Type 289RC Throttling Exhaust Booster

Introduction

The Type 289RC is a high-capacity, throttling exhaust booster designed to provide throttling “release control” (RC) control pressure to actuators, pneumatic devices, and related systems that require rapid response (i.e. surge valves or recycle valves on compressors). These exhaust boosters are normally used on control valve actuators to speed up the proportional operation of a control valve in response to sudden pressure changes from pneumatic output devices such as solenoid valves or pneumatic instruments. The one way throttling action offers superior control with exceptional stability.

Features

• Rapid Response—By accurately matching the instrument and actuator performance with the bypass valve adjustment, the Type 289RC reduces overshoot and related problems while allowing very fast positioning response to system requirements.

• High Volume—The boosting system allows the Type 289RC to provide high flow rates with minimum pressure buildup.

• Throttling Type Exhaust Booster—The smooth, sensitive throttling action minimizes pressure surges caused by system fluctuations.
Type 289RC Specifications

Specifications for the Type 289RC exhaust booster are listed on page 2. Specifications for a given exhaust booster as it originally comes from the factory are stamped on the nameplate.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Size</td>
<td>1 NPT</td>
</tr>
<tr>
<td>Inlet and Outlet Connections</td>
<td>Inlet: Connect to the outlet via a bypass valve, adjustable from 0 to 0.3 C_v (Piping is normally configured by the customer.) See Figure 3. Signal: 1/8 NPT (standard) Outlet Connection: 1 NPT</td>
</tr>
</tbody>
</table>
| **Dead Band** | **Static:** Bypass valve closed, less than 10% of the control pressure
Dynamic: Bypass valve open, variable from 0 to 10% of the control pressure |
| **Maximum Exhaust Flow Capacity** | $C_v = 22$
System capacity limited by the smallest restriction between the exhaust valve and pressure source |
| **Temperature Capabilities** | -20 to 180°F / -29 to 82°C |
| **Maximum Pressure** | 100 psig / 6.9 bar |
| **Input to Output Pressure Ratio** | Fixed at 1 to 1 |
| **Approximate Weight** | 4 lbs / 2 kg |

1. The pressure/temperature limits in this Bulletin and any applicable standard or code limitation should not be exceeded.

Installation

The instrument connection must be made to the spring case, 1/8 NPT fitting. The actuator is connected to the 1 NPT side port. The inlet and outlet must be connected via an adjustable bypass valve. Flow through the exhaust valve must be as indicated by the flow direction arrow on the body. See Figure 3.

Principal of Operation

The Type 289RC 1 NPT output port is connected directly to a spring return actuator and the 1/8 NPT inlet port is connected to the controlling instrument (I/P transducer, positioner, controller, etc.). The inlet and outlet chambers connected through a needle valve. The needle valve is adjusted on the control valve system to account for differences in various instrument and actuator performance characteristics.

Once this adjustment has been accomplished the control valve action is described as follows: As the output pressure of the instrument increases the actuator will move the valve normally until the rate of change of the output pressure exceeds the capacity limit of the needle valve. When this occurs, the pressure drop in the Type 289RC causes the booster exhaust valve to open and quickly drop the pressure in the actuator. Because of the throttling action of the Type 289RC, the booster exhaust valve closes as the pressure difference between the instrument and actuator decreases and the control valve system resumes normal operation.

Ordering Information

Refer to the Specifications section on page 2. Carefully review the description below each specification to be sure exhaust booster meets the needs of the application. Specify the product type number to your local Sales Office.
Figure 3. Typical Type 289RC Throttling Exhaust Booster and Control Valve Installation

Figure 4. Typical Response Curve for Type 657 size 45 Actuator with Type 289RC Throttling Exhaust Booster

(Using a Type 546 I/P Transducer with 4 to 20 mA input signal, 8 to 30 psig / 0.41 to 2.1 bar output, and 35 psig / 2.4 bar supply pressure; a Type 657 or 645 Valve Actuator with 10 to 26 psig / 0.69 to 1.8 bar setting and 0 to 1.5 in. / 0 to 38 mm of travel; and a Type 289RC Exhaust Booster with a Bypass Valve.)