Cronos Regulators

Pressure Regulators

This series of “Top-Entry” appliances was designed to meet a wide range of applications, offering easy maintenance combined with compact size.

To achieve this, we introduced a new modularity concept which, combined with our experience and TARTARINI technologies developed in axial flow regulators, has enabled us to build a wide range of versions to the same design philosophy.

These are, in brief, the features of the project:

- **MODULARITY**
 Modularity is ensured by a central cross-shaped body, which is the system’s key component, enabling either horizontal or 90° gas flow. The other components are assembled to it (flange, regulator head, monitor head, shut-off, and silencers).

- **COUNTERBALANCED SHUTTER**
 Use of a special counter-balanced shutter of very simple design, makes CRONOS highly reliable, easy to maintain, in the more complex configurations too (Shut-off, Monitor, Regulator, Silencer).

Versatile design can clearly be seen in the CCBS right-angled model, which Tartarini uses to make highly compact reduction units.
Cronos Regulators

Configurations

- C Regulator
- CB Regulator + Shut-off
- CC Regulator + Monitor
- CCB Regulator + Monitor + Shut-off

<table>
<thead>
<tr>
<th>Configurations</th>
<th>Horizontal flow</th>
<th>90° flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Silenced</td>
</tr>
<tr>
<td></td>
<td>SR</td>
<td>SRS</td>
</tr>
<tr>
<td>Regulator</td>
<td>C</td>
<td>C-SR</td>
</tr>
<tr>
<td>Regulator + Shut-off</td>
<td>CB</td>
<td>CB-SR</td>
</tr>
<tr>
<td>Regulator + Monitor</td>
<td>CC</td>
<td>CC-SR</td>
</tr>
<tr>
<td>Regulator + Monitor + Shut-off</td>
<td>CCB</td>
<td>CCB-SR</td>
</tr>
</tbody>
</table>

N.B.: SRS silenced solutions have a widened output flange. Also available: version with widened output, but without a built-in silencer.

Examples of Descriptions:

DN 25 ANSI 150 horizontal flow regulator with SRS silencer: C025x100 ANSI 150 SRS
DN 25 ANSI 150 horizontal flow regulator with widened output: C025x100 ANSI 150
Cronos Regulators

Operation

- Regulated pressure chamber (Pd)
- Diaphragm unit
- Moving chamber (Pm)
- Monitor spring
- Monitor shutter
- Monitor seal pad
- Monitor
- Regulator and monitor seat
- Regulator seal pad
- Regulator shutter
- Moving chamber (Pm)
- Diaphragm unit
- Regulator spring

SHUT-OFF
- Shut-off spring
- Shut-off shutter
- Shut-off reset shaft
- Shut-off seal pad
- Shut-off seat
Operation

HOW THE REGULATOR WORKS

The Diaphragm Unit (permanently connected to the shutter) divides the regulator control head into two chambers. One of the chambers is connected to regulated pressure (Pd), and the other to moving pressure (Pm) produced by the pilot according to pressure downstream.

Due to lack of pressure, the regulator spring acts on the diaphragm unit and closes the shutter. The shutter moves to its open position when the force produced by moving pressure acting on the diaphragm unit becomes greater than the force produced by downstream regulated pressure (Pd) added to the load of the regulator spring. The shutter stays idle when the two forces are equal under these conditions, downstream pressure is equal to the system’s set value.

Any change in requested flow-rate produces a variation in downstream regulated pressure and the regulator controlled by the pilot opens or closes to deliver the requested flow-rate while keeping downstream pressure uniform.

HOW THE MONITOR WORKS

The Monitor or emergency regulator is used as a safety device in gas pressure reduction systems. The purpose of this device is to protect the system against possible overpressure, while keeping the reduction line in service.

The monitor controls downstream pressure at the same point as the main regulator and is set a little higher than the latter. Under normal duty, the monitor is fully open as it detects a pressure value lower than its set value. If, due to any regulator fault, downstream pressure increases, when it exceeds the tolerated level, the monitor comes into operation and adjusts pressure to its own set value.

HOW THE SHUT-OFF DEVICE WORKS

The shut-off device has a shutter and its own seat, and is provided with functions independent of the regulator/monitor. The shutter can be opened by hand only, by rotating the shut-off reset shaft anti-clockwise. To keep the shutter open, actuator-pilot series OS/80X or series OS/80X-PN is used both are designed to operate on maximum and minimum pressure, on maximum only, or on minimum only.

When the system’s downstream pressure is at normal operating value, the actuator-pilot remains set and prevents the shut-off reset shaft from turning by keeping the shut-off shutter open.

When downstream pressure varies beyond its set limits, the actuator-pilot releases the reset shaft and the shutter is closed by the thrust of the spring.
Cronos Regulators

Features

Applications
CRONOS series regulators are used in reduction, distribution and conveying stations of suitably filtered natural gas.
This product has been designed to be used with fuel gases of 1st and 2nd family according to EN 437, and with other non aggressive and non fuel gases. For any other gases, other than natural gas, please contact your local sales agent.

Technical Features

Flange rating PN 16 - ANSI 150
Allowable pressure P_S : up to 20 bar
Inlet pressure range b_{pu} : 0.2 to 20 bar
Set range W_d : 0.01 to 16 bar
Min.operating differential pres. Δp_{min} : 0.2 bar

Flange rating PN 25/40 - ANSI 300/600
Allowable pressure P_S : up to 100 bar
Inlet pressure range b_{pu} : 1 to 100 bar
Set range W_d : 0.5 to 80 bar
Min.operating differential pres. Δp_{min} : 0.5 bar

Functional Features

Accuracy class AC : up to \pm 1%
Lock-up pressure class SG : up to $+$ 5%
Class of lock-up pressure zone SZ : up to 5%

Shut-off device
Accuracy class AG : up to \pm 1%
Response time t_a : \leq 1 s

Flanged connections
Same Inlet and outlet : DN 25 - 50 - 80
Different Inlet and outlet : DN 25 x 100 - 50 x 150 - 80 x 250

Temperature
Standard version
Working: -10 °C +60 °C

Low temperature version
Working: -20 °C +60 °C

Materials
Body : Steel
Flanges and covers : Steel
Regulator shutter : Steel
Shut-off shutter : Steel
Seat : Stainless steel
Diaphragms : Fabric NBR+PVC/Nitrile rubber
Pads : NBR Nitrile rubber
Cronos Regulators

Calculation Procedures

Symbols

- \(Q \) = Natural gas flow rate in Stm³/h
- \(P_1 \) = Absolute inlet pressure in bar
- \(P_2 \) = Absolute outlet pressure in bar
- \(C_g \) = Flow rate coefficient
- \(C_1 \) = Body shape factor
- \(d \) = Relative density of the gas

Flow Coefficients

Horizontal Flow

<table>
<thead>
<tr>
<th>DN</th>
<th>Standard Model</th>
<th>Model with SR</th>
<th>Model with SRS</th>
<th>Model with Widended Outlet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(C_g)</td>
<td>(C_B)</td>
<td>(C_C)</td>
<td>(C_{CB})</td>
</tr>
<tr>
<td>25</td>
<td>550</td>
<td>510</td>
<td>510</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30.5</td>
<td>30.5</td>
<td>31</td>
</tr>
<tr>
<td>50</td>
<td>2250</td>
<td>2080</td>
<td>2080</td>
<td>2050</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>30.5</td>
</tr>
<tr>
<td>80</td>
<td>5100</td>
<td>4800</td>
<td>4800</td>
<td>4700</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>31</td>
</tr>
</tbody>
</table>

90° Flow

<table>
<thead>
<tr>
<th>DN</th>
<th>Standard Model</th>
<th>Model with SR</th>
<th>Model with SRS</th>
<th>Model with Widended Outlet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(C_g)</td>
<td>(C_{BS})</td>
<td>(C_{CS})</td>
<td>(C_{CCS})</td>
</tr>
<tr>
<td>25</td>
<td>450</td>
<td>450</td>
<td>440</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>50</td>
<td>1850</td>
<td>1850</td>
<td>1800</td>
<td>1750</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>80</td>
<td>4300</td>
<td>4300</td>
<td>4200</td>
<td>4100</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
</tbody>
</table>

Flow rate \(Q \)

Sub-critical state with: \(P_2 > \frac{P_1}{2} \)

\[
Q = 0.525 \cdot C_g \cdot P_1 \cdot \sin \left(\frac{3417}{C_1} \cdot \sqrt{\frac{P_1-P_2}{P_1}} \right) \text{ Deg}
\]

Critical state with: \(P_2 \leq \frac{P_1}{2} \)

\[
Q = 0.525 \cdot C_g \cdot P_1
\]

For other gases with different densities, the flow rate calculated with the above formulas must be multiplied by the correction factor:

\[
F = \sqrt{\frac{0.6}{d}}
\]

<table>
<thead>
<tr>
<th>Gas</th>
<th>Relative Density (d)</th>
<th>Factor (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1</td>
<td>0.78</td>
</tr>
<tr>
<td>Butane</td>
<td>2.01</td>
<td>0.55</td>
</tr>
<tr>
<td>Propane</td>
<td>1.53</td>
<td>0.63</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.97</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Cronos Regulators

DN Size

Calculate the required \(C_g \) with the following formula:

Sub-critical state with \(P_2 > \frac{P_1}{2} \)

\[
C_g = \frac{Q}{0.525 \cdot P_1 \cdot \sin \left(\frac{3417}{C_1} \cdot \sqrt{\frac{P_1 - P_2}{P_1}} \right)}
\]

Critical state with \(P_2 \leq \frac{P_1}{2} \)

\[
C_g = \frac{Q}{0.525 \cdot P_1}
\]

N.B. The above formulas apply to natural gas flow rate only. If the flow rate value (Q) refers to other gasses, divide it by the correction factor \(F \) (see table).

Select the diameter of the regulator with \(C_g \) higher than calculated value (see table).

After finding the DN of the regulator, check that gas speed on the seat does not exceed 120 m/sec, using the following formula:

\[
V = 345.92 \cdot \frac{Q}{DN^2 \cdot \frac{1 - 0.002 \cdot P_u}{1 + P_u}}
\]

\(V \) = Velocity (m/s)
345.92 = Numerical constant
\(Q \) = Flow rate under standard conditions (Stm³/h)
DN = Regulator nominal diameter (mm)
\(P_u \) = Inlet pressure in relative value (bar)
Pilots

The following pilots are used with CRONOS series regulator with built-in shut-off device:

- **OS/80X series**: Spring loaded pneumatic device
- **OS/80X-PN series**: Pneumatic device controlled by PRX-PN series pilots

OS/80X

The OS/80X series pilot is supplied in different models according to set ranges required.

Technical Features

<table>
<thead>
<tr>
<th>Model</th>
<th>Servomotor Body Resistance (bar)</th>
<th>Overpressure Set Range W_{do} (bar)</th>
<th>Underpressure Set Range W_{du} (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>OS/80X-BP</td>
<td>5</td>
<td>0.03</td>
<td>2</td>
</tr>
<tr>
<td>OS/80X-BPA-D</td>
<td>20</td>
<td>0.50</td>
<td>5</td>
</tr>
<tr>
<td>OS/80X-MPA-D</td>
<td>100</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>OS/80X-APA-D</td>
<td></td>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>OS/84X</td>
<td></td>
<td>18</td>
<td>80</td>
</tr>
<tr>
<td>OS/88X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Materials

OS/80X

- Diaphragm: Fabric NBR+PVC/Nitrile rubber
- O-ring: NBR Rubber

OS/84X, OS/88X

- Servomotor body: Brass
- Lip seal: Teflon (PTFE)
- O-ring: NBR Rubber

OS/80X-PN

The OS/80X-PN series pilot is supplied in two models:

OS/80X-PN: Pressure range 0.5 to 40 bar
Appliance made of an OS/80X-APA-D set at about 0.4 bar and a variable number of PRX/182-PN pilots for overpressure and PRX/181-PN for underpressure, as many as necessary to control different points of the installation.

OS/84X-PN (Safety Accessory): Pressure range 30 to 80 bar
Appliance made of an OS/84X set at about 20 bar and a variable number of PRX-AP/182-PN pilots for overpressure and PRX-AP/181-PN for underpressure, as many as necessary to control different points of the installation.

Technical Features

<table>
<thead>
<tr>
<th>Model</th>
<th>Servomotor Body Resistance (bar)</th>
<th>Overpressure Set Range W_{do} (bar)</th>
<th>Underpressure Set Range W_{du} (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>OS/80X-PN</td>
<td>100</td>
<td>0.5</td>
<td>40</td>
</tr>
<tr>
<td>OS/84X-PN</td>
<td>100</td>
<td>30</td>
<td>80</td>
</tr>
</tbody>
</table>

Materials

PRX/181/182-PN, PRX-AP/181/182-PN

- Body: Steel
- Diaphragm: Fabric-finished NBR
- O-ring: NBR Rubber
Cronos Regulators

Pilots

PS/ Series

Cronos series regulators are equipped with the PS/ or PRX/ series pilots.

<table>
<thead>
<tr>
<th>Application</th>
<th>Allowable Pressure PS (bar)</th>
<th>Set Range Wd (bar)</th>
<th>Body and Covers Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS/79-1</td>
<td>25</td>
<td>0.01 - 0.5</td>
<td>Aluminium</td>
</tr>
<tr>
<td>PS/79-2</td>
<td></td>
<td>0.5 - 3</td>
<td></td>
</tr>
</tbody>
</table>

1/4” NPT female threaded connections

All PS/ series pilots are supplied with a filter (5µ filtering degree) and built-in pressure stabilizer, with the exception of pilots PSO/79 and PSO/80.

PRX/ Series

<table>
<thead>
<tr>
<th>Application</th>
<th>Operating Monitor</th>
<th>Allowable Pressure PS (bar)</th>
<th>Set Range Wd (bar)</th>
<th>Body and Covers Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS/79</td>
<td>PSO/79 REO/79</td>
<td>100</td>
<td>0.5 - 40</td>
<td>Steel</td>
</tr>
<tr>
<td>PS/80</td>
<td>PSO/80 REO/80</td>
<td></td>
<td>1.5 - 40</td>
<td></td>
</tr>
</tbody>
</table>

1/4” NPT female threaded connections

The SA/2 pressure pre-reducer must be used with PRX/ series pilots.

SA/2

The pressure pre-reducer is equipped with a 5µ filtering degree filter and is suitable for heating.

<table>
<thead>
<tr>
<th>Model</th>
<th>Allowable Pressure PS (bar)</th>
<th>Supplied Pressure</th>
<th>Body and Covers Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA/2</td>
<td>100</td>
<td>3 bar + Downstream pressure</td>
<td>Steel</td>
</tr>
</tbody>
</table>

1/4” NPT female threaded connections

FU

When the pressure difference between upstream and downstream is below 10 bar, SA/2 can be used with the following FU filter.

<table>
<thead>
<tr>
<th>Model</th>
<th>Allowable Pressure PS (bar)</th>
<th>Filtering Degree</th>
<th>Body and Covers Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>FU</td>
<td>100</td>
<td>5µ</td>
<td>Steel</td>
</tr>
</tbody>
</table>

1/4” NPT female threaded connections

Booster Valves

<table>
<thead>
<tr>
<th>Model</th>
<th>Allowable Pressure PS (bar)</th>
<th>Set Range Wd (bar)</th>
<th>Body and Covers Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/31-2</td>
<td>19</td>
<td>0.025 - 0.55</td>
<td>Aluminium</td>
</tr>
<tr>
<td>PRX/131</td>
<td></td>
<td>0.5 - 40</td>
<td>Steel</td>
</tr>
<tr>
<td>PRX-AP/131</td>
<td>100</td>
<td>30 - 80</td>
<td></td>
</tr>
</tbody>
</table>

1/4” NPT female threaded connections
Operating Monitor and Booster Valve

OPERATING MONITOR
The “operating monitor” has two functions: under normal duty, it reduces pressure in the intermediate section between the two regulators, but, if the main regulator fails, it comes into operation as an emergency regulator.

BOOSTER VALVE
The booster valve is fitted on the monitor-regulator system which branches off from the monitor drive pressure circuit, so that the monitor operates more quickly.
Cronos Regulators

Silencers

SR
This silencer is fitted near the regulator shutter and is highly efficient up to a theoretical speed of 80 m/s calculated at the outlet flange.

Beyond this speed could be necessary to act on the noise generated by the expansion cone usually installed downstream of the regulator.

SRS
The SRS silencer consists of an SR silencer plus a widened outlet flange in which a second silencer is fitted.

The second silencer has an initial multi-path section and a second multi-stage section.

This silencer is highly efficient under all operating conditions, is not limited by the theoretical speed on the regulator outlet flange.

STP
Habitually used downstream of SRS silencers but can also be combined with the SR silencer.

Overall reduction in noise level is the sum of the reduction produced by SR or SRS plus the STP induced reduction.

The STP silencer consists of one or more porous channels clad with soundproofing material.

Sound penetrates inside the soundproofing layer and is transformed into heat by friction.

The silencer is fitted in the pipe and is secured with two flanges.

Two types of silencers are supplied:
- STP10 10 dB(A) attenuation, with length of approximately 1m
- STP10 20 dB(A) attenuation, with length of approximately 2m
Accessories

PROPORTIONAL TRAVEL TRANSMITTER

In order to communicate the valve position, a potentiometer-type straightaway position transmitter is used connected to the regulator travel indicator. Thanks to this transducer, it is possible to know accurately the valve position and thus have correct information on the regulator operating condition.

It is supplied in two models:
- PA1/25 suitable for Cronos DN 25-50
- PA1/50 suitable for Cronos DN 80

This transducer features a single element as foreseen by EN 50020 standards and can thus be used in hazardous areas.

Single element transducers, if fitted in intrinsic safety circuits, should be protected through suitable safety barriers anyway.

<table>
<thead>
<tr>
<th>Model</th>
<th>PA1/25</th>
<th>PA1/50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Useful electrical travel</td>
<td>mm</td>
<td>26</td>
</tr>
<tr>
<td>Resistance</td>
<td>kΩ</td>
<td>1</td>
</tr>
<tr>
<td>Resolution</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Suggested current</td>
<td>µΑ</td>
<td><1</td>
</tr>
<tr>
<td>Max. current</td>
<td>mA</td>
<td>≤10</td>
</tr>
<tr>
<td>Max. voltage</td>
<td>V</td>
<td>25</td>
</tr>
<tr>
<td>Working temperature</td>
<td>°C</td>
<td>-30 °C +100 °C</td>
</tr>
</tbody>
</table>

PROXIMITY SWITCH

In order to send the shut-off or the regulator/monitor opening/closing signal, a proximity switch suitable for installation in hazardous area is used.

The use of this switch foresees the application of an intrinsic safety separation barrier which should be installed in safe area.

The distance between the proximity switch and the barrier should be calculated according to the type of gas and installation electrical specifications.

The proximity switch should be positioned at about 0.5 mm from the stem (S). The adjustment is made by means of adjusting nuts.

On request it is possible to supply the pilot in the version with two proximity switches in order to indicate extreme positions of valve opening/closing.
Cronos Regulators

Accessories

ELECTROVALVE FOR REMOTE CONTROLLED CLOSURE

The OS/80X and the OS/80X-PN equipped with a shut-off device for minimum pressure, can be equipped with a 3-way valve with explosion-proof construction to permit remote-controlled closure.

IT/3V THREE-WAY VALVE FOR SETTING CONTROL (P_u max 50 bar)

It allows the OS/80X operation and setting control, without having to change the regulator setting.

The valve is installed on the OS/80X control line and it must be connected to a suitable pressure source that is capable of reaching the settings of the OS/80X.

The IT/3V three-way valve is of the spring-return type and it is equipped with a safety lock plate (B) on the control knob (Q).

When the plate (B) is pivoted, pressure on the knob (Q) makes it possible to put the sensitive member into communication with a pressure source, thus making it possible to perform operation and setting tests.

Upon completion of the procedures, releasing the knob will reset normal running conditions. The safety lock plate on the knob prevents accidental maneuvers.

MIC/25 Underground Module
Installation

The central cross-shaped body is designed so that the actuator-pilot can be installed both at front and rear. This facility combined with body rotation enables all types of orientation. For orientations different from those shown below, please contact our Technical Department.

Horizontal Flow

- Left to right flow
- Right to left flow

Vertical Flow

- Upward flow
- Downward flow

90° Flow

- Left downward flow
- Right downward flow
- Right upward flow
- Left upward flow
Cronos Regulators

Examples of Connections

PS/79-1
PS/79-2
Series

PS/79 Series

PS/80 Series

PRX Series

Inlet pressure
Moving pressure
Outlet pressure
A Downstream or to a safe area
K To the heating system
Horizontal Flow Dimensions (mm)

<table>
<thead>
<tr>
<th>DN</th>
<th>Overall Dimensions (mm)</th>
<th>Face-to-Face (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>25</td>
<td>215</td>
<td>180</td>
</tr>
<tr>
<td>50</td>
<td>245</td>
<td>195</td>
</tr>
<tr>
<td>80</td>
<td>330</td>
<td>260</td>
</tr>
</tbody>
</table>

Threaded 1/4" NPT female impulse connections
Cronos Regulators

90° Flow Dimensions (mm)

Standard and SR

<table>
<thead>
<tr>
<th>DN</th>
<th>Overall Dimensions (mm)</th>
<th>Face-to-Face (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PN 16 ANSI 150</td>
<td>PN 25/40 ANSI 300/600</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>25</td>
<td>215</td>
<td>180</td>
</tr>
<tr>
<td>50</td>
<td>245</td>
<td>195</td>
</tr>
<tr>
<td>80</td>
<td>330</td>
<td>260</td>
</tr>
</tbody>
</table>

Threaded 1/4" NPT female impulse connections

Widened outlet and SRS
Weights

Horizontal Flow

<table>
<thead>
<tr>
<th>DN</th>
<th>C</th>
<th>CB</th>
<th>CC</th>
<th>CCB</th>
<th>PN 16 ANSI 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>36</td>
<td>38</td>
<td>56</td>
<td>58</td>
<td>37</td>
<td>39</td>
<td>61</td>
<td>63</td>
<td>49</td>
<td>51</td>
<td>69</td>
<td>71</td>
<td>56</td>
<td>58</td>
<td>78</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>62</td>
<td>66</td>
<td>96</td>
<td>100</td>
<td>74</td>
<td>78</td>
<td>118</td>
<td>122</td>
<td>87</td>
<td>91</td>
<td>121</td>
<td>125</td>
<td>109</td>
<td>113</td>
<td>153</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>128</td>
<td>142</td>
<td>191</td>
<td>197</td>
<td>171</td>
<td>185</td>
<td>271</td>
<td>277</td>
<td>210</td>
<td>204</td>
<td>253</td>
<td>259</td>
<td>273</td>
<td>279</td>
<td>373</td>
<td>379</td>
<td></td>
</tr>
</tbody>
</table>

90° Flow

<table>
<thead>
<tr>
<th>DN</th>
<th>CBS</th>
<th>CCS</th>
<th>CCBS</th>
<th>PN 16 ANSI 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>40</td>
<td>56</td>
<td>58</td>
<td>43</td>
<td>63</td>
<td>65</td>
<td>53</td>
<td>69</td>
<td>71</td>
<td>60</td>
<td>80</td>
<td>82</td>
<td>43</td>
<td>63</td>
<td>65</td>
<td>53</td>
<td>69</td>
<td>71</td>
<td>60</td>
<td>80</td>
<td>82</td>
<td>43</td>
<td>63</td>
<td>65</td>
</tr>
<tr>
<td>50</td>
<td>72</td>
<td>102</td>
<td>106</td>
<td>92</td>
<td>132</td>
<td>136</td>
<td>97</td>
<td>127</td>
<td>131</td>
<td>127</td>
<td>167</td>
<td>171</td>
<td>97</td>
<td>127</td>
<td>131</td>
<td>127</td>
<td>167</td>
<td>171</td>
<td>127</td>
<td>167</td>
<td>171</td>
<td>97</td>
<td>127</td>
<td>131</td>
</tr>
<tr>
<td>80</td>
<td>159</td>
<td>208</td>
<td>214</td>
<td>225</td>
<td>319</td>
<td>325</td>
<td>221</td>
<td>270</td>
<td>286</td>
<td>327</td>
<td>421</td>
<td>427</td>
<td>221</td>
<td>270</td>
<td>286</td>
<td>327</td>
<td>421</td>
<td>427</td>
<td>327</td>
<td>421</td>
<td>427</td>
<td>221</td>
<td>270</td>
<td>286</td>
</tr>
</tbody>
</table>