying an ACCOL
signal provides more flexibility, because it allows the limit to be
changed dynamically, either by the operator, or through logic in the
ACCOL load.

In addition to the alarm limits, there are two deadbands: the low
deadband and the high deadband. A deadband represents a range
just above or below the alarm limit (depending upon whether it’s a
high or low alarm) in which the signal remains in an alarm state,
despite the fact that its value no longer exceeds the alarm limit.
Without the deadband, if the signal’s value rapidly fluctuates above
and below the alarm limit, the signal would constantly be going in
and out of an alarm state, thereby flooding the system with alarm
and return to normal messages. A properly defined deadband helps
prevent this situation.

Deadbands can be defined in the ACCOL source file as either
constants, or as signals.

When the value of an analog alarm signal passes one of its alarm
limits, an alarm message is generated.8

In the case of a high, or high-high alarm, the alarm condition does
not clear (i.e. generate a ‘return to normal’ alarm message) until the
value of the signal goes below the alarm limit, minus the value of the
high deadband.

In the case of a low, or low-low alarm, the alarm condition does not
clear until the value of the signal rises above the alarm limit, plus
the value of the low deadband.

An example of alarm limits and deadbands is illustrated in the figure on the opposite
page. In this example, we are showing a plot of the value of a signal measuring Celsius

8 In order for alarm limits to function properly, the high-high limit must be a higher number than the high limit, the high
limit must be a higher number than the low limit, and the low-low limit must be a lower number than the low limit. In
addition, deadbands should always be entered as positive numbers.

Chapter 2 - What Are Signals?

An Introduction to ACCOL Page 2-9

temperature, as it fluctuates over time. The four alarm limits and two deadbands are
shown in the figure. The normal range for this signal is temperatures between 400 C and
700 C. Temperatures outside of this range are considered to be alarm conditions.

Starting from the left of the graph, the value of the signal increases until it reaches 700

C, the high alarm limit (see Item 1). At this point a high alarm message is generated,
and the signal is considered to be in a ‘high alarm’ state.

The value of the signal continues to increase. When it passes the high-high alarm limit
of 900 C a ‘high-high’ alarm message is generated (see Item 2). At this point, the signal is
considered to be in a high-high alarm state.

The value of the signal then starts to decrease. Although the value passes below 900C, it
is still considered to be in a ‘high-high’ alarm state because there is a 100 high deadband
in effect (deadbands are shown as shaded areas on the graph.) When the signal value
falls lower than 800 C point (900 C high alarm limit minus the high deadband of 100 C)
the signal is no longer in a ‘high-high’ alarm state (See Item 3). It is still however in a
‘high’ alarm state.

As the value of the signal decreases below 700 C, it remains in a ‘high’ alarm state until
its value falls below 600 C (700 C alarm limit, minus a 100 C high deadband). (See Item 4).
At this point, the signal is in its normal range, and a ‘return-to-normal’ alarm message is
sent.

Then, however, the value of the signal continues to drop. When it reaches 400 C, a ‘Low
Alarm’ message is generated (See Item 5).

The signal remains in a ‘Low Alarm’ state until the signal value drops to 200 C. (See Item
6). This causes a ‘Low Low Alarm’ message to be generated.

The signal remains in a ‘Low-Low Alarm’
state until the signal rises above 300 C, (200

C low-low alarm limit plus low deadband of
100 C). (See Item 7). The signal is still in a
‘Low Alarm’ state, however.

Once the signal rises above 500 C (400 C low
alarm limit + low deadband of 100 C), it has
left the low-alarm state, and a ‘return to
normal’ alarm message is sent (See Item 8).

As long as the signal remains in the
normal range (between 40 and 700 C), no
more alarm messages will be generated.

Chapter 2 - What Are Signals?

Page 2-10 An Introduction to ACCOL

String Signals

The last type of signal is the string signal. The value of a string signal is a message
consisting of up to 64 characters of ASCII text. These messages are called character
strings, because they are a bunch of characters tied together. For example, a string
signal called STATION.TAG.NAME may have a value of ‘ELM STREET COMPRESSOR
STATION’.

String signals are typically used to provide readable status messages. Some SCADA/HMI
packages are also equipped to display these messages.

A less common use of string signals is to hold the base name descriptive text for another
signal. Normally a signal’s base name descriptive text is defined in the source file as a
constant; if a string signal name is entered instead, the base name descriptive text can
be changed on-line.

The Calculator Module (which will be discussed in the section Modules) also supports
certain functions for string manipulation including checking the length of a string,
comparing the value of two strings, and concatenating (putting together) two strings.

String signals have the following characteristics: (in addition to those described under
Characteristics Common to All Signal Types).

String Length The length (number of characters) of the message (including spaces).
No string may be longer than 64 characters.

Chapter 2 - What Are Signals?

An Introduction to ACCOL Page 2-11

System Signals

Every ACCOL load contains a series of system signals System signals are created
automatically by the system, and are distinguished from other ACCOL signals by the
presence of a pound sign ‘#’ at the beginning of the base name.

For example, the system signal #TIME.000. indicates the current Julian date and time.
The system signal #NODEADR.. indicates the local address of the controller (as set via
hardware or software switches).

There are numerous other system signals which are used for ‘housekeeping’ such as
holding task characteristics, and error information.

The ACCOL programmer cannot create or delete system signals, but can make use of
them on module terminals, or in equations.

For more information on system signals, see the ACCOL II Reference Manual
(document# D4044).

How Are Signals Created?

All signals must be defined in the
‘*SIGNALS’ section of the ACCOL
source file (.ACC). Base name
descriptive text for the signals is
defined in the ‘*BASENAMES’
section of the file.

Instructions for defining signals and
base name text are included in the
ACCOL Workbench User Manual
(document# D4051).

Chapter 2 - What Are Signals?

Page 2-12 An Introduction to ACCOL

How Does the Operator View Signal Values?

There are several different ways to view signal data in a running Network 3000 series
controller.

" While running the Open BSI DataView utility, users can call up signals by a signal
search, by the full signal name, or through lists. Signal values may also be changed
via dialog boxes. See the Open BSI Utilities Manual (document# D5081) for details.

" Signal data can be exported to DDE compliant applications such as spreadsheets and
word processors using the Open BSI DDE Server program. See the Open BSI
Collection/Export Utilities Manual (document# D5083) for details.

" Users with Bristol Babcock’s Universal Operator Interface (UOI) software can
configure text-based menus and logs to include signal data. See the UOI
Configuration Manual (document# D5074) for details.

" If you are using an HMI/SCADA software package such as OpenEnterprise,
Enterprise Server, Intellution® FIX®, Iconics Genesis, etc., signal values may be used
to drive the color and appearance of graphic symbols on screen displays, trend lines,
etc. See the documentation accompanying the HMI/SCADA software for details.

Chapter 3 - What Are Modules?

An Introduction to ACCOL Page 3-1

What Are Modules?

Modules are pre-programmed structures which are used to perform mathematical,
communication, and process control functions.1 Within ACCOL Workbench, the
programmer chooses from a library of modules, and inserts the selected modules into one
or more ACCOL tasks in the source file.2,3

Each module has a series of terminals which represent its inputs and outputs. The
programmer ‘wires’ these terminals in software, by typing an ACCOL signal name next
to the terminal. By placing the same signal name on terminals of different modules, the
programmer establishes a connection for data flow between the modules. In this way,
data flows from an output terminal of one module, to an input terminal of another
module, and so on.4

How Do Modules Execute?

When a module executes, it reads its input terminals, performs any necessary
calculations, and then updates its output terminals.

Except for certain special modules in Task 0 (discussed later in this manual) modules do
NOT execute unless the line of the task on which they are defined executes, therefore
the output terminals of a module do NOT change at any time except when the module is
executing.

What Kinds of Modules Are Available?

There are over 80 different ACCOL modules. We will discuss a few broad categories of
available modules here. A full description of each module is included in the ACCOL II
Reference Manual (document# D4044).

1 If you are familiar with other programming languages, you can think of a module as a sub-routine, or procedure.
2 The pre-programming instructions for each module reside in firmware, a special kind of encoded software that resides
in the remote process controller. When you install new versions of ACCOL Tools software, which include new modules,
you may also need to install an upgrade to the controller firmware, in order to use the new modules or features. For some
controller models, the firmware is referred to as the PROM set, because it resides in Erasable Programmable Read only
Memory (EPROM) chips. In other controllers, the firmware is installed into a FLASH memory area. See the hardware
manual of your controller for more information.
3 The method for inserting modules into a task will be discussed in greater detail later.
4 The terminals of a module are only updated with data when the module executes.

Chapter 3 - What Are Modules?

Page 3-2 An Introduction to ACCOL

Natural Gas Modules

There are several modules available
which implement natural gas
industry calculations, including
those described in American Gas
Association reports. Among these
modules are AGA3ITER, AGA5,
AGA7, AGA8GROSS, AGA8DETAIL,
FPV and ISO5167.

Input/Output (I/O) Modules

Most every ACCOL source file
includes some I/O modules, since
these modules are necessary to send
and receive data through the
controller’s process I/O boards. The
most commonly used include the
analog input (ANIN), analog output
(ANOUT), digital input (DIGIN) and
digital output (DIGOUT).

Mathematical Modules

These modules implement a variety of
different arithmetic and logical
functions. Among those available are
the AVERAGER, COMPARATOR,
INTEGRATOR, DIFFERENTIATOR,
TOT/TRND, MUX, and DEMUX
modules.

10 * AGA8DETAIL
ENABLE ;LOGICAL_SIGNAL
PRIORITY ;ANALOG_SIGNAL_OR_VALUE
FLOW_TEMP ;ANALOG_SIGNAL_OR_VALUE
STAT_PRESS ;ANALOG_SIGNAL_OR_VALUE
BASE_TEMP ;ANALOG_SIGNAL_OR_VALUE
BASE_PRESS ;ANALOG_SIGNAL_OR_VALUE
LIST ;ANALOG_SIGNAL_OR_VALUE
ARRAY ;ANALOG_SIGNAL_OR_VALUE
COLUMN ;ANALOG_SIGNAL_OR_VALUE
ERROR ;ANALOG_SIGNAL
STATUS ;ANALOG_SIGNAL
Z_FLOWING ;ANALOG_SIGNAL
Z_BASE ;ANALOG_SIGNAL
FPV ;ANALOG_SIGNAL

20 * ANOUT
DEVICE DEVICE_ID
INITIAL CHANNEL
OUTPUT 1 ;ANALOG_SIGNAL_OR_VALUE
ZERO 1 ;ANALOG_SIGNAL_OR_VALUE
SPAN 1 ;ANALOG_SIGNAL_OR_VALUE
TRACK 1 ;LOGICAL_SIGNAL
RESET 1 ;ANALOG_SIGNAL

30 * INTEGRATOR
INPUT ;ANALOG_SIGNAL_OR_VALUE
RESET ;LOGICAL_SIGNAL
ZERO ;ANALOG_SIGNAL_OR_VALUE
SPAN ;ANALOG_SIGNAL_OR_VALUE
OUTPUT ;ANALOG_SIGNAL

Chapter 3 - What Are Modules?

An Introduction to ACCOL Page 3-3

Communication Modules

These modules support data transmission
through the controller’s communication
ports. Among the most commonly used
modules are MASTER, SLAVE,
EMASTER, LOGGER, CUSTOM,
IP_CLIENT, and IP_SERVER.

Process Control Modules

These modules implement algorithms
which are useful for process control
applications including PID loop control
(PID3TERM), LEAD/LAG, SCHEDULER,
SEQUENCER, and STEPPER.

Calculator Module

One module which deserves special mention is the CALCULATOR module. If you are
unable to find a module which suits your needs, you may often be able to create the
needed module yourself by entering statements in a Calculator Module. This module
supports a wide range of arithmetic operators (add, subtract, multiply, divide, square
root, SIN, COSINE), logical operators (IF, ELSE, AND, INCL OR, EXCL OR), and other
operators related specifically to signals, and strings.

How Are Modules Placed in the ACCOL Source File?

Modules are inserted inside ACCOL Tasks in the ACCOL source file. ACCOL Tasks are
discussed in the next section. For information about inserting modules in them, see the
ACCOL Workbench User Manual (document# D4051).

40 * MASTER
REMOTE ;ANALOG_SIGNAL_OR_VALUE
POINT ;ANALOG_SIGNAL_OR_VALUE
MODE ;ANALOG_SIGNAL_OR_VALUE
INTYPE ;ANALOG_SIGNAL_OR_VALUE
OUTTYPE ;ANALOG_SIGNAL_OR_VALUE
INDEX ;ANALOG_SIGNAL_OR_VALUE
INLIST ;ANALOG_SIGNAL_OR_VALUE
OUTLIST ;ANALOG_SIGNAL_OR_VALUE
STATUS_1 ;ANALOG/LOGICAL_SIGNAL
STATUS_2 ;ANALOG_SIGNAL

50 * PID3TERM
 INPUT ;ANALOG_SIGNAL_OR_VALUE
 SETPOINT ;ANALOG_SIGNAL_OR_VALUE
 DEADBAND ;ANALOG_SIGNAL_OR_VALUE
 PROPORTION ;ANALOG_SIGNAL_OR_VALUE
 INTEGRAL ;ANALOG_SIGNAL_OR_VALUE
 DERIVATIVE ;ANALOG_SIGNAL_OR_VALUE
 RESET ;ANALOG_SIGNAL_OR_VALUE
 TRACK ;LOGICAL_SIGNAL
 OUTPUT ;ANALOG_SIGNAL
 ERROR ;ANALOG_SIGNAL

60 * CALCULATOR
 10 :IF((TANK7.WATER.LEVL>12)&(DRAIN.ENABLE.ON))
 20 OPEN.DRAIN.VALV=#ON
 30 :ENDIF

BLANK PAGE

Chapter 4 - What Are ACCOL Tasks?

An Introduction to ACCOL Page 4-1

What Are ACCOL Tasks?

An ACCOL task is a series of modules and control statements which execute
sequentially as a functional block. Task execution occurs at a user-specified rate and
priority.

ACCOL tasks provide a way to organize the ACCOL source file into smaller, more
manageable pieces. For example, at a compressor station for a natural gas pipeline, there
are critical flow, temperature and pressure calculations, as well as I/O operations; these
might fit well in one high priority task. Less critical calculations, such as daily flow
totals, and averages, might be separated out into a lower priority task. Communication
through master modules may be handled through yet another task.

Each ACCOL task is assigned a unique number. ACCOL supports over 100 tasks,
however, most users find that using a few tasks is most efficient.

Communication Between Tasks

Data is transferred from one task to another in the same way that data moves from
module to module, via signals.

To send a value of an output terminal in one task to the value of an input terminal in
another task, simply ‘wire’ the same signal name on both terminals.

Other ACCOL structures, such as data arrays, signal lists, etc., are also shared among
all tasks.

Task Rate

The task rate specifies how often the controller will initiate execution of this task.1

The task rate is specified in units of seconds, and is defined in the ACCOL source file,
and may be modified on-line through the #RATE.nnn system signal (where nnn specifies
the task number). The task rate can be as fast as 0.02 seconds (20 milliseconds), or as
slow as 5400 seconds (90 minutes). Setting the task rate to 0 stops execution of the task.

In the timing diagram, on the next page, an ACCOL load with a single task has a task
rate set at 1 second. Each second, the task is scheduled to start executing, and it

1 If the time it takes to execute the task is longer than the rate specified, the next execution of the task will NOT be
started on schedule. It must wait until the previous execution of the task has completed. This delay is called slippage, and
is recorded as a slip count error in the system signal #RCNT.nnn where nnn is the task number.

Chapter 4 - What Are ACCOL Tasks?

Page 4-2 An Introduction to ACCOL

completes execution (in this case) in 0.25 seconds.2 For the remaining time, the controller
is not executing any tasks, and is said to be idle.

In this situation, with only one task in the load, the task rate could safely be set faster,
to say, 0.3 seconds, thereby minimizing the idle time.

Since an ACCOL load can have many tasks, be aware that each task must share
execution time. Some tasks may have critical calculations which require frequent
updates. To efficiently use the system, tasks should be scheduled to run as frequently as
needed, but not so fast as to cause slippage of the execution time.

For example, in the timing diagram, above, with a 1 second task rate, the controller is
idle for 0.75 seconds out of every 1.00 second. Therefore, if other tasks are added to the
load, and the sum of their execution times is always less than 0.75 seconds, they could
also all have 1 second task rates.

Continuous Tasks

If desired, a task may be set to run continuously. by specifying ‘C’ as its task rate, when
creating the ACCOL source file off-line, or setting the appropriate #RATE.nnn signal to a
value of ‘-1’ when operating on-line. Care must be taken, however, to ensure that
continuous tasks are given a priority lower than any other task, or to use WAIT
statements to stop execution of the continuous task. If these precautions are NOT taken,
any tasks with a lower priority than the continuous task WILL NEVER execute.

Task Priority

Each task is assigned a priority. Task priority can range from 1 to 64, with 64 being
the highest priority, and 1 being the lowest. If a task performs operations which are
critical to the safe operation of a process, it should be assigned a high priority. Tasks
which perform less important calculations may be assigned a lower priority.

Task priority can be changed on-line via the #PRI.nnn system signal (where nnn
corresponds to the task number).

2 The time it takes to execute a task may be measured using the system signals #RTTIME.000 and #RTTIME.001.

Idle Idle Idle
Time Time Time

0 0.25 1 1.25 2 2.25 3

(all time in seconds)

Task Rate = 1 second = task execution

Chapter 4 - What Are ACCOL Tasks?

An Introduction to ACCOL Page 4-3

ACCOL uses a technique called pre-emptive multi-tasking. This means that multiple
tasks execute concurrently, however, higher priority tasks are given priority over lower
priority ones.

If two or more tasks are scheduled to execute at the same moment, the one with the
higher priority will be executed first. As time becomes available, the task with the next
highest priority will be executed, and so on. If two tasks share the same priority, they
will be executed on a rotating basis.

If a high priority task is required to run, and a lower priority task has not finished
execution, execution of the lower priority task will be suspended to allow the higher
priority task to run. The lower priority task can only resume execution when higher
priority tasks have finished.

If you have a continuous task (described earlier), it must have the lowest priority relative
to all other tasks, or it must be stopped by WAIT statements (WAIT FOR, WAIT DELAY,
etc.) or else NO OTHER TASKS WILL EXECUTE.

System Tasks

Another consideration when setting task priority is to avoid conflicts with system tasks.
A system task is a task in the system firmware, which performs some function during the
execution of the ACCOL load. A table of system task priorities is included in the ‘Task’
section of the ACCOL II Reference Manual (document# D4044). Never assign an ACCOL
task a priority that is higher than one of the system tasks which will be used in your
ACCOL load, or the system task may be unable to run when it is needed.

Redundancy Frequency

If you are using a redundant pair of Network 3000 controllers, then a redundancy
frequency of 1 should be specified.3 If you are NOT using redundant controllers, a
redundancy frequency of 0 should be specified.

Task 0 - The Special Task

Every ACCOL load has a task numbered 0. Task 0 is a special task which does not
execute at a specified rate. Instead, it is used to hold certain modules which do NOT

3 In general, a redundancy frequency of 1 should be specified for redundant units. For additional information on
redundancy frequency, see the ‘Redundancy Concepts’ section of the ACCOL II Reference Manual (document#
D4044).

Chapter 4 - What Are ACCOL Tasks?

Page 4-4 An Introduction to ACCOL

execute on their own, except when activated by other ACCOL modules. The following are
non-executing modules, which are appropriate for use in Task 0:

AUDIT
EASTATUS
EAUDIT
RBE
REDUNDANCY
RIOSTATS
SLAVE

All other modules should be placed in tasks which execute at a specified rate.

Task Control Statements

Normally, the modules in a task execute in sequential order. Task Control Statements
can be inserted in the task to modify the flow of execution.

Modules can be conditionally skipped using IF/ENDIF/ELSE/ELSEIF statements.
Modules can be repeatedly executed using FOR/ENDFOR statements.

The entire task can wait for a particular event to occur, or time to elapse, using WAIT
statements.

The task can even suspend its execution with a SUSPEND statement. The task can then
only be re-started by a RESUME statement in a different task.

In the simple example task, shown, below, only one of the two single-line calculator
modules will execute; which one is chosen depends upon the hour of the day determined
in the IF statement:

The following is a list of sections in the ACCOL II Reference Manual (document# D4044)
which contain details on control statements.

ABORT
BREAK
CONTROL STATEMENTS

**TASK 2 RATE: 0.500000 PRI: 1 REDUN: 0
10 * C SIMPLE TASK TO TURN ON LIGHTS IN A ROOM
20 * C BETWEEN 4:00 PM AND 6:00 AM
30 * IF ((#TIME.005.>16)|(#TIME.005.<6))
40 * CALCULATOR ROOM.LIGHT.=#ON..
50 * ELSE
60 * CALCULATOR ROOM.LIGHT.=#OFF..
70 * ENDIF

Chapter 4 - What Are ACCOL Tasks?

An Introduction to ACCOL Page 4-5

IF/ENDIF/ELSE/ELSEIF
FOR/ENDFOR
GOTO
RESUME
SUSPEND
WAIT DELAY
WAIT DI/RWAIT DI
WAIT FOR
WAIT TIME

How Are ACCOL Tasks Created?

Each task has a separate *TASK
section in the ACCOL source file.
Tasks are inserted in the file
within ACCOL Workbench. For
information on doing this, see the
ACCOL Workbench User Manual
(document# D4051).

BLANK PAGE

 Chapter 5 - What Are Data Arrays?

An Introduction to ACCOL Page 5-1

What Are Data Arrays?

Data arrays are essentially tables. They are organized in rows and columns, and each
array element (cell) can hold a single piece of data.

Arrays can be one dimensional (1 column by n number of rows):

-OR- two dimensional (m columns by n number of rows).

A particular array includes either all analog data, or all logical data; data types cannot
be mixed within the same array.1

Arrays are identified by a number from 1 to 255. There can be up to 255 logical arrays,
and 255 analog arrays. Both types of arrays can share the same numbers; for example,
there can be a logical array #1, as well as an analog array #1. All arrays are accessible by
any ACCOL task in the ACCOL load.

Each array is classified as either Read-Only (RO) or Read/Write (RW).

" Data entries for a Read Only array are made directly in the ACCOL source file. They
may be changed using ACCOL Workbench in either off-line or on-line mode; but
cannot be changed via DataView or other access methods. The data entries may,
however, be viewed by operators, and referenced by ACCOL modules.

1 In some applications, Julian Date/Time information can be stored in an array, via system signals. This data is treated
as analog information.

Chapter 5 - What Are Data Arrays?

Page 5-2 An Introduction to ACCOL

" Read/Write Array entries, conversely, can only be specified on-line, either by an
operator entering values, or by the execution of ACCOL logic.

Modules Which Are Commonly Used With Arrays

Although many ACCOL modules use arrays, some are specifically designed for array
access or array data manipulation.

" Storage Module

This module allows data to be read from a data array and stored in a signal list or
read from a signal list and stored in a data array.

" Function Module

This module can use an array as a look-up table. The first row and first column of the
array must each include values in ascending order. These values will be used as
indices, to look up values from among the remaining array elements. Interpolation
can be performed by the module if row and column indices are not exact.

" Stepper Module

This module is used in applications which can be divided up into a specific set of
steps, and where each step requires a certain set of signal outputs. Each row of the
array represents required signal outputs for a step in the sequence.

" Encode Module

Function 8 of the Encode Module allows array rows (or columns) to be shifted within
the array, in a specified direction. This simplifies array manipulation in a variety of
applications.

" Calculator Module

Individual array elements (cells) can be read using Calculator equations. In addition,
array elements in read/write arrays can be changed using Calculator equations. See
the ‘Calculator’ section of the ACCOL II Reference Manual (document# D4044) for
details.

All of these modules are discussed in detail in the ACCOL II Reference Manual
(document# D4044).

 Chapter 5 - What Are Data Arrays?

An Introduction to ACCOL Page 5-3

Typical Applications For Read Only Arrays

Because read only arrays cannot be changed, they are typically used to store reference
information, which the ACCOL logic will refer to later.

Steam Table

One possible application for a read only analog array is to store a steam table. In the
figure, shown below, a portion of a steam table is shown in an array format. The first
column represents absolute pressure, and the top-most row represents a range of
temperatures. The remaining array elements represent enthalpy in units of BTUs per
pound of steam.

0 360 380 400 420 450
80 1211.0 1221.5 1231.5 1240.3 1255.7
85 1210.0 1220.5 1230.7 1239.7 1255.1
90 1209.0 1219.8 1230.0 1239.1 1254.5

A user could configure a Function Module to access the array. The Function Module uses
the values in row 1 and column 1 to locate appropriate array cells. For example, if the
Function module ROW terminal is 85, and the Function module COLUMN terminal is
400, the Function module OUTPUT terminal will have a value of 1230.7. If the ROW and
COLUMN values fall between the values in the rows and columns, an interpolation will
be performed. For example, if the ROW terminal is 85, and the column terminal is 390, a
value halfway between the 380 COLUMN value of 1220.5 and the 400 COLUMN value
of 1230.7 will be calculated, resulting in an OUTPUT value of 1225.6.

For details on how to configure the Function Module, see the ACCOL II Reference
Manual (document# D4044).

Output Statuses For A Water Filter Backwash Sequence

One possible use of a logical read only array would be to hold the status values to be
used for each step of a water filter backwash sequence in a water treatment plant.

For example, let’s say that a simple water treatment plant has three valves and three
pumps which are used as part of a backwash sequence. The details of the sequence are
presented in the table on the next page. (Note: This sequence has been greatly simplified
for purposes of explaining the Stepper Module; the details of an actual backwash
sequence are longer and more complex.)

Chapter 5 - What Are Data Arrays?

Page 5-4 An Introduction to ACCOL

Device: Influent
Valve

Influent
Pump

Wash
Pump

Drain
Valve

Effluent
Valve

Effluent
Pump

Step 1 CLOSED OFF OFF CLOSED OPENED ON
Step 2 CLOSED OFF OFF CLOSED CLOSED OFF
Step 3 CLOSED OFF OFF OPENED CLOSED OFF
Step 4 CLOSED OFF ON OPENED CLOSED OFF
Step 5 CLOSED OFF OFF CLOSED CLOSED OFF
Step 6 OPENED ON OFF CLOSED OPENED ON

The details of this sequence can be stored in a logical array of ON/OFF status values.
The ACCOL programmer creates an array, as shown below, where each column
corresponds to a specific device (pump, valve, etc.,) and each row represents a specific
step of the backwash sequence. The programmer enters in each element of the array a 1
for ON (open, start, etc.) or a 0 for OFF (close, stop, etc.).

0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 1 0 0
0 0 0 0 0 0
1 1 0 0 1 1

The Stepper Module executes the rows in an order specified by the ACCOL programmer,
for a specified duration. When a particular step (row) is activated, the proper status
commands for that step are retrieved from the array, and output to logical signals in
order to drive the action of the valves, pumps, etc.

For details on how to configure the Stepper Module, see the ACCOL II Reference Manual
(document# D4044).

 Chapter 5 - What Are Data Arrays?

An Introduction to ACCOL Page 5-5

Typical Applications for Read/Write Arrays

Read/Write arrays are used for data which changes during execution, either via ACCOL
logic, or via operator intervention.

Storing Hourly Totals or Averages

One common usage would be for storing hourly flow, temperature, and pressure totals for
a natural gas pipeline compressor station.

For this example application, the programmer has
created three analog signals named
COMPRSR5.PRESUR., COMPRSR5.TEMP., and
COMPRSR5.FLOW. which contain the current
pressure, temperature, and flow totals, respectively,
for this compressor station.

Each of these signals is ‘wired’ to one of the INPUT
terminals of the Storage Module. Every hour, the
value of these signals will be copied, using the
Storage Module, into the next available row of a 3
column by 24 row read/write analog array. For
information on using the Storage Module, see the
ACCOL II Reference Manual (document# D4044).

Detecting Task Execution Errors

Sometimes an ACCOL programmer
configures structures which result in illegal
operations. For example, entering a
calculator equation which attempts to divide
a value by zero. Such errors, are detected by
the firmware. In order for the user to view
the error code, however, an analog read/
write error array must be defined.

The number of the array must be specified
using the #ERARRAY.. system signal. The
array itself must have four columns, and as
many rows as the highest numbered task in
the system. Each row represents an ACCOL
Task, the columns associated with that row

Chapter 5 - What Are Data Arrays?

Page 5-6 An Introduction to ACCOL

contain data about which type of module or equation in the task caused the error, and
the error code. Note that if there are multiple errors, only the most recently detected
error will be displayed for each task.

For a full description of how to configure the error array, as well as a description of what
each error code means, see the #ERARRAY.. portion of the ‘System Signals’ section in the
ACCOL II Reference Manual (document# D4044). ACCOL Workbench, when operating in
on-line mode, can also display the meaning of the error code.

Node Array For Tuning On/Off Polling to Selected Network 3000 Nodes in a BSAP
Network

One important use for a Read/Write Logical Array is to set up a node array for turning
ON/OFF communication requests to slave nodes of this controller.

The number of the logical array to
be used is specified by the system
signal #NDARRAY..

The ACCOL programmer creates a
number of rows equal to the highest
slave address. For example, if the
ACCOL program we are creating is
for a controller which is master to 4
slave controllers, a four row by one
column logical read/write array
should be created.

Normally, the operator or ACCOL logic should leave each element set to ON, so that
communication with slave nodes can occur. If, for whatever reason, one or more slave
nodes are taken out of service (failure, maintenance, repairs, communication problems)
then polling for them should be turned off using the #NDARRAY. This prevents
unnecessary communication attempts by the master to a non-existent node.

In the figure, shown above, the third slave node has been struck by
lightning and so has failed. The master controller (which contains the
node array) will continue attempts to communicate with it, until, the third
element in the #NDARRAY (corresponding to address 3) is changed from
ON to OFF by the operator, as shown at right.

For a full description of how to configure the node array, see the #NDARRAY portion of
the ‘System Signals’ section in the ACCOL II Reference Manual (document# D4044).

Address 1 Address 2 Address 3 Address 4

#NDARRAY 1

 1

 1

 1

Address 1 Address 2 Address 3 Address 4

 Chapter 5 - What Are Data Arrays?

An Introduction to ACCOL Page 5-7

Detecting Process I/O Board Diagnostic Failures

If a failure is detected in one of a controller’s process I/O boards, the resulting error code
can be stored in a Read/Write Logical Array.

The array must be specified using the #DIAG.002 system signal, and must have as many
rows as the number of process I/O board slots in the controller. The first eight columns
display the error code, in binary with OFF and ON represented as 0 and 1, respectively.
Additional columns display more information.

In the figure, below, the analog input board in slot 3 is experiencing an amplifier gain
failure.

A full description of how to configure and interpret entries in this array is included in
the #DIAG.002 portion of the ‘System Signals’ section of the ACCOL II Reference Manual
(document# D4044).

Chapter 5 - What Are Data Arrays?

Page 5-8 An Introduction to ACCOL

How Are Data Arrays Created?

Data arrays are inserted into the
ACCOL source file using ACCOL
Workbench. For information on
creating arrays, see the ACCOL
Workbench User Manual (document#
D4051).

How Does the Operator View Data Array Values?

There are several different ways to view data array values in a running Network 3000
series controller.

" While running the Open BSI DataView utility, users can call up the array for viewing
on the screen. Individual entries can also be edited if this is a read/write array. See
the Open BSI Utilities Manual (document# D5081) for details.

" Users with Bristol Babcock’s Universal Operator Interface (UOI) software can
configure text-based menus and logs to include data array values. See the UOI
Configuration Manual (document# D5074) for details.

" While running the Open BSI Data Collector or Open BSI Scheduler, users can
retrieve array data, and store it in files for export to third-party HMI applications.
See the Open BSI Collection/Export Utilities Manual (document# D5083) and the
Open BSI Scheduler Manual (document# D5082), respectively, for details.

Chapter 6 - What is Process I/O?

An Introduction to ACCOL Page 6- 1

What is Process I/O?

Field instrumentation devices such as flowmeters, pressure transmitters, and electrical
contacts collect data from a process (such as a pump control station, a compressor
station, a factory assembly line, etc.). Process I/O boards are the way this data is
transmitted to the Network 3000 controller. Among the most commonly used process I/O
boards are Analog Input boards, Analog Output Boards, Digital Input Boards, and
Digital Output Boards.

For most controller models, process I/O boards are installed in slots in the controller.
Some controller models have a fixed set of process I/O boards in certain slots or multi-
function boards which encompass more than one slot; others allow any valid board type
in any slot. In addition, the number of slots in a controller varies from model to model.
For example, the DPC 3330 supports 6 or 12 slots; the DPC 3335 supports 10 slots. For a
full list of process I/O options, see the ‘Process I/O’ section of the ACCOL II Reference
Manual (document# D4044), or the hardware manual accompanying the controller.

Data from the instrumentation is transmitted in the form of electrical impulses. These
impulses are sent through wires to a termination block.1 The termination blocks are
wired to process I/O boards in the Network 3000 controller. The process I/O board
converts the electrical impulses from the instrumentation into signal data which can be
used by modules in the ACCOL load.

For example, if analog pressure
data is transmitted to one of the
I/O points on an Analog Input
process I/O board, a 4 milliamp
current flow to the board may
represent the 0% of scale
pressure, and a 20 milliamp
current flow to the board may
represent 100% of scale pressure.
An ANIN (Analog Input) Module
in the ACCOL load reads this I/O
point and translates the data into
an analog signal.

1 In this instance we are talking about actual hardware and wires; not software.

Chapter 6 - What is Process I/O?

Page 6-2 An Introduction to ACCOL

Similarly, if an electrical
contact on a valve is used to
indicate that the valve is open
or closed, a closed contact (0
volts) may indicate a closed
valve, and an open contact (24
volts) may indicate an open
valve. These voltages are read
by a Digital Input process I/O
board. A DIGIN (Digital
Input) Module in the ACCOL
load reads the I/O point on the
board, and converts it into an
ON/OFF status of a logical
signal.

What Is Remote (Process) I/O?

Some controllers support the use of external racks of process I/O boards. These units,
called RIO 3331 Remote I/O Racks, allow the process I/O boards to be in a physically
separate location from the controller which uses them. Usage is similar to any other
process I/O boards, except that communication is only available at synchronous baud
rates, and the numbering scheme used to define the boards is somewhat different. For
more information on this topic, see the sections in the ACCOL II Reference Manual
(document# D4044) which discuss the Remote I/O Modules.

How Are Process I/O Boards Defined?

Before process I/O data can be
obtained from the process I/O boards
in the controller, the boards must be
defined in the *PROCESS-I/O
section of the ACCOL load. ACCOL
Workbench allows this definition to
be performed through the dialog box
shown at right.

For details on how to use this dialog
box, see the ACCOL Workbench
User Manual (document# D4051).

Chapter 6 - What is Process I/O?

An Introduction to ACCOL Page 6- 3

How Are Process I/O Boards Referenced?

Process I/O boards are referenced within the ACCOL Task via process I/O modules such
as ANIN, ANOUT, DIGIN, DIGOUT, etc.

Each process I/O module includes a DEVICE terminal, which specifies the slot which
this module will reference. If this value is left at the default of 0, this module will be
unable to access the board, and a device error will be generated.

Each process I/O module also includes an INITIAL terminal, which specifies the number
of the first I/O point on the board which this module will reference. Usually, this is 1. In
most cases, a single module should be used to reference all I/O points on the entire
board.

Once the I/O point data has been converted to signal data, by the Process I/O module(s),
the resulting signal can be ‘wired’ (in software) to the terminal of other ACCOL modules.

BLANK PAGE

Chapter 7 - How Are Communication Ports Used?

An Introduction to ACCOL Page 7-1

How Are Communication Ports Used?

Although it is possible to use a Network 3000 controller as a stand-alone unit, controlling
a process directly without operator intervention, most applications require
communication with other devices.

For example, operators may need to interact with the process by viewing data or entering
setpoints from an operator workstation. Data may also need to be logged on an attached
printer. Depending upon the complexity of the process, data from one controller may
need to be shared with other controllers (nodes) in the network. In some applications, a
Network 3000 controller may need to communicate with a third-party device, for
example a Modbus device. All of these methods of communication must utilize one or
more of the controller’s communication ports.

The number of ports available varies depending upon the model of the controller. The
Communication Ports section of the ACCOL II Reference Manual (document# D4044)
contains a description of each type of port, and each available configuration option.

NOTE: The discussion of communication ports in this chapter is limited to the BSAP
(Bristol Synchronous / Asynchronous Protocol) ports (Master, Slave, etc.) The subject of
using Internet Protocol (IP) ports is beyond the scope of this manual. See the Network
3000 Communications Configuration Guide (document# D5080) for more information.

How Are Communication Ports Defined?

Communication Ports are defined
in the *COMMUNICATIONS
section of the ACCOL source file.
ACCOL Workbench provides a
dialog box for editing this section,
shown at right.

See the ACCOL Workbench User
Manual (document# D4051) for
information on configuring these
ports.

Chapter 7 - How Are Communication Ports Used?

Page 7-2 An Introduction to ACCOL

Examples of Communication Port Usage

The fictitious Bristolville Water Treatment Plant has two Network 3000 controllers
“RPC1” and “RPC2” to monitor various processes throughout the plant, and a third
Network 3000 controller named “DC1” at the top of the network.

“RPC1” controls the levels of a
water tank. “RPC2” operates some
chlorination pumps. Both “RPC1”
and “RPC2” will have a Slave Port
configured for 19,200 baud
operation. “RPC2” also has a
Custom Port configured so that it
can send and receive data from a
chlorine analyzer unit which
communicates using the Modbus
protocol.

“DC1” serves as a data
concentrator or communications
interface at the top of the
network. Any Network 3000
controller with a Master Port
connected to one or more slave
nodes can serve as a data
concentrator. While a data
concentrator is not usually
required, it is useful in many
systems to make decisions based
on inputs from several slave
nodes:

RPC1 and RPC2 can each control their own areas of operation; DC1 can monitor both to
issue control commands to them. DC1 also acts as a communication pass-through device,
and handles its own local I/O.

“DC1” will need a Master Port, to collect data from “RPC1” and “RPC2”, and a Slave Port,
to send that data to an operator workstation, running Open BSI, and an HMI software
package. A node such as “DC1”, which is on the level directly below the operator
workstation, is called a top-level node. Open BSI supports multiple top-level nodes on a
single PC port, or over multiple ports.

Operator Workstation
running Open BSI and
HMI software

DC1

RPC1 RPC2

COM1:

Slave Port

Slave Port

Slave Port

Master Port

Custom Port

Chlorine
Analyzer

Chapter 7 - How Are Communication Ports Used?

An Introduction to ACCOL Page 7-3

The figure, above, shows the Communication Port definitions in each of the three
Network 3000 controllers, DC1, RPC1, and RPC2.

In addition to configuring the ports, and any necessary structures in ACCOL, each node
must be defined in the Network Definition (NETDEF) files and Open BSI
communications must be configured on the PC. This subject is discussed in the Open BSI
Utilities Manual (document# D5081).

BLANK PAGE

Chapter 8 - What Should I Know About Memory?

An Introduction to ACCOL Page 8-1

What Should I Know About Memory?

Depending upon the application your controller will be used for; you might not need to
know anything about memory, other than there is a finite amount of it in the controller,
and the more structures you put in your ACCOL load, the more memory of this finite
amount gets used.

If you are using more than the default memory configuration, or you are using certain
ACCOL structures (Storage Modules, Audit Trail Alarms/Events, custom port
applications) then you do need to know a little more about memory.

The next section describes a little about what memory is. If you are comfortable with the
basic concepts of Network 3000 memory, you can skip to the section called ‘What
Configuration Needs To Be Performed?’.

Background - What is Memory?

As a Network 3000-series controller runs its ACCOL load, the CPU (central processing
unit) of the controller executes each instruction in the ACL file. These instructions, and
the data associated with them, are read from, and/or written to, physical locations within
computer chips in the controller. These physical locations are referred to as memory.
They are similar to memory you might have in your personal computer at home.

The amount of memory in your Network 3000 controller varies depending upon the
model of controller, and the purchased memory options. The amount of memory needed
for your ACCOL load varies depending upon the types of modules, control statements,
and structures included in the source file.

Information in memory is stored as a series of 0’s and 1’s; each ’0’ or ’1’ is referred to as a
bit. These bits are grouped together into chunks of 8 which are called bytes.1 Each byte
can hold a character of data. A group of 1024 bytes is referred to as 1K. 1024K is referred
to as a Megabyte or 1MB.

Types of Memory in the Controller

The size of your ACCOL load file is limited by the amount of RAM
2 in the controller.

RAM in a 186-based controller, or a 386EX Real Mode controller is divided into two
parts: base memory and expanded memory. All of these controllers have 64K (65,536

1 Two bytes together are referred to as a word.
2
 RAM is an acronym for random access memory. It simply means memory that can be read from and

written to.

Chapter 8 - What Should I Know About Memory?

Page 8-2 An Introduction to ACCOL

bytes) of base memory, and then some amount of expanded memory.3 The expanded
memory is used to hold certain kinds of ACCOL structures which CANNOT fit in the
base memory.

RAM in a 386EX Protected Mode controller is NOT divided up into base and expanded;
instead, it is treated as one large memory area. Each Protected Mode controller has at
least 512K of RAM, but can be configured for as much as 4.5 MB.

Normally, when you download your ACCOL load file into the Network 3000 controller,
it is transferred directly into RAM, and on completion of the download, the controller
begins to execute the instructions (modules, control statements, etc.) in the ACCOL load.

Execution of the ACCOL load will continue, without interruption, unless the Network
3000 controller loses power, or fails (which is referred to as a watchdog condition), or it
is manually reset by the operator, by activating the reset switch.

In the first case (power failure), the ACCOL load, and its data, will remain in RAM for as
long as the unit’s backup battery functions. If the battery remains good, when primary
power is restored, the unit will resume execution of the ACCOL load from the point
where it lost power. This is referred to as a warm start.

The second and third cases (watchdog failure, or manual reset) are referred to as cold
start conditions. In a cold start, any accumulated data (calculations, etc.) is lost. In
addition, the ACCOL load file, itself, will only be retained if it has been previously
“burned into” EPROM, or downloaded into FLASH.

EPROM stands for Erasable Programmable Read Only Memory. An EPROM chip can be
placed in a device called a PROM burner, and the ACCOL load file can be ‘burned into’
the chip. If your unit has an EPROM chip with the ACCOL load ‘burned in’, the ACCOL
load file (though no accumulated data) will still be present in the controller after a cold
start condition. With the exception of the RTU 3305, and the 3530-xx series, all 186-
based controllers support the use of EPROMs.

Similarly, if your ACCOL load was originally downloaded into FLASH memory, prior to
the cold start condition, accumulated data will be lost, but the load file will still be
present after the cold start. The RTU 3305, 3530-xx series, as well as 386EX Real and
Protected Mode units support the use of FLASH memory.

For more information on these subjects, consult the section on Downloading in the
ACCOL II Reference Manual (document# D4044).

3 The amount of expanded memory available varies depending upon the type of controller.

Chapter 8 - What Should I Know About Memory?

An Introduction to ACCOL Page 8-3

What Configuration Needs To Be Performed?

The *MEMORY section of the ACCOL source file may need to be modified, depending
upon what kind of controller you are using, and which structures are included in your
ACCOL load.

For 186 and 386EX Real Mode users, the amount of expanded memory installed in the
controller must be specified.

For 386EX Protected Mode users, the total amount of RAM must be specified if it is
different from the default of 512K.

If certain ACCOL structures are used, the ACCOL programmer must also explicitly
allocate memory for them. It’s not important at this point that you understand what all
these structures are used for; just remember that if you do include them in your ACCOL
load, they require some memory configuration. These structures are:

" Audit Trail/EAudit Module Alarm Event Buffers4

" Storage Rows (when using Historical function of the Storage Module)
" Templates (used by OpenEnterprise, and Enterprise Server users

ONLY)5

" Custom Memory area (used by certain custom port applications)
" Global Storage area (used by certain user-specific applications)6

For 186-based units other than the RTU 3305 and EGM 3530 / RTU 3530 series, the user
can optionally choose to specify that certain structures be placed in expanded memory, in
order to free up space in the 64K base memory area7, these structures are:

" Signals
" Read-Only data arrays
" Read/Write data arrays
" Signal Lists
" Calculator Module equations
" AGA8, AGA8Detail, AGA8Gross module calculations

4
 For 386EX Protected Mode users, alarms and events are specified separately; for other users they are

combined together as events.
5
 Not all controller types are equipped to hold templates.

6
 The Global Storage area is only available for 386EX Protected Mode units.

7
 For the RTU 3305, there is no choice between base and expanded for these structures; they are

automatically stored in expanded memory. For the EGM 3530 or RTU 3530, any choice of ’BASE’ you
make in ACCOL Workbench is ignored; the system will automatically place most structures in the
expanded memory area.

Chapter 8 - What Should I Know About Memory?

Page 8-4 An Introduction to ACCOL

How is the Configuration Performed?

Memory configuration is performed in
ACCOL Workbench through the dialog
box shown at right. (The fields in the
dialog box vary depending upon which
version of ACCOL Workbench you are
using.)

For more information about this dialog
box, see the ACCOL Workbench User
Manual (document# D4051).

Chapter 9 - What Are Signal Lists?

An Introduction to ACCOL Page 9-1

What Are Signal Lists?

Signal Lists are a convenient way to organize a group of signals. Signals are referenced
by their position in the list. Any mixture of analog, analog alarm, logical, logical alarm,
or string signals, can be included in a given list. Signal lists are shared among all tasks
in the ACCOL file. A typical signal list is shown below:

*LIST 1
 1 PUMP1.RUN.NOW
 2 PUMP1.SPEED.SP
 3 PUMP2.RUN.NOW
 4 PUMP2.SPEED.SP

Signals lists are referenced by modules specifically designed to access them. AUDIT,
EAUDIT, MASTER, EMASTER, SLAVE, MUX, EMUX, DEMUX, and EDEMUX are
among the most common modules which use signal lists.

For information on the number of signal lists supported in ACCOL, and the maximum
size of signal lists, see the ACCOL II Reference Manual (document# D4044).

Using a MUX module to select a signal from a signal list

Suppose a power generator has three different settings, one for normal power demand,
one for low power demand, and a third for high power demand.

Each of these settings has a setpoint, stored using the following signals:
NORMAL.POWER.SP, LOW.POWER.SP, and HIGH.POWER.SP. A signal list is created
containing these three signals. The actual setpoint value is transmitted to the generator
using an analog output signal named SETPOINT.POWER.

Chapter 9 - What Are Signal Lists?

Page 9-2 An Introduction to ACCOL

In order to allow for an operator to select which of these setpoints should be used for the
generator at a given time, the operator can select the desired setpoint, from the signal
list, using a signal called POWER.SELECT.SP. This signal specifies the position in the
signal list which be chosen as the setpoint.

The MUX module uses the POWER.SELECT.SP signal to choose which of the three
setpoints should be output to the SETPOINT.POWER. signal.

For example, if the operator chooses ‘2’ for the value of POWER.SELECT.SP, then the
second signal in the list, called LOW.POWER.SP will be used as the setpoint.

For more information on the MUX Module, see the ACCOL II Reference Manual
(document# D4044).

Using A DEMUX Module to Choose Which Signal In A List Should Receive
An Input Value

Suppose a water pumping station has four different pumps, only one of which should be
running at any one time. Each pump can be started/stopped by a dedicated start
command signal. The signals are PUMP1.START.CMD, PUMP2.START.CMD,
PUMP3.START.CMD, PUMP4.START.CMD.

If all of these signals are placed in a signal list, the DEMUX module can be used to select
which of the four pumps should be started.

The signal PUMP.START. is set to ON, and the signal PUMP.SELECT. allows the
operator to choose which of the pump command signals will be turned on by
PUMP.START. The value of PUMP.SELECT specifies the position in the list which will
receive the value of PUMP.START.

For more information on the DEMUX Module, see the ACCOL II Reference Manual
(document# D4044).

Chapter 9 - What Are Signal Lists?

An Introduction to ACCOL Page 9-3

Specifying An Event List For the Audit/EAudit Module

The Audit Trail or Extended Audit Trail (EAudit) Modules allow signal value changes
for selected signals to be stored in a buffer. The buffer may then be read and output by a
Logger Module, by the Open BSI DataView utility, or by UOI commands.

A list of signals for which value changes will be stored, called the event list, must be
created. In the example, below, six signals are included in list number 12. This list
serves as the event list for the Audit Module, and is referenced on that module’s LIST
terminal.

For full details on using the Audit/EAudit Modules see the ACCOL II Reference Manual
(document# D4044).

How Are Signal Lists Created?

Signal Lists are created within ACCOL
Workbench. For information on
creating a signal list, see the ACCOL
Workbench User Manual (document#
D4051).

Chapter 9 - What Are Signal Lists?

Page 9-4 An Introduction to ACCOL

How Can The Operator View Signal Lists?

The operator can view signal lists using the Remote List feature of DataView. The
operator can also change signal values or inhibit/enable bits. For information on this
feature, see the Open BSI Utilities Manual (document# D5081).

Chapter 10 - What Are Archive Files?

An Introduction to ACCOL Page 10-1

What Are Archive Files?

Archive files are structures residing within the Network 3000 controller, and are very
similar to Data Arrays (discussed earlier in this manual).1

Like arrays, archive files are tables of data, organized in rows and columns. Unlike
arrays, however, each column is associated with a specific ACCOL signal, and has a
descriptive title; and each row is called a record. Also, each and every archive file must
be assigned a unique name and number.

Typically, the archive files are configured so that data wraps around, overwriting the
oldest data, with newer data. The ordering of data in the Archive File is determined by
sequence numbers.

How Is Data Stored In An Archive File?

Data is stored in the archive file by executing the ARC_STORE Module in one of several
available modes. Some modes allow calculations to be performed on data before it is
stored in the archive file. Not all modes are available for all Network 3000 controllers.
Full details on configuring the ARC_STORE Module, and the available modes, appear in
the ACCOL II Reference Manual (document# D4044).

A typical application would be to execute the ARC_STORE Module hourly, to store
hourly totals, and then re-initialize the hourly total signals to 0 in order to accumulate
new data for the next hour. NOTE: Once a data record has been stored in the Archive

1
 Not all controller, ACCOL Tools, or firmware versions support the use of archive files. To see if it is

supported, check the ’Hardware and Software Requirements’ chart of the ACCOL II Reference Manual
(document# D4044) and verify that the ARC_STORE module is supported for your particular
configuration.

Column Title:

Signal Name:

Row1

Row2

Row3

Row n

#TIME.000. STAT1.FLOW1.HRLY STAT1.PRESUR.HRLY

Date_and_Time Hourly_Flow

12/11/95 08:00

12/11/95 09:00

12/11/95 10:00

12/12/95 07:00

Archive File Name: ARCFLOW1
Archive File Number: 001

85.28 73.27

85.29

72.39

85.87

83.47

75.26

74.73

Hourly_Pressure

:
:
:

Chapter 10 - What Are Archive Files?

Page 10-2 An Introduction to ACCOL

File, and the ARC_STORE Module has advanced to the next row of the file, the data in
the Archive File cannot be altered.

How Are Archive Files Defined?

The structure of the archive file,
including its name, file ID number, the
number of records (rows), the signal for
each column, and the title for each
column, are defined in the ACCOL
source file. See the ACCOL Workbench
User Manual (D4051) for instructions
on defining an archive file.

How Does the Operator View Archive Data?

There are several different ways to access archive data in a running Network 3000 series
controller.

• While running the Open BSI DataView utility, users can call up the archive file for
viewing on the screen. See the Open BSI Utilities Manual (document #D5081) for
details.

Chapter 10 - What Are Archive Files?

An Introduction to ACCOL Page 10-3

• Users with Bristol Babcock’s Universal Operator Interface (UOI) software can export
archive data values to binary files and then use the binary files to create logs. See the
UOI Configuration Manual (document# D5074) for details.

• While running the Open BSI Data Collector or Open BSI Scheduler, users can
retrieve archive data, and store it in files for export to third-party HMI applications.
See the Open BSI Collection/Export Utilities Manual (document# D5083) and the
Open BSI Scheduler Manual (document# D5082), respectively, for details.

BLANK PAGE

Appendix A
Creating A Sample ACCOL Load

An Introduction to ACCOL Page A-1

The fictitious Sunken Valley Water Company wants to set up a PID (proportional,
integral, derivative) loop for controlling the flow of liquid through a pipeline.

They have a flow control valve to
vary the flow, and a flowmeter to
measure it.

Both the valve and flowmeter are
connected to a DPC 3330 controller.

Before trying to create an ACCOL load which will perform the PID control, we need to
make a list of each thing the ACCOL load will be doing.

1) Bring in the flow data from the pipeline.

The flow in the pipeline is measured by the flowmeter FT101. Because this is data
that varies over a range of values, it should be stored in an analog signal. In order
to bring in analog signal data, we will need an ANIN Module.

2) Slow down reaction to flow changes so as to reduce wear and tear on the valve.

We want to ensure that we don’t wear out the control valve trying to respond too
quickly to changes in flow. To do this, we need to delay response to the input flow
data (from item 1) using a LEAD/LAG Module.

NOTE

This appendix includes a step-by-step example for creating a sample ACCOL load.

It assumes that you have already installed ACCOL Workbench software, and Open
BSI Utilities software, according to the instructions in the ACCOL Workbench User
Manual (document# D4051) and the Open BSI Utilities Manual (document#
D5081).

Note, also, that this example shows one possible way to approach a problem.
ACCOL is a flexible language which frequently allows many different solutions to
a given problem.

Appendix A
Creating A Sample ACCOL Load

Page A-2 An Introduction to ACCOL

3) Perform the actual PID calculation.

To perform the actual PID control, we can use the pre-defined PID3TERM Module.

4) Send data to the control valve.

The controller will have to send data out to the flow control valve
(FIC101/FCV101), in order to vary the position of the valve to regulate the flow.
This will require an analog signal, and since it will be sent out, we will need an
ANOUT Module.

Now that we know, roughly, what we’re trying to do, let’s create an ACCOL load to do it:

Step 1. Start ACCOL Workbench. To do this, double-click on the Workbench icon (if
you have one) or start it through the Windows™ Start Programs menu.

ACCOL Workbench will start:

Appendix A
Creating A Sample ACCOL Load

An Introduction to ACCOL Page A-3

Step 2. Open a new ACCOL source file.
To do this, click on “File” in the
menu bar, and “New” in the pull
down menu. Choose ’Protected
Mode’ you are creating an ACCOL
load for a controller which has the
386EX Protected Mode CPU. For
any other type of controller,
choose ’Real Mode’.

Click on [OK] when you’ve made your choice.

We have now opened a new ACCOL source file. A default name is displayed in the title
bar. We’ll rename it later on.

Before we do anything else, we need to define certain characteristics of the controller
such as its memory configuration, how its ports are to be used, and which process I/O
boards are installed in it. These subjects are discussed in the next few steps.

Appendix A
Creating A Sample ACCOL Load

Page A-4 An Introduction to ACCOL

Step 3. Edit the memory configuration. To do this double-click on the Memory icon,
and follow the instructions below.

The *MEMORY section of the
ACCOL source file specifies how
much memory is installed in the
controller, and also can be used
to set aside memory for certain
special structures.

Click on the “Total RAM” list
box, and select the appropriate
amount of RAM installed in your
unit. Next click on the [OK]
push button to exit the
*MEMORY section.

Step 4. Configure the Communication Ports. To do this, double-click on the
 Communications icon, and follow the instructions below.

The *COMMUNICATIONS section of the ACCOL source file specifies how the
controller’s communication ports will be used.

Appendix A
Creating A Sample ACCOL Load

An Introduction to ACCOL Page A-5

We will want to define one port for communication
with the operator workstation running Open BSI
Utilities software. This should be configured as a
Slave Port, which will allow us to download into
the unit. To configure Port B as a Slave Port, click
on ‘PORT_B Unused’ in the list box, then click on
the [Change Type] push button. The Change
Type dialog box will appear. Select ‘Slave’ from the
list box, and click on the [OK] push button.

The Slave Settings dialog box will appear. Use
the default baud rate of 9600, or change it using
the “Baud Rate” list box; then click on the
[OK] push button.

Another port, called a Pseudo Slave Port, will be used for local communication if a
technician wants to connect a laptop running Open BSI. Click on ‘PORT_A Unused’, and
define a Pseudo Slave Port at 9600 baud using the same method used, above, for defining
a Slave Port.

Finally, it’s a good idea to set aside some extra communication buffers.1 Type ‘20’ in the
“Communications” field under “Additional Buffers”.

When finished, the window
should appear as shown at right;
click on the [OK] push button to
exit the *COMMUNICATIONS
section.

1
 Buffers are discussed in detail in the ACCOL II Reference Manual (document# D4044).

Appendix A
Creating A Sample ACCOL Load

Page A-6 An Introduction to ACCOL

Step 5. Configure the Process I/O. To do this, double-click on the Process-I/O icon,
and follow the directions below.

The *PROCESS-I/O section of
the ACCOL source file
specifies what type of process
I/O boards are installed in the
controller. For purposes of our
example, our controller must
have an Analog Input board
and an Analog Output board
installed.

Let’s say the Analog output board has 2 I/O points, and is in slot 1, and the Analog Input
board has 4 I/O points, and is in Slot 2. A ‘1’ already appears in the “Board ID” field.
Choose ‘Analog Output board : 2 points’ from the “Board Type” list box, then click on
the [Insert] push button. Next, enter ‘2’ in the “Board ID” field, and select ‘Analog
Input board : 4 points’ from the “Board Type” field, and click on the [Insert] push
button. When finished, the dialog box should look as shown, above. Click on the [OK]
push button to exit the *PROCESS-I/O section.

Step 6. Define signals.

Now that we’ve defined the characteristics of the controller, let’s get to work on the
problem at hand - - controlling the flow in the pipe.

To start off, let’s create some signals. We know that we need an analog signal for the
incoming flow data. To create this signal, double-click on the Signals icon.

Appendix A
Creating A Sample ACCOL Load

An Introduction to ACCOL Page A-7

The Specify Signal Filter dialog box will
appear. This dialog box lets you limit which
types of signals are displayed in the Signal
window.

Just click on the [OK] push button. An empty signals window will appear.

Click on “Edit” in the menu bar,
and “Insert” in the pull down menu,
and the Signal Properties dialog box
will appear. Choose ‘Analog’ from
the “Type” list box, and type ‘F101’
in the “Base Name” field, ‘IN’ in the
“Extension” field, and ‘NL’ in the
“Attribute” field.

Appendix A
Creating A Sample ACCOL Load

Page A-8 An Introduction to ACCOL

Next, click on the ‘Settings’ tab, and
enter ‘GPM’ (for Gallons Per Minute)
in the “Units Text”. Click on the
[OK] push button, and the signal
(F101.IN.NL) is created.

We also need an output signal which will be used to send data to the flow control valve.
This signal will also be analog. To create it we can repeat the process we just used for the
input signal, except use a name of F101.OUT. for the new signal, and assign units text of
‘PERCNT’ since the output signal will be a percentage at which the valve should be
opened.

There are a few other signals we should
create now. The LEAD/LAG Module which
we will be using to delay response to input
changes requires a signal to specify how
long the delay should take. Create an
analog signal called F101.LAG. for this
purpose. This signal is a little different,
because we are going to specify an initial
value for it on the ‘Settings’ page. Enter
‘0.5’ for the “Initial State” when you
create the signal, and select ‘MINS’ for
minutes as the “Units Text”.

We also need to create an analog signal which shows the range (called the span) of the
input. Create one called F101.SPAN. and specify an “Initial State” of ‘250’ and a

Appendix A
Creating A Sample ACCOL Load

An Introduction to ACCOL Page A-9

“Units Text” of ‘GPM’, just like the input signal F101.IN.NL.

We need to create an analog signal which represents the desired operator setpoint for
flow in the pipe. Create one called F101.SET. and specify an “Initial State” of ‘125’ and
a “Units Text” of ‘GPM’, just like the input signal F101.IN.NL.

We also need to create a few signals which will be used by the PID3TERM Module. Both
are analog, and both require initial values of ‘1’. They should be named F101.P. and
F101.I.

After inserting all of these signals, the Signals window should appear as shown below:

We will need to do more with signals later, so leave the Signals window on the screen, but
click on the main window (the one containing all the icons for Memory, Communications,
etc.) and let’s go on to our next step - - building an ACCOL task.

GENERAL NOTE ABOUT DEFINING SIGNALS:

The user has the option of explicitly defining signals in the *SIGNALS section (as we are
doing here) or of simply entering them on module terminals (which will be discussed in a
later step.)

Defining them explicitly allows the user to have full control over the signal type, initial
value, etc., and allows them to be ‘dragged and dropped’ to desired module terminals.

In contrast, if signals are defined simply by typing on the module terminal, they assume
whatever signal type is the default for that terminal. The default signal type, however,
may or may not be appropriate for the particular user application.

Either or both methods may be used.

Appendix A
Creating A Sample ACCOL Load

Page A-10 An Introduction to ACCOL

Step 7. Create an ACCOL Task, and include Modules in it.

To create a Task, click on “Edit” in the menu
bar, and “Insert” in the pull down menu. Click
on ‘Task’ in the New Section dialog box, and
click on the [OK] push button.

A dialog box similar to the one shown below should appear.

This dialog box allows you to configure certain characteristics of the task. By default, the
task shows a task rate of 0, a task priority of 1, and a redundancy frequency of 0. This is
not a redundant controller, so the redundancy frequency should be 0. Also, since we’re
only defining one task, we don’t care that its priority is 1. We do need to change the task
rate to something other than 0, or else the task will never execute. To do this, change the
‘0.0’ to ‘0.2’ in the dialog box, and click on [OK]. The first line of the task will now be
displayed, as shown below:

Appendix A
Creating A Sample ACCOL Load

An Introduction to ACCOL Page A-11

Now, let’s start inserting modules in our task.
From our previous discussion, we know we need to
get the data in using an ANIN module. Let’s
specify that first. To do so, click on the second line
of the task (so as not to interfere with the
information on the first line), and click on
“Modules” in the menu bar, and “Insert..” in the
pull down menu. The Select Module dialog box will
appear. Click on ‘ANIN’ in the list box, then click
on the [OK] push button.

NOTE: Before selecting certain I/O modules (ANIN, DIGIN, etc.) you need to specify the
number of I/O terminals in the "Number of Terminals" field. For this example,
however, we only need one analog input, which is the default, so we can just leave the
default of '1' in the "Number of Terminals" field.

The ANIN Module appears in
the task window. The DEVICE
line specifies which slot the
ANIN Module should reference.

Because our Analog Input Board is in Slot 2, we must erase the word 'DEVICE_ID' and
specify a ‘2’ in its place.

Next, erase the word ‘CHANNEL’ and enter ‘1’ (this specifies that we are starting with
the first I/O point on the board.

The module contains a single set of INPUT, ZERO, and SPAN terminals. If we were
using additional analog input points on the board, we would have specified that number
in the "Number of Terminals" field when we inserted the module. (If you forget to do
that, you can just copy additional sets or simply type them in). Since, for this example,
we have only one analog input value, we just have to define that.

Appendix A
Creating A Sample ACCOL Load

Page A-12 An Introduction to ACCOL

With the Signals
window visible, click
and drag the signal
named ‘F101.IN.NL’
to the INPUT
terminal of the
module. (You could
also just erase
‘;ANALOG_SIGNAL’
and just type
‘F101.IN.NL’, but
dragging the name
will save you a few
keystrokes.)

Next drag F101.SPAN. to the SPAN terminal, in the same way. (Or type it.)

Type F101.ZERO. on the ZERO terminal. (We didn’t define it previously, so we can’t
drag it from the Signals window. Because the default initial value of all analog signals is
0, it wasn’t necessary to define it separately.)

Together, the signals on the ZERO and SPAN terminals are used to specify the range of
valid values for the INPUT signal. ZERO represents the lowest value, and SPAN is
added to that value to determine the highest value. For this signal (F101.IN.NL), its
range is 0 to 250 GPM. Note that we could have simply entered constant values for
ZERO and SPAN, but then they could not be changed on-line.

When finished, the ANIN module should appear as shown:

Drag signal from here

To here

Appendix A
Creating A Sample ACCOL Load

An Introduction to ACCOL Page A-13

Next, let’s insert the LEAD/LAG Module, which will be used to delay the rate at which
input fluctuations are responded to. Place the cursor on the line immediately following
the end of the ANIN module, and use the same technique used for inserting the ANIN
module, except insert a LEAD/LAG module.

It should appear as shown in the
window at right.

Drag F101.IN.NL from the Signals window to the INPUT terminal of the LEAD/LAG
Module (or just type it). In doing this, we have ‘wired’ the ANIN and LEAD/LAG modules
together!

Next, drag the signal named F101.LAG. to the INTEGRAL terminal. The F101.LAG.
signal will allow the operator to specify a ‘lag time’, in minutes, so that changes in the
module input F101.IN.NL will be reacted to gradually, so as to reduce wear on the
control valve.

Type ‘F101.IN.’ on the OUTPUT terminal. This signal will be used to reflect a gradual
change of the input (based on the lag time.) For example, if F101.IN.NL quickly changes
from 1 to 5, and F101.LAG. is three minutes, then the value of F101.IN. will gradually
‘ramp up’ from 1 to 5 over a three minute period. We didn’t need to explicitly create
F101.IN. in the Signals window, earlier, because it will automatically be classified as an
analog signal based on the context in which it is used; and it has no initial value.

Leave the DERIVATIVE and RESET terminals alone.

When you’re finished, the LEAD/LAG
Module should appear as shown.

Appendix A
Creating A Sample ACCOL Load

Page A-14 An Introduction to ACCOL

Now insert a PID3TERM Module after the LEAD/LAG Module. The INPUT to the
module is the F101.IN. signal from the LEAD/LAG Module, so type that name on the
INPUT terminal on PID3TERM.

Drag the signal F101.I. from the Signals window to the INTEGRAL terminal of the
PID3TERM module (or just type the name).

Drag the signal F101.P. from the Signals window to the PROPORTION terminal of the
PID3TERM module (or just type the name).

Drag the signal F101.SET from the Signals window to the SETPOINT terminal of the
PID3TERM module (or just type the name).

Type F101.D. on the DERIVATIVE terminal of the PID3TERM module. (We didn’t create
it earlier, so we can’t drag it in.) This signal may be used by the operator to determine
how much the change of the input should affect the output of the module.

Type F101.OUT. on the OUTPUT terminal. Again, this is analog, based on its usage. It is
the actual output that will be sent to the control valve.

Type F101.RESET. on the RESET terminal, and F101.TRACK. on the TRACK terminal.
F101.RESET. is an analog signal, based on its usage, and F101.TRACK. is a logical
signal, based on its usage. These signals are used by the module to prevent the OUTPUT
terminal from going out of range.

The ERROR and DEADBAND
terminals can be left alone. The
finished PID3TERM Module
should appear as shown at
right.

Finally, we need to insert an ANOUT Module, in order to send the analog output data,
out to the control valve. Follow the same method, used previously, for inserting modules.

Type a ‘1’ on both the DEVICE and INITIAL terminals of the ANOUT Module. This
causes the module to reference the first process I/O slot in the controller, which we
identified in Step 5, as an Analog Output board, and the first output point on that board.

Type the signal name F101.TRACK. on the TRACK terminal, F101.RESET. on the
RESET terminal, and F101.OUT. on the OUTPUT terminal.

Appendix A
Creating A Sample ACCOL Load

An Introduction to ACCOL Page A-15

Type in a value of ‘0’ on the ZERO terminal. This represents the 0% output for the flow
control valve.

Type in a value of ‘100’ on the SPAN terminal. This represents the 100% output for the
flow control valve.

The completed ACCOL task should appear as follows:

Step 8.

Save the ACCOL source file. Click on
“File” in the menu bar, and “Save As”
in the pull down menu. Enter a file
name in the “File Name” field (in this
case we used the name ‘myload’) and
click on the [OK] push button. Your
edits will be saved in a file with the
extension (.ACC).

Step 9. Issue a ‘Build’ command, if errors are present, correct them and repeat step

*TASK 1 RATE: 0.200000 PRI: 1
10 * ANIN

DEVICE 2
INITIAL 1
INPUT 1 F101.IN.NL
ZERO 1 F101.ZERO.
SPAN 1 F101.SPAN.

20 * LEAD/LAG
INPUT F101.IN.NL
DERIVATIVE ;ANALOG_SIGNAL_OR_VALUE
INTEGRAL F101.LAG.
RESET ;LOGICAL_SIGNAL
OUTPUT F101.IN.

30 * PID3TERM
INPUT F101.IN.
SETPOINT F101.SET.
DEADBAND ;ANALOG_SIGNAL_OR_VALUE
PROPORTION F101.P.
INTEGRAL F101.I.
DERIVATIVE F101.D.
RESET F101.RESET.
TRACK F101.TRACK.
OUTPUT F101.OUT.
ERROR ;ANALOG_SIGNAL

40 * ANOUT
DEVICE 1
INITIAL 1
OUTPUT 1 F101.OUT.
ZERO 1 0
SPAN 1 100
TRACK 1 F101.TRACK.
RESET 1 F101.RESET.

Appendix A
Creating A Sample ACCOL Load

Page A-16 An Introduction to ACCOL

9.

Now that you’ve completed your ACCOL source file, you can translate it into an ACCOL
load file, which can be downloaded into your controller. To do this, click on “Actions” in
the menu bar, and “Build” in the pull down menu. The load file generation will
commence, and its progress will be displayed on the screen.

If a window appears with the
messages ‘Compilation Successful’
and ‘Link Successful’, you’re done.
An ACCOL Load file has been
generated.

If, instead, error messages appear, you must correct them.

In some cases, you can
simply double-click on
the error, and the
window will display the
location in the file
which caused the error.
You can edit the file
right in the window,
then save the changes,
and re-issue the build
command.

For more information on correcting errors, see the ACCOL Workbench User Manual
(document# D4051).

When all errors have been corrected, and a successful build has been completed, you will
have an ACCOL Load file.

Appendix A
Creating A Sample ACCOL Load

An Introduction to ACCOL Page A-17

Step 10. Download the ACCOL load file into the controller.

If Open BSI Utilities is running, the Downloader utility can be activated from within
ACCOL Workbench, and the load file can be downloaded into the controller. For
instructions on downloading, see the Open BSI Utilities Manual (document# D5081) and
the ACCOL II Reference Manual (document# D4044).

IMPORTANT

Even though you now have a downloadable ACCOL load
file, You must ALWAYS keep a copy of your current
ACCOL source file (.ACC). The ACC file will be necessary
should you ever want to change data in the running
ACCOL load. It is strongly recommended that you keep a
backup copy of your ACC file on diskette.

WARNING

Before attempting to perform a download, make sure that the
controller is ‘isolated’ from the running process, either by
disconnecting I/O, using manual backup systems, etc. An
untested ACCOL load should never be downloaded if the
controller is already controlling a process. Failure to follow
these precautions could result in injury to personnel or
damage to process equipment.

BLANK PAGE

Appendix B
Working with Floating Point Numbers

An Introduction to ACCOL Page B-1

All digital computers represent numbers as a series of 0’s and 1’s. Each ’0’ or ’1’ is
referred to as a ’bit’. ACCOL analog (floating point) signals in Bristol Babcock’s Network
3000-series controllers use 32 such bits, and these bits are organized according to the
single-precision IEEE floating point standard.

This industry standard provides compatibility and the necessary degree of accuracy for
most applications.

When single-precision floating point numbers are added, however, the smaller number
will lose precision if the difference between the exponent of the most significant digit of
the larger number of the expression, and the exponent of the least significant digit in the
smaller number of the expression, is greater than 7. Here are some examples to clarify
this rule:

Say a metering station is recording accumulated flow totals in an analog signal. The
current total number of gallons is 623.71. A new reading of 12.274 gallons is to be added
to the total.

The most significant digit in the larger number is the 6 in 623.71. Shown in exponential
notation it is 6 * 102. Similarly the least significant digit in the smaller number is the 4
in 12.274 or 4 * 10-3. The difference between the exponents is 5, i.e. 2 - (-3) = 5. Since this
is not greater than 7, there is no loss of precision, and the result is 635.984.

As a second example, say we have a station accumulating the amount of natural gas
flowing in a pipeline. The accumulated total for the month is 8,384,983.0 cubic feet. An
additional 25.443 cubic feet must be added to the total.

The most significant digit in the larger number is the leftmost 8 in 8,384,983.0. Shown in
exponential notation it is 8 * 106. The least significant digit in the smaller number is the
3 in 25.443 or 3 * 10-3. The difference between the exponents is 9, i.e. 6 - (-3) = 9. Since
this is greater than 7, the smaller number will lose some precision, and will be added as
25.375, causing the result to be 8,385,008.375.

The loss of the smaller number’s least significant digits is unavoidable under the IEEE
single precision floating point standard. When the smaller number is scaled, bits 'drop
off the end' of the scaled result.

If the magnitude of the larger number exceeds that of the smaller number by 16,777,216
then the smaller number will be zero after scaling, and it will not add to the
accumulation at all. So adding 1.0 to 16,777,216 will fail, as will adding 2 to 33,554,432,
or 0.25 to 4,194,304.

This problem is inherent in any computer using this format to represent numbers, from

Appendix B
Working with Floating Point Numbers

Page B-2 An Introduction to ACCOL

your hand-held calculator, to a large mainframe system.

For most applications, however, this is not a major concern, since many instruments
cannot support such precise measurements, and many industrial applications frequently
do not require such precision.

Work-Arounds For This Situation

Don’t Accumulate Totals Indefinitely

One way to prevent this kind of situation is to limit the size of accumulations.

If, for example, you are performing accumulations which can get large, and add small
increments to it, say, an equipment runtime measurement using the Command Module’s
RUNTIME terminal, you might want to ‘zero out’ the runtime every month, after saving
the monthly total in a signal which can be used later as part of a yearly runtime
accumulation.

Use Double-Precision Modules, Where Necessary

Another way to lessen the impact of these problems is to use modules which support
double-precision calculations. Double-precision calculations allow many more bits for
representing numbers, internally. Note, however, that they too can eventually run out of
space for displaying full precision - - it just takes much longer to run out.

Among the modules which support double-precision internal calculations are the
Averager, ETOT/TRND, TOT/TRND, and EIntegrator. The output of these modules is
still a single-precision value, but it is based on the more accurate double-precision
internal calculations.

The Daccumulator also allows double-precision operations, but its output is two single-
precision numbers which, when combined, provide an approximation of a double-
precision number. See the Daccumulator section of the ACCOL II Reference Manual
(document# D4044) for details.

If you have more questions concerning these subjects, contact Bristol Babcock
Application Support for help.

G-1

Glossary

ACCOL is an acronym for Advanced Communications and
Control-Oriented Language. It is the standard software
programming language for Bristol Babcock Network
3000-series controllers.

AccolCAD is a software package, available from Bristol Babcock,
which allows an ACCOL source file to be created using
graphical symbols.

ACCOL Load also known as the .ACL file, is created from an ACCOL
Object file. It is called the ACCOL Load file because it is
in a machine-readable format which is downloaded into
the Network 3000-series controller. Once downloaded, the
controller executes instructions in the ACCOL load file in
order to measure or control a plant or process.

ACCOL Object File also known as the .ACO file, is created from an ACCOL
source file. The ACO file is used by ACCOL Workbench to
generate an ACCOL Load file.

ACCOL Source File also known as the .ACC file, is created by the ACCOL
programmer using ACCOL Workbench, AccolCAD, or by
using any ASCII text editor. The ACCOL source file
defines the modules, task, signals, and other ACCOL
structures which define the measurement and control
instructions for this particular application. The ACCOL
source file, when finished, is used to generate an ACCOL
Object file, and ACCOL Load file.

ACCOL Task(s) is a series of modules and control statements which
execute sequentially as a functional block. Task execution
occurs at a user-specified rate and priority.

ACCOL Tools is a set of software programs which includes ACCOL
Workbench, ValScan, and DIAG6.

ACCOL Workbench is a Windows-based software program which allows you to
create an ACCOL source file, and to build an ACCOL
object file, and ACCOL load file from it.

Alarm Limit is a number, associated with an analog alarm signal,
which determines (in combination with a deadband value)
when the signal is in an alarm state.

G-2

Alarm Message is a communications message, generated when an analog
or logical signal enters an alarm state. Alarm messages
are passed up through the network to MMI software at
the operator workstation, to notify the operator that an
alarm condition exists.

Alarm Priority is a user-defined classification for the importance of a
given alarm signal. ‘Critical’ is the most important alarm
priority, followed in descending order of importance, by
‘Non-Critical’, ‘Operator Guide’, and ‘Event’ alarms.

ASCII is an acronym for American Standard Code for
Information Interchange. This refers to characters of text.

Base Memory is a term which applies to 186-based and 386EX Real
Mode controllers only. Each of these types of units has
64K of base memory which holds most ACCOL structures.
386EX Protected Mode units do NOT use the term ‘base
memory’.

Bit A value of ‘0’ (OFF) or ‘1’ (ON). Bits are used to represent
information in computers.

BSAP Bristol Synchronous Asynchronous Protocol.

Byte A group of 8 bits.

Character string A collection of alpha numeric information. For example
“PUMP NUMBER 4” is a string of 13 characters (which
includes spaces.)

Cold Start is a condition in which the Network 3000 controller has
lost all accumulated data, either because of a watchdog
failure, or because the operator has pressed the unit’s
reset button. Upon cold start, the unit will wait for a new
ACCOL load to be downloaded, unless one already has
been stored in EPROM or FLASH memory.

Communication Ports these are devices on the Network 3000 controller, which
allow the controller to exchange data with other
controllers and devices.

Control Statement(s) these are statements which may be included in an
ACCOL Task to modify the execution of the task.
Common control statements include SUSPEND,
RESUME, ABORT, IF, ENDIF, etc.

G-3

Data Array(s) these are tables of values. Arrays can contain either
logical values (1 for ON, 0 for OFF), or floating point
analog values.

Data Concentrator This is a Network 3000 controller which has a Master
Port, through which it accepts data from one or more
slave controllers. Data concentrators are typically used
when ACCOL control decisions must be made based on
data from more than one controller.

Deadband this is a value used to provide a range, above or below an
alarm limit, (or RBE value, in the case of RBE signals) in
which the alarm state (or RBE report status) will not
change.

DIAG6 is one of the ACCOL Tools. It is also called the 33XX
Diagnostics Program. It is used to test certain parts of the
Network 3000 controller hardware.

Download is the process of transferring an ACCOL load file into the
memory of a Network 3000-series controller. Downloading
is performed using the Open BSI Downloader.

DPC Distributed Process Controller. See Remote Process
Controllers

EPROM Erasable Programmable Read-Only Memory.

Expanded Memory is extra memory, beyond the base memory, which is
installed in a 186 or 386EX Real Mode controller. This
memory is used to hold certain selected ACCOL
structures which may be shifted out of base memory, to
free up space in the base memory area. In addition, there
are certain structures which can only exist in expanded
memory. The term expanded memory does NOT apply to
386EX Protected Mode controllers.

FLASH is a type of memory used in some types of Network 3000
controllers which allows an ACCOL load file (but not
data) to be retained even after a cold start condition.

Human-Machine
Interface (HMI) this is a software package, such as OpenEnterprise,

Intellution® FIX®, or Iconics Genesis, which is used to
display and report data for an operator.

G-4

LocalView is an Open BSI utility which allows local communication
with a controller. It also allows the user to perform field
upgrades of controller firmware for certain controller
models.

Memory is the part of the Network 3000 controller which holds the
ACCOL load file, and accumulated data.

Module are pre-programmed structures which are used to perform
mathematical, communication, and process control
functions in ACCOL. Modules are inserted into ACCOL
tasks in a logical order, and are connected together using
signals.

Module Terminal(s) are used to specify the inputs, or outputs of a module.
Signals (or in some cases, constant values) are entered on
module terminals. By entering the same signal name on
two different terminals, those terminals are said to be
‘wired’ together.

NETBC5 is one of the ACCOL Tools. It is also called the Network
Batch Compiler. This program takes an ASCII file and
uses it to generate the Network file NETFILE.DAT.
NOTE: Open BSI 3.0 or newer users MUST use NetView
instead.

NETREV5 is one of the ACCOL Tools. It is also called the Network
Reverse Compiler. This program takes the NETFILE.DAT
file, and converts it into an editable ASCII file. NOTE:
Open BSI 3.0 or newer users MUST use NetView instead.

NETTOP5 is one of the ACCOL Tools - - also known as the Network
Topology Program. It allows the user to define the
structure of the controller network including network
levels, addresses, etc. The NETTOP files containing this
information are NETFILE.DAT, GLADXREF.DAT, and
RTUXREF.DAT. NOTE: Open BSI 3.0 or newer users
MUST use NetView instead.

NetView a program in Open BSI used to define your
communication network, and to start communications.
See the Open BSI Utilities Manual (document# D5081)
for details.

Network 3000 a product name for a family of Bristol Babcock digital
remote process controllers and related equipment.

G-5

Node a Network 3000 controller which is part of a network of
controllers.

Open Bristol
System Interface see Open BSI

Open BSI stands for Open Bristol System Interface. Open BSI is a
set of software utility programs which facilitate data
collection and communications with a network of Bristol
Babcock Network 3000-series controllers. The utilities in
the standard Open BSI set include NetView, LocalView,
DataView, and the Downloader.

Points these are input/output (I/O) connections on a process I/O
board.

Pre-emptive
Multi-Tasking a method in which multiple ACCOL tasks execute

concurrently, however, those with higher priority are
always executed first.

Process I/O the input/output (I/O) data from a process or plant. This
data comes from devices such as meters, pressure
switches, temperature transmitters, etc. This type of data
comes into the controller through Process I/O boards.

Process I/O boards these are hardware devices, installed in slots in the
Network 3000 controller, which are used to send and
receive process I/O data. See Process I/O.

RAM Random Access Memory. This is memory that can be both
read from, and written to.

Read-only this is data in memory which is fixed; i.e. it cannot be
changed by an operator on-line.

Read Priority this is the security level, required by an operator or
program, to read signal data.

Read/Write this is data in memory which can be either read, or
changed.

Redundant this refers to a configuration in which two Network 3000
controllers are linked together in a way in which one can
assume the duties of the other, if the other controller
fails.

G-6

Remote Process
Controllers also known simply as ‘remotes’. These are essentially a

type of computer which is used to measure or control a
process. (Typical examples of processes include
controlling flow in a natural gas pipeline, measuring
liquid level in a tank, or controlling a factory production
line.) Bristol Babcock’s Network 3000 series of remote
process controllers includes the DPC 3330, DPC 3335,
RTU 3305, RTU 3310, etc. These units collect data,
perform calculations, and issue control commands to the
process. The term ‘remote’ is sometimes used to refer to
controllers because they are often installed at locations
that are physically distant from the operator workstation.
Other synonymous terms include ‘RTU’ or ‘DPC', or
'33XX'. See also Node.

RTU Remote Terminal Unit. See Remote Process Controllers

Signal is a software structure which is used to pass data from
module to module in an ACCOL load. They are similar to
‘variables’ or ‘tags’ in other programming languages. The
ACCOL programmer enters a signal name on a module
terminal. By placing the same signal name on a terminal
of a different module, the modules are said to be ‘wired’
together, and data can pass between them; i.e. the value
of a signal on an output terminal of one module becomes
an input to another module, and so on. There are five
types of signals in ACCOL: Logical, Logical Alarm,
Analog, Analog Alarm, and String.

Signal List a signal list is a way to group signals together. Signals
are referenced by their position in the list. Several
ACCOL modules are available for referencing signal lists.

Supervisory Control
and

Data Acquisition
 (SCADA) is a method of process control in which a supervisory

computer, typically running MMI software, collects data
from a network of remote process controllers, displays the
data for an operator, and allows the operator to issue
commands which are sent out to control the process.

System Signals these are special ACCOL signals (distinguished by a ‘#’ as
the first character in the signal base name) which are
created by the system for various housekeeping purposes.

G-7

They may be used by the ACCOL programmer, but cannot
be created or deleted by the ACCOL programmer.

Task see ACCOL Task(s)

Task Control
 Statements see Control Statements

Task Priority is a value, assigned by the ACCOL programmer, to each
ACCOL Task. This value is used to determine which task
should execute next. Priorities can range from 1 to 64.
Tasks which perform important calculations should be
given higher priorities.

Task Rate specifies how often an ACCOL task is scheduled to begin
execution. If a particular task has a task rate of 1 second,
for example, then it will begin executing every second. If a
task cannot complete execution prior to its next scheduled
execution, its execution will be delayed until the previous
execution has completed; this situation is called ‘slippage’,
and indicates that the task rate has been set too fast.

Terminals see Module terminals

Top Level Node(s) a Network 3000 controller in a BSAP network, which is
on the network level immediately below the operator
workstation running Open BSI. Also known as a ‘first
level node’ or ‘first level slave’.

Warm Start if a Network 3000 controller suffers a power failure, and
power is restored prior to failure of the backup battery,
the ACCOL load will resume execution from the point
where it lost power.

Watchdog a failure condition, indicated by the Watchdog (WDOG)
LED on the controller. A Network 3000 controller in a
watchdog state must be reset, and possibly re-downloaded
in order to function again.

Word A unit of measurement representing two bytes of memory.

Write Priority this is the security level, required by an operator or
program, to change signal data.

BLANK PAGE

READER RESPONSE FORM

Please help us make our documentation more useful to you! If you have a
complaint, a suggestion, or a correction regarding this manual, please tell us by
mailing this page with your comments. It’s the only way we know we’re doing our
job by giving you correct, complete, and useful documentation.

DOCUMENT NUMBER: D4056
TITLE: An Introduction to ACCOL
ISSUE DATE: January, 2001

COMMENT/COMPLAINT:

__

__

__

__

__

__

__

__

__

__

__

__

__

Mail or FAX this page to:
Bristol Babcock Inc.
1100 Buckingham Street
Watertown, CT 06795
FAX#: (860) 945-2213
Attn: Technical Publications Group, Dept. 610 RRF - 1/2001

&VMWXSP�&EFGSGO�-RG�
an FKI company

1100 Buckingham Street
Watertown, CT 06795

Telephone: (860) 945-2200

	Contents.pdf
	Intro.pdf
	Signals.pdf
	Modules.pdf
	Tasks.pdf
	Datarray.pdf
	Procesio.pdf
	Comports.pdf
	Memory.pdf
	Siglists.pdf
	archive.pdf
	Appendxa.pdf
	Appendxb.pdf
	Glossary.pdf

