he term “optimization” has been used so much, for so many things, that by now it has almost no meaning. Recently, the term “fleet optimization” has been bandied about, with the implication that by installing a lot of computer networking and information management, fleet optimization will be enabled.

While it’s true that fleet optimization may be enabled with networking and information management (IM) infrastructure, relationships and the set of constraints together are called an optimization problem.

This is a somewhat theoretical definition, but it is a very powerful tool. It means that if you are not seeking to minimize or maximize some quantity, then you are not optimizing. This turns out to be important in every optimization problem because of the trade-offs inherent in the set of relationships between variables. The dollar is the conversion factor that points to the sweet spot in the trade-offs.

Regardless of the kind of generation company, all generators want to minimize costs. An extensive set of relationships exists between variables that ultimately resolves all the costs associated with making electricity. An extensive set of constraints also must be satisfied. Fleet optimization is the minimization of cost or maximization of earnings while satisfying all regulatory and business constraints. A fleet may be optimized using mathematical techniques when the relationships between variables and constraints have been defined. A pretty daunting

Figure 1 CYCLING LOAD PROFILE ANALYSIS

Short-term benefit and mid-term cost

<table>
<thead>
<tr>
<th>Starts per year</th>
<th>$/year, millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>400</td>
<td>3</td>
</tr>
<tr>
<td>600</td>
<td>5</td>
</tr>
</tbody>
</table>

- **Op margin improvement**
- **Annualized repair cost**

Mid-term optimum

<table>
<thead>
<tr>
<th>Starts per year</th>
<th>$/year, millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>-2</td>
</tr>
<tr>
<td>400</td>
<td>-1.5</td>
</tr>
<tr>
<td>600</td>
<td>-2</td>
</tr>
</tbody>
</table>

By Tom Snowdon, Emerson Process Management

Fleet Optimization Defined

Optimization is the process of minimizing or maximizing some quantity, given a set of relationships between variables and a set of constraints that must be satisfied. The set of that infrastructure will not be used and useful without a clear understanding and vision of what it means to optimize. The industry is in need of a straightforward definition of fleet optimization and a straightforward perspective on achieving it.
task, but as has been pointed out, every
journey begins with the first step.

Getting Started

In tackling the fleet optimization
problem, it is beneficial to begin with a
bottom-up approach that leverages one
optimization tool that every fleet already
utilizes—the energy management
system (EMS). EMS is at the heart of all
dispatching systems regardless of whether
it’s used in a non-merchant utility fleet or
in a competitive wholesale market.

The EMS uses a rigorous methodology
that guarantees least-cost dispatch of the
fleet, given the relationship between cost
and load for each generating unit and a set
of constraints describing the minimum
load, maximum load, emissions limits
and a host of other constraints applicable
to each unit. The fleet achieves the
minimum cost of production when each
unit has optimized to its minimum cost
and the fleet as a whole can change its
output as required to meet demand while
maintaining a minimized cost dispatch
solution. This requirement to keep the
least-energy cost while changing the
total output of the fleet is the source of
the inherent value of unit operating
flexibility. It is the requirement that
produces value in ancillary services
markets. The first important realization
is that the fleet can be optimized only
when each unit is optimized throughout
its operating range.

The place to start is with individual
unit short-term optimization. This
involves defining all of the relationships
between variables that have an effect on
the total cost of production in terms of
short-term “variable” costs, keeping all
of the constraints in place.

For most units, the commodities that
must be purchased and consumed to
produce electrical energy are:

- Fuel
- NO\textsubscript{x}\textsubscript{2} allowances
- SCR or SNCR reagent
 (ammonia or another reagent)
- SO\textsubscript{2} allowances
- FGDS reagent (limestone, lime and
 so on.)

Some units have variable costs
associated with the purchase of water used
for cooling water and FGDS slurry water.
As mercury limit regulations become
applicable, reagents such as activated
carbon may become a significant variable
cost.

Remember that units in states that
do not have tradable allowances do
have limits of some sort placed on their
emissions. An analysis of the incremental
cost to replace power that cannot be
generated by a unit that is running up
against a limit is required to determine
the virtual value of NO\textsubscript{x} allowances.

An operator or a control system can
make hundreds of adjustments to try
to produce the lowest cost electrical
energy possible. These include damper
adjustments, fan speed adjustments
and burner tilts, among others. In
the language of optimization science,
these are called manipulated variables.

Changes in the manipulated variables
result in changes to dependent variables
such as flue gas oxygen content, steam
temperatures, heat transfer surface
cleanliness and so on. Changes in
dependent variables result in changes to
other dependent variables down a chain
of relationships that ultimately result
in changes to cost of production. Cost
of production represents the ultimate
dependent variable and the objective is
its minimization.

Other disturbance variables such as
ambient temperature, humidity and
water in the fuel also produce effects on
the dependent variables. Those effects
must be characterized to achieve our
optimization objective. The combination
of all the mathematical relationships is
called the objective function.

Many plant performance engineers
who tackled unit optimization before
about 1992 will testify that the multitude
of functional relationships between
variables is bewildering. Fortunately, the
computing power now exists to gather
all the data necessary to characterize the
response of dependent variables to changes
in the manipulated and the disturbance
variables, develop the objective function
as a set of mathematical expressions and
perform the mathematics required to
achieve total cost minimization.

The programs that collect the data and
develop the characterizations are known
as “neural networks” or more generically,
“characterizers.” The programs that solve
for the minimum or maximum given
the characterizations and constraints
are called “solvers.” Combining the
functions of these programs produces
a program called an “optimizer.” The
latest optimizers include the capability
to recognize when something about
the process has changed and develop
new characterizations that are used to
“immunize” the optimization problem
against that change immediately and for
the future.

Short-term Fleet Optimization

Even using state-of-the-art
optimization computer programs,
characterizing a unit and making its
optimizer bullet-proof is not a trivial
exercise. However, it is possible and even
reasonably economical since effective tools
are now available. Having characterized
the settings (the manipulated variables)
required to minimize real-time total
cost of production for each unit, the
characterization of cost as a function
of unit load can be supplied to the fleet
EMS so that it can optimize the fleet.

The cost of fuel across the load range
has traditionally been the only commodity
represented in this characterization.
With the advent of emissions cap-and-
trade systems and the cost of emissions
reduction reagents used in SCRs and
scrubbers, this is no longer adequate.
The sum of the costs of the commodities
mentioned above must be included in the
characterization. The EMS then takes
care of dispatching each unit at the load
necessary to minimize the total real-time
cost of the fleet.

The first challenge in fleet optimization,
as distinct from unit optimization,
is to update the EMS with fresh unit
characterizations whenever appropriate.
This means that each unit optimizer
must be able to recognize when something
about its objective function has changed enough to cause a change
in the unit characterization used by the
EMS. Almost any performance change
of a piece of power plant equipment will
cause the unit’s objective function to
change. Also, any change in the price
of variable-cost commodities causes the
objective function to change. Because
these quantities change frequently, the
EMS must have near real-time updates of
each unit’s cost characteristics in order to
achieve an optimized fleet.

Mid-term Fleet Optimization

Having successfully achieved short-
term fleet optimization, we turn our
attention to optimization in the mid-
term. The goal here is to understand
how short-term optimization or changes
in operating procedures might change a
unit’s objective function for the better, or might change some operating constraint in a way that produces a lower-cost result from the EMS. Sometimes these sorts of changes result in a change in the cost of maintaining a unit.

Operating with a cycling load profile, for instance, can result in added boiler maintenance costs and replacement power costs when compared to those resulting from a base-loaded profile. However, at the same time, operating with a cycling profile can save money during off-peak hours. In Figure 1 on page 116 an analysis of the benefit of cycling during off-peak pricing hours versus the added cost of maintenance shows a maximum net benefit of $2.2 million at 220 cycles a year. Mid-term fleet optimization is an exercise in balancing the economic benefit of the operating procedure change or short-term optimization against any resulting added cost of maintenance and replacement power, to minimize the total cost.

Some companies have rejected short-term optimization, fearing that resulting mid-term costs might become too high. Decisions based on knowledge, or at least reason, are preferable to decisions made on fear. Therefore, companies that have rejected short-term optimization on this basis are well advised to re-examine that decision.

The major difficulty with mid-term optimization is that it takes time to measure the rate at which maintenance costs increase as a result of the changed operating procedures or short-term optimization. The key is to start with a well-thought-out hypothetical characterization to use in the objective function. As time progresses, measurements of equipment degradation are taken and used to adjust the hypothetical characterization. This makes it progressively more representative of reality. Such a process is the essence of a continuous improvement program, approached from a perspective that combines business and engineering sciences. It is applicable to any number of operations vs. maintenance trade-off situations including reduction of minimum load, unit load ramp rate and cycling operations.

With a clear understanding of mid-term cost characteristics, the variable cost curves or constraints of each unit in a fleet are adjusted to reflect both short and mid-term costs, ensuring the appropriate dispatch to minimize fleet cost of production over the midterm. This addresses one of the most difficult issues between plant management and dispatch or trading management. Commonly, either the plant gives the dispatcher whatever he wants and then blames “erratic dispatch” for a high forced-outage rate, or the plant constrains dispatch in an effort to minimize mid-term costs, but leaves big money on the table in terms of the ability to minimize fleet-wide aggregate cost of production. Mid-term fleet optimization offers the mechanism through which the lowest total cost set of constraints and operating settings can be approached.

Optimization Through Investment

The next essential component to consider in a continuously improving optimization program is investment in the existing units with the goal of further reducing costs while satisfying all regulatory and business constraints. In other words, finding ways of changing the objective functions of the existing units by investing in new equipment or control software that enables the optimizers to resolve to an even lower total cost of production.

A case can be made for using optimization as a means for determining the number and nature of investment projects that should be implemented on the existing units of a fleet. The optimization problem uses investment in each project as the manipulated variable and maximized earnings as the objective. The problem solution indicates the level of investment necessary to maximize earnings; in essence pinpointing the investment level where further investment becomes dilutive to earnings.

Formal fleet optimization is best accomplished using a rigorous mathematical construct that minimizes the cost of production, maximizes earnings and satisfies all regulatory and business constraints. The form of the mathematical construct is well-established and useful. Its application is best accomplished from a bottom-up perspective starting with short-term unit optimization, moving to short-term and mid-term fleet optimization and finally optimization through investment.

Author: Tom Snowdon is plant performance consultant at Emerson Process Management Power & Water Solutions. For most of his 25-year career he has been involved in plant operation, particularly in the areas of engineering, plant performance and O&M. Before joining Emerson in 2004, he was director of operations planning for a major power generator.