Level

Differential Pressure

Rosemount 3051S_L, 3051L, and 2051L DP Liquid Level Transmitters

- Reduce installed cost by 20%, improve performance by 30% and achieve better response time by 80% with Tuned-System[™] Assemblies
- Optimize and quantify total system performance with QZ option
- · Operate at higher temperatures and harder vacuums

Rosemount 1199 Seal DP Systems

- Connect to virtually any process with a comprehensive offering of process connections, fill fluids, direct mount or capillary connections, and materials
- Extend life and improve performance with back-up diaphragm pattern
- Protect your investment from installation or gasket damage with recessed diaphragm design

Guided Wave Radar (GWR)

Rosemount 5300 Series Superior Performance GWR Level and Interface Transmitter

- Handles even the most challenging applications reliably including process vessels, control and safety
- Microwave innovations allow use over longer ranges, with lower dielectrics and higher accuracy
- Enhanced configuration and diagnostic information through RadarMaster and EDDL-based user interface
- Probe end projection function provides reliable measurements during times of low signal strength

Rosemount 3300 Series Versatile GWR Level and Interface Transmitter

- Handles most liquid storage and monitoring applications
- First 2-wire level and interface transmitter with field proven reliability

Non-Contacting Radar

Rosemount 5400 Series Superior 2-wire Radar Level Transmitter

- Market leading signal software logic to handle dynamic tank environments
- High and low frequencies available for maximum application coverage
- Enhanced EDDL-based user interface provides visualization of configuration and diagnostic information
- Innovative design puts more power on the surface than any other 2-wire radar transmitter

Rosemount 5600 Series 4-wire Radar Level Transmitter

- Power of 4-wire provides maximum sensitivity and performance for solids, challenging reactors, rapid level changes and extreme process conditions
- Market leading signal processing capacity to handle challenging tank environments

Ultrasonic

Rosemount 3100 Series Ultrasonic Process Level Transmitters

- Reliable liquid level measurement up to 36 ft. (11 m)
- Top down non-contacting measurement minimizes maintenance costs
- Local operator interface or remote programming for fast and efficient commissioning
- Two on-board relays for control and/or alarm duties
- Inert wetted materials for corrosive liquids and vapors

Rosemount 3107 and 3108 Sealed Ultrasonic Level Transmitters

- Level measurement and pump control in sumps and wet wells up to 39 ft. (11 m) deep
- Open Channel Flow measurement in most flow structures
- Sealed NEMA type 6P (IP68) to survive flooding
- Sophisticated software eliminates false echoes

Vibrating Fork Switches

Rosemount 2160 WirelessHART[™] Vibrating Fork Level Switch

- World's first WirelessHART liquid level switch ideal in locations previously inaccessible or too costly for wired devices
- Integral power module eliminates the need for any site wiring
- PlantWeb functionality with advanced diagnostics and PlantWeb alerts

Rosemount 2130 Extreme Temperature Vibrating Fork Level Switch

- -94 to 500 °F (-70 to 260 °C) extended operating temperature range
- Built-in diagnostics continuously monitor instrument health

Rosemount 2120 Standard Vibrating Fork Level Switch

- Choice of switch outputs includes intrinsically safe and relay
- DIBt/WHG Overfill protection certification
- Flanged, threaded and extended length options

Rosemount 2110 Compact Vibrating Fork Level Switch

- Designed to meet the requirements of the high volume OEM market
- Stainless Steel housing and wetted parts
- · Fast fit plug and socket wiring connection

Chambers

Rosemount 9901 Chambers

- High quality chambers for external mounting of level measurement and control instrumentation on process vessels
- PED compliant design in accordance with ASME B31.3 or as option ASME B31.1
- Uses only certified and traceable materials and is manufactured using full penetration welds
- Hydro tested on completion, with a full range of NDT or customer inspection options available

Table Level-1. Level Product Selection Chart

Application and Installation				Recomi	Recommended	
				May be	May be suitable	
Considerations				Not recommended		
		Continue	X ous Level		Point Level	
			Guided			
			Wave	Ultra-	Vibrating	
	Pressure	Radar	Radar	sonic	Fork	
Level						
			_		v	
Interface (Liquid/Liquid)		Х		X	X	
Volume	_ =		v		X	
Density		X	X	X	X	
Mass		Х	X	X	X	
Open Channel Flow	Х		•		Х	
Process Medium Characteristics						
Changing Density		_	O 1		-	
Changing Dielectric			•		-	
Wide pH Variations	-	_	•		•	
Pressure and Temperature Changes	•	•	•		•	
Condensing Vapors	•	•	•		•	
Bubbling / Boiling Surfaces	•	•	•		•	
Foam	•					
Liquid with Dielectric < 1.9	•	•	•	•	•	
Coating Liquids		•		•		
Viscous Liquids	•	•		•		
Crystallizing Liquids		•		•		
Solids, Granules, Powders	Х			Х	Х	
Sludge and Slurries		•		•		
Tank Environment Considerations						
Top Down Connection	Х	•	•	•	•	
Bottom or Side Connections, Direct to	•	Х	Х	Х	•	
Vessel						
Stilling Wells or Bypass Connections					•	
Device Will Be Close to Tank Wall /	•		•		•	
Disturbance Object						
High Turbulence	•		•	Х	•	
Long and Narrow Mounting Nozzles	•			Х	•	
Angled or Slanted Surface	•		•		Х	
High Empty and Fill Rates	•	•	•	•	•	
Internal Obstructions	•				•	
Agitation	•				•	
Non-metallic Vessel	•			•	•	
Nozzle in Center of Tank	•	Х	•	Х	•	
Valves or Isolation Required	ě		2	X	a 2	

- (1) For overall level applications a changing dielectric has no affect on the accuracy; for interface applications a changing dielectric in top fluid will degrade accuracy.
- (2) Mount instrument in external Rosemount 9901 Chamber.