Maximize Your Investment!

AMS Training and Certification
Educational Services

Updated to reflect Emerson’s new AMS portfolio.
Emerson’s AMS brand of asset monitoring and health analysis solutions helps you proactively manage your assets to improve reliability. This includes the solutions previously known as CSI.

Companies today rely on fewer people to do more work. That’s why the need for training is more critical than ever to achieve and maintain cost-effective maintenance programs.

Emerson helps maximize the return on your investment in technology and people. Every year, more than 1,500 individuals attend courses on machinery health management across the country. Our instructors share their own real-world experiences and guide classes through hands-on exercises that reinforce the lesson.

Emerson’s strategy for understanding machinery health includes training courses designed to help you start up and maintain your mechanical equipment. Our goal is to provide you with the knowledge to keep your plant running smoothly.

- Defined skill paths guide you to expertise across multiple technologies.
- Lab work provides hands-on opportunity in each course.
- Certification testing is available for most technologies.
- Additional instruction is available through books, charts, pocket guides, and eLearning courses.
Pick the curriculum of your choice or let us help guide your technicians on a path to certification. All training uses the latest equipment.

<table>
<thead>
<tr>
<th>Category I Vibration Analyst Path</th>
<th>Category II Vibration Analyst Path</th>
<th>Category III Vibration Analyst Path</th>
<th>Category IV Vibration Analyst Path</th>
<th>Lubrication Analyst Path</th>
<th>Online Monitoring Path</th>
<th>Complementary PDM Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of Vibration Analysis (course 2069)</td>
<td>Intermediate AMS Machinery Manager Software (course 2074)</td>
<td>Advanced AMS Machinery Manager Software (course 2070)</td>
<td>Basic Rotor Dynamic Analysis for Vibration Analysts (course 2034)</td>
<td>Lubrication Level 1 and Level 2 with certification exam (course 2082)</td>
<td>Online Prediction Operation & Maintenance (course 2088)</td>
<td>Balancing Theory and Applications with CSI 2130 (course 2015) or with AMS 2140 (course 2016)</td>
</tr>
<tr>
<td>Fundamentals of CSI 2130 (course 2072) or AMS 2140 (course 2076)</td>
<td>Intermediate Vibration Analysis (course 2032) & Category II exam (course 2022EX)</td>
<td>Advanced Vibration Analysis (course 2033) & Category III exam (course 2023EX)</td>
<td>Advanced Instrumentation & Analysis Techniques (course 2044)</td>
<td>Wear Debris Analysis Workshop (course 2084)</td>
<td>Online Protection Operation & Maintenance (course 2080)</td>
<td>Laser Alignment with CSI 2130 (course 2092) or AMS 2140 (course 2096)</td>
</tr>
<tr>
<td>Introduction to AMS Machinery Manager Software (course 2068)</td>
<td>Introduction to Vibration Analysis (course 2091) or AMS 2140 (course 2094)</td>
<td>Introduction to Vibration Analysis (course 2091) or AMS 2140 (course 2094)</td>
<td>Highly recommended optional course: PeakVue Mystery & Autocorrelation (course 2035) and AMS Machinery Manager Database Optimization Workshop (course 2003)</td>
<td>Category IV Exam (course 2024EX)</td>
<td>OilView for AMS Machinery Manager Software (course 2083)</td>
<td>AMS 6500 ATG Operation and Maintenance (course 2086)</td>
</tr>
<tr>
<td>Basic Vibration Analysis (course 2031) & Category I Exam (course 2021EX)</td>
<td>Highly recommended optional courses: CSI 2130 Advanced Functions (course 2091) or AMS 2140 (course 2094)</td>
<td>Highly recommended optional course: PeakVue Mystery & Autocorrelation (course 2035) and AMS Machinery Manager Database Optimization Workshop (course 2003)</td>
<td>Category IV Exam (course 2024EX)</td>
<td>OilView for AMS Machinery Manager Software (course 2083)</td>
<td>Category IV Exam (course 2024EX)</td>
<td>AMS 6500 ATG Operation and Maintenance (course 2086)</td>
</tr>
<tr>
<td>Lubrication Analyst Path explores lubrication analysis and its importance to a complete reliability program. Lubrication analysis is often the easiest way to diagnose common machine problems.</td>
<td>Lubrication Analyst Path explores lubrication analysis and its importance to a complete reliability program. Lubrication analysis is often the easiest way to diagnose common machine problems.</td>
<td>Lubrication Analyst Path explores lubrication analysis and its importance to a complete reliability program. Lubrication analysis is often the easiest way to diagnose common machine problems.</td>
<td>Lubrication Analyst Path explores lubrication analysis and its importance to a complete reliability program. Lubrication analysis is often the easiest way to diagnose common machine problems.</td>
<td>Lubrication Analyst Path explores lubrication analysis and its importance to a complete reliability program. Lubrication analysis is often the easiest way to diagnose common machine problems.</td>
<td>Lubrication Analyst Path explores lubrication analysis and its importance to a complete reliability program. Lubrication analysis is often the easiest way to diagnose common machine problems.</td>
<td>Lubrication Analyst Path explores lubrication analysis and its importance to a complete reliability program. Lubrication analysis is often the easiest way to diagnose common machine problems.</td>
</tr>
<tr>
<td>Online Monitoring Path is for students with the online monitoring systems, including AMS 2600, AMS 6500 and AMS 6500 ATG. Explore the benefits of continuous monitoring of critical machinery and how to integrate with operational plant control architecture.</td>
<td>Online Monitoring Path is for students with the online monitoring systems, including AMS 2600, AMS 6500 and AMS 6500 ATG. Explore the benefits of continuous monitoring of critical machinery and how to integrate with operational plant control architecture.</td>
<td>Online Monitoring Path is for students with the online monitoring systems, including AMS 2600, AMS 6500 and AMS 6500 ATG. Explore the benefits of continuous monitoring of critical machinery and how to integrate with operational plant control architecture.</td>
<td>Online Monitoring Path is for students with the online monitoring systems, including AMS 2600, AMS 6500 and AMS 6500 ATG. Explore the benefits of continuous monitoring of critical machinery and how to integrate with operational plant control architecture.</td>
<td>Online Monitoring Path is for students with the online monitoring systems, including AMS 2600, AMS 6500 and AMS 6500 ATG. Explore the benefits of continuous monitoring of critical machinery and how to integrate with operational plant control architecture.</td>
<td>Online Monitoring Path is for students with the online monitoring systems, including AMS 2600, AMS 6500 and AMS 6500 ATG. Explore the benefits of continuous monitoring of critical machinery and how to integrate with operational plant control architecture.</td>
<td>Online Monitoring Path is for students with the online monitoring systems, including AMS 2600, AMS 6500 and AMS 6500 ATG. Explore the benefits of continuous monitoring of critical machinery and how to integrate with operational plant control architecture.</td>
</tr>
</tbody>
</table>

Category I Vibration Analyst Path introduces students with no prior experience in vibration monitoring and analysis to the theories of vibration data and basic operation of the CSI 2130 or AMS 2140 Machinery Health Analyzer and AMS Machinery Health Manager.

Category II Vibration Analyst Path is for experienced students who are familiar with vibration data collection and want to advance their knowledge and ability to diagnose machinery issues.

Category III Analyst Path teaches students the advanced power of PeakVue™ technology and root causes of machine problems.

Category IV Exam (course 2024EX)
Educational Services

Maximize Your Investment!

PLANTWEB™ OPTICS

INTRODUCTION TO PLANTWEB™ OPTICS (CEUS: 2.1) COURSE# 2040

3 DAYS

This 3-day course is designed for new users of the Plantweb Optics software, and is based on the current software release. Students will learn how to navigate through the software, manage their databases by adding locations and assets using the Plantweb Optics Asset Explorer utility. The AMS 9420 is used to show the user how to bind assets and map vibration measurement points for data collection. Collected data will be analyzed using the AMS Machine Works’ Vibration Analyzer application.

Students will also learn how to navigate the Plantweb Optics Asset Viewer utility used on PC/laptop and mobile device applications to receive real-time information about equipment that is relevant to their job.

VIBRATION COURSES

FUNDAMENTALS OF VIBRATION (CEUS: 1.4) COURSE 2069

2 DAYS

This vibration training course is for those with no prior experience in vibration analysis. The class prepares participants for the Basic Vibration Analysis course. Students learn about causes of vibration and methods of measurement. Although the training course does not provide instruction on Emerson’s AMS technologies, the course will use them to demonstrate vibration principles.

Topics covered include:
- Introduction to vibration
- Components of a predictive maintenance program
- Basic fault identification
- Vibratory fault characteristics and patterns
- Information to help start a vibration program

Prerequisites: Computer experience with the Windows operating system and some vibration analysis experience are recommended.

Topics covered include:
- Basic Navigation
- Database Building using the Asset Explorer utility
 - Mapping and Binding Assets to the AMS 9420
- Asset Viewer utility
- User Manager (Setting users/Permissions/Tokens for the App)
- Asset Viewer utility Mobile App
- AMS Machine Works

FUNDAMENTALS OF VIBRATION E-LEARNING (CEUS: 0.2) E2069

3 MONTHS UNLIMITED ACCESS FROM ENROLLMENT DATE

This e-course provides instruction to individuals with no prior experience in vibration analysis. The course introduces the technology of vibration analysis by explaining what vibration analysis is and how it plays a critical role in any predictive maintenance program. Students are led through a self-paced discussion on how vibration analysis works with many examples of the types of faults that can be detected. Students will also gain an understanding of where and how vibration is measured with an emphasis on good data collection techniques. Students will learn important terminology that will be critical to their success as they progress to the next level of training in vibration analysis; Emerson’s Basic Vibration Analysis course.

Topics to be covered include:
- Fundamentals of vibration
- How is vibration measured?
- Understanding the vibration signal
- Vibration units
- Analysis parameters
- Data analysis: Where to begin?
BASIC VIBRATION ANALYSIS
CATEGORY I COMPLIANT
(CEU’S: 2.8) COURSE 2031
4 DAYS

This course complies with Category I Vibration Analyst per ISO standard 18436-2: Vibration condition monitoring and diagnostics.

This course is intended to enable students to operate single channel machinery analyzers, dump and load routes, recognize the difference between good and bad data, and compare vibration measurements against pre-established alert settings.

Although this training course is not product specific, students will use Emerson’s AMS technologies for demonstration purposes. The class shows the student how to use the vibration analyzer in conjunction with Emerson’s AMS Machinery Manager software to analyze basic vibration defects.

Prerequisites: Fundamentals of Vibration or up to six months of vibration experience is recommended.

Topics covered include:
- Introduction to Vibration
- Measurement Setup
- Data collection and analysis
- Basic analyzer functions
- Recognition of machine defects, including:
 - Imbalance
 - Shaft misalignment
 - Looseness
 - Rolling element bearing defects
 - Gear problems
 - Resonance
 - Belt Defects
 - AC Induction Motors
 - Journal Bearings
 - Rotating Equipment

INTERMEDIATE VIBRATION ANALYSIS
CATEGORY II COMPLIANT
(CEU’S: 2.8) COURSE 2032
4 DAYS

This course complies with Category II Vibration Analyst per ISO standard 18436-2: Vibration condition monitoring and diagnostics.

In addition to topics covered in this course, Category II vibration analysts are expected to select appropriate vibration measurement techniques, set up instruments for basic data collection, perform basic spectrum analysis and maintain database. Analysts will perform a variety of standard tests, evaluate results, and recommend corrective actions accordingly.

This course also features Emerson machinery health analyzers in conjunction with advanced machinery analysis techniques. Discussions of case histories on machinery faults are one of the focal points of this course.

Prerequisites: Basic Vibration Analysis course and a cumulative 18 months of field experience are recommended.

Topics covered include:
- Digital Signal Processing
- Phase Analysis
- Single Plane Field Balancing
- PeakVue
- Recognition of Machine Defects including:
 - Imbalance
 - Misalignment
 - Bent Shaft
 - Soft Foot
 - Antifriction and Journal Bearings
 - Looseness
 - Resonance
 - Electrical Defects
 - Gearboxes
 - Belts
ADVANCED VIBRATION ANALYSIS
CATEGORY III COMPLIANT
(CEU’S: 2.8) COURSE 2033
4 DAYS
This course complies with Category III Vibration Analyst per ISO standard 18436-2: Vibration condition monitoring and diagnostics.

This course expands on the subjects covered in the Intermediate Vibration course (Category II), especially in the areas of fault analysis and corrective actions. The class details advanced analysis techniques. The dual channel machinery health analyzer features are introduced, including the use of AMS Machinery Manager to set up the advanced analyzer features and powerful downloadable programs for data collection.

Transient machinery health analyzer capabilities are covered, including long-term time waveform. The class covers advanced resonance detection using a variety of testing methods, such as triggered data collection.

Prerequisites: Intermediate Vibration Analysis course and a cumulative three years of field experience are recommended.

Topics covered include:
- Digital Signal Processing
- PeakVue
- Demodulation
- Data Averaging
- Slow Speed Technology
- Zoom Analysis
- Accelerometers
- Resonance
- Impact Testing
- Time Waveform Analysis
- Phase Analysis
- Modal Analysis
- Operational Deflection Shape (ODS)

BASIC ROTOR DYNAMIC ANALYSIS FOR VIBRATION ANALYSTS
(CEU’S: 4.0) COURSE# 2034
This course is part one of the two courses required for the Category IV examination.

This 5-day class is designed to allow the students to better understand rotor dynamics and their options when facing a problem piece of equipment that is running at or close to its critical speed. This course will provide vibration analysts a road map to develop a plan to perform basic calculations to estimate the critical speeds of different types of machinery. Lab calculations will be performed by the students throughout the course to reinforce topics learned in the class. These techniques can be applied to all types of rotating machinery using either journal bearings or rolling element bearings.

The students will be able to calculate stiffness for rolling element bearings and journal bearings using the provided equations. Tables for viscosities, journal bearing damping and stiffness will be supplied, along with other materials required for a critical speed model. An extensive list of required equations for calculation of natural frequencies will also be provided. The single degree of freedom model will also be taught.

Upon completion of the course, students will have the skills to perform a hand calculation to accurately estimate the critical speed of a shaft. Additionally, the students will be able to develop the necessary parameters for the development of a computer rotor dynamic model.

Topics to be covered:
- Introduction to Basic Rotor Dynamics
- Natural Frequencies
- Free versus Forced Vibrations
- Stiffness
- Damping
- Natural Frequency Equations
- Forced Vibrations
- Amplification (Q) Factor calculation Methods
- Types of Journal Bearings
- Center Hung Rotors versus Overhung Rotors
- Rigid Rotors versus Flexible Rotors
- Subharmonic Resonance
- Shaft Instabilities
- Cracked Shafts
- Required Information for Critical Speed Analysis
- Field Testing for Modeling Requirements
- Rotor Modeling
- Shaft Hand Calculations
- Computer Modeling
ADVANCED INSTRUMENTATION & ANALYSIS TECHNIQUES
(CEU’S: 3.2) COURSE# 2044

4 DAYS
This course is part two of the two courses required for the Category IV examination.
This 4-day class will provide the attendee with a solid background on how a data collector, FFT analyzer, functions. It will provide necessary information on how the FTT process works and how the end user can use the instrument to its’ full capabilities. Students will learn the strengths and limitations of the modern data (FFT) collector.
Demonstrations will be performed to reinforce training topics. Lab calculations will be performed by the students throughout the course to reinforce topics learned in the class.

Topics to be covered:
- The FFT Analyzer
 - Resolution
 - Dynamic Range
 - Window Effects
 - Overlap
 - Filtering
 - Accuracy of the amplitudes and frequencies versus window effects
- Averaging
- Modulation
- Beats
- Multi-Channel Analysis
 - Transient Data Analysis
 - Nyquist Plots
 - Bode Plots
 - Waterfall Plots
- Impact Testing
 - Natural Frequencies
 - Modal Analysis

PEAKVUE™ MYSTERY AND AUTOCORRELATION
(CEU’S: 2.1) COURSE 2035

3 DAYS
The combination of these courses provides insight into advanced functionality of Emerson’s unique PeakVue technology and autocorrelation.
PeakVue technology provides early, accurate and trendable roller bearing and gearbox anomaly detection unmatched by all other bearing health tools on the market. PeakVue’s method of processing preserves the peak amplitude of the stress wave emitted from a bearing or gear defect.
Preserving this peak amplitude allows trendable bearing health diagnostics.
The autocorrelation section of the course will teach the power of the autocorrelation coefficient function for the analysis of vibration induced time waveform data. The autocorrelation function data generally are computed from the same time waveform data used to compute the spectrum. The strength of autocorrelation data is complementary to the strength of spectral data.
Both courses make use of case studies from real-life examples of common faults and live demonstrations illustrating specific mounting procedures. The difference between PeakVue techniques and demodulation will also be demonstrated.
Prerequisites: Students should be familiar with vibration data collection and analysis techniques and the use of AMS Machinery Manager.
Topics covered include:
- Proper PeakVue set-up for all speeds (as low as 1 rpm)
- Sensor selection and sensor mounting
- Setting alarm levels and choosing trend parameters
- Analyzing PeakVue spectra and waveforms
- Uses of the circular waveform plot
- Autocorrelation coefficient and how it relates to time waveform and spectral data
- Unique patterns of autocorrelation function data for certain classes of bearing faults, gearing faults, etc.
INTRODUCTION TO WINDOWS-BASED ODS/MODAL (CEUS: 2.8) COURSE 2039
3 DAYS
This 4-day course is designed to teach Operating Deflection Shape (ODS) and Modal Analysis software. This course uses the CSI 2130 or AMS 2140 single- and dual-channel Machinery Health Analyzers to teach the practical concepts of ODS/Modal measurement techniques and display options. The modal course is introductory and will not cover theory or mathematical background.
Prerequisites: Knowledge of dual-channel analyzers and at least one year of full-time vibration analysis experience is recommended.
Topics covered include:
- Building of the wireframe model
- Measurement considerations
- Collecting ODS data with and without a tachometer reference
- Utilizing an impact hammer with the CSI 2130 or AMS 2140 Advanced Dual-Channel DLP
- Interpretation of results

ISO COMPLIANT VIBRATION CERTIFICATION EXAM
CATEGORY I EXAM COURSE 2021EX (AVAILABLE AT THE END OF COURSE 2031)
TEST FORMAT: WRITTEN EXAM
DURATION: 2 HOURS
PASSING GRADE: 70%
Eligibility for Examination:
- Minimum Duration of Training (hours): 30
- Minimum Duration of Cumulated Experience (months): 6

CATEGORY II EXAM COURSE 2022EX (AVAILABLE AT THE END OF COURSE 2032)
TEST FORMAT: WRITTEN EXAM
DURATION: 3 HOURS
PASSING GRADE: 70%
Eligibility for Examination:
- Minimum Duration of Training (hours): Category I + 38
- Minimum Duration of Cumulated Experience (months): 18
- Passing Category I exam is NOT a prerequisite for taking Category II exam

CATEGORY III EXAM COURSE 2023EX (AVAILABLE AT THE END OF COURSE 2033)
TEST FORMAT: WRITTEN EXAM
DURATION: 4 HOURS
PASSING GRADE: 70%
Eligibility for Examination:
- Minimum Duration of Training (hours): Category II + 38
- Minimum Duration of Cumulated Experience (months): 36
- Passed the Category II exam.

CATEGORY IV EXAM COURSE# 2024EX (AVAILABLE AT THE END OF COURSE# 2044)
TEST FORMAT: WRITTEN EXAM
DURATION: 5 HOURS
PASSING GRADE: 70%
Eligibility for Examination:
- Minimum Duration of Training (hours): Category III + 64
- Minimum Duration of Cumulated Experience (months): 60
- Has taken and passed the Category III exam
MACHINERY HEALTH ANALYZER COURSES

FUNDAMENTALS OF CSI 2130
(CEU’S: 1.4) COURSE 2072
2 DAYS
This hands-on course focuses on the basic operation of the CSI 2130 Machinery Health Analyzer. Students will collect data from machines similar to those found in plants. The course was designed for students with little or no experience with CSI analyzers, but who are experienced in the field of vibration data collection and analysis. If you also need to learn vibration analysis skills, we recommend taking the Fundamentals of Vibration course.

Prerequisites: Understanding of vibration analysis.

Topics covered include:
- Analyzer/computer communication
- Predefined route data collection
- Job data collection and set up
- Monitor mode measurements
- Peak and phase measurements

Note: You may take this course with Fundamentals of Vibration as a four-day course.

FUNDAMENTALS OF AMS 2140
(CEU’S: 1.4) COURSE 2076
2 DAYS
Specifically for users of the AMS 2140 Machinery Health Analyzer. See course description, prerequisites, and topics as listed for the Fundamentals of CSI 2130 course.

E-LEARNING: FUNDAMENTALS OF CSI 2130
COURSE E2130
3 MONTHS (UNLIMITED ACCESS)
The Fundamentals of the CSI 2130 eLearning course is designed to provide you with the tools you need to perform data collection using the CSI 2130. This course provides guided demonstrations through the processes of installing necessary drivers, uploading updated firmware, and loading updated or newly purchased programs necessary for data collection.

The course leads you through a basic introduction of the analyzer, including panel descriptions and reviews of the purpose and function of all connectors, ports, slots, keys, indicators, and buttons. The user learns how to load a pre-defined route into the analyzer, take general and specialized data, and then load data back into a computer for further diagnostic analysis.

- Analyzer-computer communication
- Predefined route data collection
- Job data collection and setup
- Monitor mode measurements
- Peak and phase measurements

E-LEARNING FUNDAMENTALS OF THE AMS 2140
(CEU’S: 0.6) COURSE E2140
3 MONTHS (UNLIMITED ACCESS)
Specifically for users of the AMS 2140 Machinery Health Analyzer. See course description and topics as listed for the eLearning CSI 2130 course.

CSI 2130 ADVANCED FUNCTIONS
(CEU’S: 2.1) COURSE 2091
3 DAYS
This course is intended for students with single-channel vibration analysis experience and little or no multi-channel experience. It covers advanced signal processing using PeakVue technology for slow-speed analysis, transient capabilities, coherence and cross channel phase, Operating Deflection Shapes (ODS), Modal analysis, and other advanced techniques.

Prerequisites: Single-channel vibration analysis experience is required.

Additional topics covered include:
- Run Analyze and Advanced Analyze
- Averaging Modes
- Phase
- Impact Testing
- Zoom analysis, cascade, and overall

AMS 2140 ADVANCED FUNCTIONS
(CEU’S: 2.1) COURSE 2094
3 DAYS
Specifically for users of the AMS 2140 Machinery Health Analyzer. See course description, prerequisites, and topics as listed for the Advanced CSI 2130 course.
AMS MACHINERY MANAGER COURSES

These courses are based on the current mass release of the AMS Machinery Manager software. Students can call to verify if the course is appropriate to the version they are using. Subject matter for infrared thermography, motor analysis, online monitoring, oil analysis, and wireless technology is covered in other course offerings and is not part of AMS Machinery Manager course materials.

INTRODUCTION TO AMS MACHINERY MANAGER (CEU’S: 2.8) COURSE 2068
4 DAYS

This course is designed for the new users of AMS Machinery Manager. Students learn methods of database building and vital features of route creation, such as collecting reference data, analyzer/computer communication, and the basic concepts of analysis parameter sets, alarm limit sets, and fault frequency sets. An Emerson machinery health analyzer will be used to load routes and collect data on lab machinery for basic vibration analysis.

Prerequisites: Computer experience with the Windows operating system and the Basic Vibration Analysis course are recommended.

Topics covered include:
- RBMwizard
- Database Setup
- Route Management and Data Transfer
- Reports
- Vibration Analysis module

INTERMEDIATE AMS MACHINERY MANAGER (CEU'S: 2.8) COURSE 2074
4 DAYS

This course is designed for students who have a basic understanding of AMS Machinery Manager. Students expand their knowledge of machinery analysis techniques, focusing on analysis and reporting using vibration analysis, exception reporting, PeakVue measurements and the full version of RBMview.

Prerequisites: Introduction to AMS Machinery Manager course, Basic Vibration Analysis course, or 6 months vibration analysis experience is recommended.

Topics covered include:
- Exception reporting and analysis
- PeakVue technology
- Vibration Analysis module
- Nspectcr
- RBMview
- Data Transfer
- Route Modification
ADVANCED AMS MACHINERY MANAGER
(CEU’S: 2.8) COURSE 2070
4 DAYS
This course expands students’ understanding of AMS Machinery Manager. Gain hands-on experience through the creation of a class database with example machines and collection of vibration data for problem analysis and reporting. Students will learn to use the advanced analysis and reporting functions of AMS Machinery Manager.

Prerequisites: Intermediate AMS Machinery Manager course, Intermediate Vibration course, or one year vibration analysis experience is recommended.

Topics covered include:
- Advanced analysis features in Vibration Analysis Module
- Problem reporting
- Status-at-a-glance operation and reporting
- Nspectr® reporting techniques and modification/addition of set up information
- RBMwizard reporting techniques and modification/addition of set up information
- Advanced database editing

COURSE# 2070C: AUTOSTAT FOR AMS MACHINERY MANAGER
(CEU’S: 1.4)
AustoStat is included in the standard curriculum of the 4-day Advanced AMS Machinery Manager course (course # 2070). This 2-day session only covers AutoStat in the AMS Machinery Manager software.

Alarms are an important part of any analysis program. Properly setting alarms allows the user to quickly identify an abnormal machine condition and reduces time spent analyzing machines that are running in acceptable or “normal” condition.

AMS Machinery Manager provides the user the ability to create up to 12 parameter bands with alarms in addition to the Overall value. Calculating ideal alarm values for these parameters can be very complicated. Autostat uses statistical analysis to provide limit values for the individual parameter bands by analyzing the data associated with similar pieces of equipment.

This two day session is designed for students who have a basic understanding of AMS Machinery Manager and will guide these user’s through the process of using Autostat for the generation of both Analysis Parameter sets and Statistical narrowband Envelope generation.

Topics covered will include:
- Creating Analysis Groups
- Modifying Parameter Band Alarms
- Creating New Alarm Limits
- Parameter band Alarms versus Narrow Band Alarms
- Creating Statistical Envelopes

AMS MACHINERY MANAGER DATABASE OPTIMIZATION WORKSHOP
(CEUS: 2.8)
COURSE E# 2003
4 DAYS
This 4-day course is the fourth in our series of AMS Machinery Manager courses. This course will instruct experienced users on database optimization techniques using an existing database and enhancing it by calculating and implementing improved Analysis Parameter (AP) sets. Students will learn how to identify when an AP set needs to be adjusted and how to make the adjustments effectively. This course will also focus on updating and optimizing alarm sets. Applications will include Vibration Analysis tab, Database Setup, Database Utility, Stored Data Management and Autostat.

Prerequisites: Computer experience with the Windows operating system and some vibration analysis experience are recommended.

Topics covered include:
- Understanding the Database
- Managing Invalid Data
- Analysis Parameter Set Review
- Electric Motor Points
- Manual Alarm Adjustment
- AutoStat Alarm Adjustment
- Warning Alarms

This course is based on the current mass release of the AMS Machinery Manager software. Students may call to verify if the course is appropriate to the version they are using.

INTRODUCTION TO AMS MACHINERY MANAGER VIRTUAL CLASSROOM
(CEUS: 2.8) COURSE 2068V
4 DAYS
Designed for the new users of AMS Machinery Manager. Students learn methods of database building and vital features of route creation such as collecting reference data, analyzer/computer communication, and the basic concepts of Analysis Parameter Sets, Alarm Limit Sets, and Fault Frequency Sets. A machinery analyzer is used to demo the process of loading routes for data collection. This course will also include a basic overview of the vibration plotting application and reporting functions.

Prerequisites: Computer experience with the Windows operating system and some vibration analysis experience are recommended.

Topics covered include:
- RBMwizard
- Database Setup
- Route Management and Data Transfer
- Reports
- Vibration Analysis module
INTERMEDIATE AMS MACHINERY MANAGER
VIRTUAL CLASSROOM
(CEUS: 2.8) COURSE 2074V
4 DAYS

Teaches some of the more advanced machinery analysis techniques available in AMS Machinery Manager Software. This course focuses on analysis and reporting with the use of Vibration Analysis module, Reporting module, Exception Analysis, PeakVue technology and a full version of RBMview.

Prerequisites: Introduction to AMS Machinery Manager (course # 2068), Basic Vibration Analysis course or 6 months vibration analysis experience are recommended.

Topics covered include:
- Exception reporting and analysis
- PeakVue technology
- Vibration Analysis module
- Nspector
- RBMview
- Data Transfer
- Route Modification

ADVANCED AMS MACHINERY MANAGER
VIRTUAL CLASSROOM
(CEUS: 2.8) COURSE 2070V
4 DAYS

The third in our series of AMS Machinery Manager courses. Its focus is on the management, modification and optimization of the existing AMS Machinery Manager database. Students will learn how to modify existing Wizard configurations, add and edit users, statistically adjust alert and fault levels, make global database changes, and many other very useful database functions. This course is intended for the advanced user who has already created a machinery database and has been acquiring, storing and analyzing data for six months or more.

Prerequisites: Intermediate Vibration (course #2032) or one year vibration analysis experience are recommended. Experience with the Windows operating system is recommended.

Topics covered include:
- Advanced analysis features in Vibration Analysis Module
- Problem reporting
- Status-at-a-Glance operation and reporting
- Nspector
- Wizard - reporting techniques and modification/addition of setup information
- Austostat
- Database Utility
- Database Zip Utility
- Network Administration
- Data Locker Management

COURSE 2070CV:
AUTOSTAT FOR AMS MACHINERY MANAGER, VIRTUAL CLASSROOM
(CEUS: 1.4) COURSE 2070CV
2 DAYS

AutoStat is included in the standard curriculum of the 4-day Advanced AMS Machinery Manager course (course # 2070). This 2-day session only covers AutoStat in the AMS Machinery Manager software.

Alarms are an important part of any analysis program. Properly setting alarms allows the user to quickly identify an abnormal machine condition and reduces time spent analyzing machines that are running in acceptable or “normal” condition.

AMS Machinery Manager provides the user the ability to create up to 12 parameter bands with alarms in addition to the Overall value. Calculating ideal alarm values for these parameters can be very complicated. Autostat uses statistical analysis to provide limit values for the individual parameter bands by analyzing the data associated with similar pieces of equipment.

This two day session is designed for students who have a basic understanding of AMS Machinery Manager and will guide these user’s through the process of using Autostat for the generation of both Analysis Parameter sets and Statistical narrowband Envelope generation.

Topics covered include:
- Creating Analysis Groups
- Modifying Parameter Band Alarms
- Creating New Alarm Limits
- Parameter band Alarms versus Narrow Band Alarms
- Creating Statistical Envelopes
BLENDED LEARNING

COURSE # 2008B: AMS MACHINERY MANAGER: VIBRATION ANALYSIS WORKSHOP FOR THE PDM PROFESSIONAL
(CEU’S: 1.4)

The purpose of this workshop is to provide the vibration analysts with an interactive learning environment that enhances their understanding of the features of the Vibration Analysis program using Emerson’s AMS Machinery Manager Software. This workshop was designed as a self-paced blended learning training experience. The student will be provided with a workbook, access to a Virtual Training Computer and an eLearning module.

The workbook contains eleven topical exercises for use with the Vibration Analysis tab in AMS Machinery Manager Software. The student will also be given a link to a Virtual Training Computer to complete the exercises using AMS Machinery Manager Software. If there are questions on how to complete steps in the exercise, an eLearning module will provide assistance to the student. If questions cannot be answered with the assistance of the eLearning module, students will also be able to email questions to an instructor at mh.m.training@emerson.com. Instructors will respond to students as quickly as possible.

Objectives: Provide the student with self-paced exercises to advance his/her knowledge and proficiency with the use of AMS Machinery Manager Vibration Analysis tools.

Prerequisite: Some knowledge of AMS Machinery Manager Software and basic vibration analysis is recommended.

ONLINE TECHNOLOGIES COURSES

ONLINE PROTECTION, OPERATIONS AND MAINTENANCE
(CEU’S: 2.1) COURSE 2080
3 DAYS

This course is a hands-on training for anyone involved with operating and maintaining an AMS 6500 system. Workshops include practice with live monitors and racks.

Topics covered include:
- Overview of hardware components
- Rack configuration
- Operator display software
- Data acquisition software
- Interface with the AMS online prediction system
- System troubleshooting and maintenance

ONLINE PREDICTION, OPERATIONS AND MAINTENANCE
(CEU’S: 2.8) COURSE 2088
4 DAYS

This course is best suited for those who have an AMS 2600 or AMS 6500 system installed and operational prior to attending the course.

Topics covered include:
- Vibration basics and terminology
- System overview: functionality and system components
- Online Watch — used to monitor the system daily
- Online Config — adding a new machine to an existing database
- Vibration analysis module — spectrums, waveforms, and trend data
- PeakVue processing
- Review of databases

Prerequisites: Knowledge of vibration and industrial machinery is helpful, but not necessary.

The course is designed for:
- System operators or analysts
- Operations personnel using the AMS 6500 or AMS 2600 daily.
- Those responsible for configuring databases and analyzing data
AMS 6300 SIS OPERATIONS AND MAINTENANCE (CEU’S: 2.1) COURSE 2087

This three day course is designed for System Users, Projects, Services and Support personnel for Emerson and its representatives. This course offers a Q&A section, practical exercises and troubleshooting.

Prerequisites: Participants should be familiar with vibration analysis, have basic computer skills and have a basic knowledge of electrical test equipment.

Topics covered include:
- How to implement the AMS 6300, and use the manuals for integration
- System safety philosophy
- A basic explanation about SIL (why is it done, what are the reasons for doing it, history, what do the different safety related numbers mean)
- A description of:
 - HW Components
 - Sensors
 - Configuration SW
 - Different System Variations
 - Measurement and Safety Functionalities
 - System Configuration
 - Sensor and System Installation
 - Implemented System and Safety Routines
 - In & Output Functionalities

AMS 6500 ATG OPERATION AND MAINTENANCE (CEU’S: 2.1) COURSE 2086

This 3-day hands-on training course is for any user or analyst involved with operating and maintaining a AMS 6500 ATG Protection System. Workshops include practice with module and software configuration.

Topics covered include:
- Overview of hardware and modules
- Rack and module configuration
- Machine Studio software functionality, navigation and configuration
- System troubleshooting and maintenance
- ATG View App

COURSE# 2089: TURBOMACHINERY DIAGNOSTICS (CEU’S: 2.8)

This 4-day class covers details of the operation, maintenance, management, diagnostics and design of rotating machinery using vibration information. Emphasis is placed on interpreting start-up/shutdown and steady state vibration data plots, understanding the sources of rotating machinery vibration and recognizing common machinery malfunctions.

This seminar makes extensive use of full featured field diagnostic equipment to reinforce lecture topics. This class is designed for engineers, supervisors, managers, and rotating equipment support professionals responsible for design, operation, and maintenance of rotating equipment. Case histories will be presented to reinforce class topics and facilitate class discussion.

MACHINERY HEALTH TRANSMITTERS

WIRELESS SELF-ORGANIZING NETWORK (CEU’s: 1.4) Course 2375

2 days

This course is intended for technicians, engineers and other plant personnel who need to know how to design, install, set up, configure, maintain, and troubleshoot wireless Self networks. This course explains how wireless networks function and emphasizes planning, proper installation and startup, configuration, maintenance, and integration. The course uses lectures and labs to maximize the hands-on experience.

Topics covered include:
- Correct installation of the Smart Wireless Gateway
- Proper installation and configuration of wireless transmitters (including the AMS 9420 Wireless Vibration Transmitter)
- Proper integration of host interfaces to the Smart Wireless Gateway

Prerequisites: Some experience in networks and host integration would be helpful.
Educational Services

AMS 9420 OPERATIONS & MAINTENANCE
(CEUs: 1.1) Course 2025

This 1.5-day course is intended for technicians, engineers and other plant personnel who need to know how to setup, maintain, troubleshoot, and view data from the AMS 9420 Wireless Vibration Transmitter. The course uses lectures and labs to maximize the hands on experience for the students.

Prerequisites: Course 2375 (Wireless Self Organizing Network) and some experience in Networks and Host integration would be helpful.

Topics to be covered:
- Overview of AMS 9420 hardware components
- Vibration basics and terminology relating to AMS 9420
- Import data into AMS Machinery Manager and Plantweb Optics
- View data using AMS Machinery Manager and Plantweb Optics
- Troubleshooting and maintenance

Wireless Self Organizing Network and AMS 9420 Operations & Maintenance (CEU’s: 2.5) Course 2025C

Course 2025C is the course for course 2375 & 2025 combined.

LUBRICATION COURSES

LEVEL I & LEVEL 2 LUBRICATION
(CEU’S: 2.1) COURSE 2082
3 DAYS

This 3-day course is designed for individuals who have limited or no oil analysis experience. Guidelines and instruction for starting an oil analysis program will be provided. The course focuses on the basic properties of lubricants and lubricant specifications including additive packages. An overview of laboratory testing methods and interpretation of test data is taught. In addition, instruction is provided on proper storage and handling of new, unused lubricants, as well as sample point identification and best practices for collecting samples from machinery. Basic contamination control and wear debris analysis and identification is covered. The focus of the level two portion of the course is the use of oil analysis with other predictive technologies to enhance a machinery health program. Machine life extension and reduction of unscheduled downtime will be covered in depth. Training includes introductions to lubricant engineering, failure concepts, and failure prevention. Information will be provided on greases and synthetic lubricants, including advantages and applications. The importance of Wear Debris Analysis and contamination control and their impact on reliability will be stressed. Guidelines and step-by-step procedures will be offered for consolidating lubricants, setting alarm limits, as well as managing and enhancing existing lubrication programs.

Prerequisites: None

Additional topics include:
- The productive lubricant analysis program
- Analyzing oil data
- Identifying common types of wear debris, their origins, and corrective actions
- The importance of contamination control
- Designing sampling, storage and handling procedures
- The components of RBM lubrication program
- Methods for extending machine life
- The importance of Wear Debris Analysis and Contamination Control
- Lubricant consolidation
- Establishing alarms

Optional Level I & Level II Lubrication Certification exams will be administered at the end of the course for no charge.
OILVIEW™ FOR AMS MACHINERY MANAGER
(CEU’S: 2.8) COURSE 2083
4 DAYS

The course is designed for those who are new to onsite oil analysis instruments and experienced users who wish to use advanced OilView features in AMS Machinery Manager. Students learn database creation and modification, analysis parameter, and alarm limit sets.

The course demonstrates how to set up and configure the OilView software module, discusses calibration and use of OilView instruments (including the Spectro 5200) for analyzing oil samples onsite, and explains data interpretation and basic reporting.

Topics to be covered include:
- Introduction to oil analysis
- Onsite analysis
- Reference oil database management
- Database Construction and Modification
- Analysis parameter sets
- Alarm limit sets
- Best practices for onsite analysis using OilView
- Importing laboratory data
- Basic wear debris analysis
- Data Analysis and Reporting

WEAR DEBRIS ANALYSIS
(CEU’S: 1.4) COURSE 2084
2 DAYS

Wear debris analysis (WDA) is often referred to as the most important form of oil analysis. This course teaches how to apply environmental conditions and other outside factors to make an accurate root cause analysis. Attendees will gain a basic understanding of wear particle generation, sample preparation techniques, and identification of wear particles.

Topics covered include:
- Theory presentation
- Wear particle generation
- Tribology, friction, and wear
- Lubrication fundamentals
- Sample screening: Using preliminary data and equipment type to select WDA candidates and sample preparation techniques
- Interpretation of oil analysis results related to WDA, such as OilView indices and commercial oil laboratory data
- Sample preparation techniques: grease, oil, hydraulic fluid, and synthetics
- Disciplined and systematic approach to WDA: overview of the OilView WDA module
- Particle identification and characterization exercise.
- Identification and characterization using photographs and/or live samples
IR THERMOGRAPHY
LEVEL I WITH CERTIFICATION
(CEU’S: 2.8) COURSE 2019
4 DAYS

This class is intended for students who have limited or no experience in infrared thermography analysis and diagnostics. Emerson thermography courses meet or exceed Level 1 ASNTTC-1A recommended practices. Successful completion of the courses and passing of optional examinations can lead to Level I certification.

Topics covered include:
- Physics of infrared energy
- Components of infrared light
- System components and data collection
- Setting acceptance criteria for electrical and mechanical components
- Data storage, trending, and reports
- System coordination with other PdM technologies
- Built-up roofs

Optional IR Level I Certification Exam is available at no additional charge.

BALANCING COURSES

BALANCING THEORY AND APPLICATION FOR THE CSI 2130
(CEU’S: 2.8) COURSE 2015
4 DAYS MAY BE TAKEN AS TWO 2-DAY CLASSES

This class teaches how to perform single- and dual-plane balancing using both graphical and analyzer-based methods. The class uses the CSI 2130 Machinery Health Analyzer.

Topics covered include:
- Imbalance identification
- Use of vectors
- How to calculate influence coefficients
- Use of the auxiliary analyzer balance functions
- Use of UltraMgr module
- Calculate a system lag
- Estimate trial weights
- Balancing flexible rotor systems
- Balancing overhung rotors
- Balancing techniques in an industrial setting

BALANCING THEORY AND APPLICATION FOR AMS 2140
CEU’S: 2.8) COURSE 2016
4 DAYS

Specifically for users of the AMS 2140 Machinery Health Analyzer. See course description and topics as listed under Balancing Theory and Application for CSI 2130.
ALIGNMENT COURSES

LASER ALIGNMENT FOR CSI 2130
(CEU’S: 1.8) COURSE 2092
2½ DAYS

This class is intended for students who have limited or no alignment experience. It provides training on shaft alignment using CSI technologies, focusing on the CSI 2130. This course includes hands-on training with horizontal alignment demonstrators and covers management of an alignment program using AMS Machinery Manager.

Topics covered include:
- Alignment
- Required pre-shutdown checks
- Pre-alignment checks and corrections
- Science and art of alignment
- Tools and techniques for moving equipment
- Time-savers
- Alignment information management
- Management systems: methods and advantages

COURSE # 2096: LASER ALIGNMENT FOR AMS 2140
(CEUS: 1.8)

This 2.5-day class is intended for personnel who have limited or no alignment experience. The course provides training on shaft alignment using AMS laser alignment product line with focus on the AMS 2140 Machinery Health Analyzer. This course includes hands-on training with horizontal alignment and vertical alignment demonstrators and covers management of an alignment program using the AMS Machinery Health Manager software.

Prerequisites: None

Topics covered include:
- Alignment: What is it? Why?
- Required pre-shutdown checks
- Pre-alignment checks and corrections
- The science and art of alignment
- Tools & techniques for moving equipment
- Time-savers
- User of AMS laser alignment product line with AMS 2140 Machinery Health Analyzer
- Alignment information
- Management systems: methods and advantages
ONSITE TRAINING

Training is vital for getting the most out of your reliability program, but traveling to an offsite class can sometimes be an issue for you or your staff. Today we have a solution.

Emerson instructors can bring the benefits of classroom training to your plant. Most Emerson reliability training classes can be held in your facility where more of your reliability staff can learn the most effective techniques using the equipment you have available now. Training can be tailored to your needs to address the issues that affect your operations every day.

Contact us to inquire about onsite classes at +1 800 675 4726 or email, MHM.Training@Emerson.com.

REGISTRATION FORM

Contact Educational Services at +1 800 338 8158 or email, Education@Emerson.com or proceed with on-line registration by clicking Online Registration.

REGISTRATION INFORMATION

Tips for Easy Registration:

1. For a list of current class schedules, click Training Courses.
2. If paying with a PURCHASE ORDER, a copy of the PO is required. If paying with a CERTIFICATE, please note the certification number (i.e. ACERTS S/N 1234) with your registration, email a scanned copy to Education@Emerson.com, and bring the original to class.
3. Watch for a confirmation within 72 hours of sending your registration. If you do not receive a confirmation, please call +1 800 338 8158.
4. Register as early as possible to get into your preferred classes. Payment must be received prior to class.
5. Do not purchase nonrefundable airline tickets. If for some reason a class is cancelled, Emerson is not responsible for non-refundable tickets.
EDUCATIONAL SERVICES

Maximize Your Investment!

EDUCATION CERTIFICATES WITH PRODUCT PURCHASES

Training certificates are provided with some product purchases. The certificates are included with your product shipment. If you qualify for a certificate and did not receive one, contact your sales coordinator.

When you mail or fax your registration form, be sure to include a copy of the certificate and bring the original with you to class.

WHAT TO BRING

If you attend IR Thermography Level I, you must bring your own IR camera. We will provide equipment and software needed for all other courses.

WHEN TO ARRIVE

For courses that begin at 8:30 AM, the door opens at 7:30 AM. For courses that begin at 1:00 PM, plan to arrive no earlier than noon.

FOOD ARRANGEMENTS

We provide light breakfast food, such as pastries and juice on all course days that begin at 8:30 AM. We also provide lunches on all full course days. If your class begins at 1:00 PM or ends at noon, no lunch is provided. Beverages are available throughout the day.

DIRECTIONS & RECOMMENDED HOTELS

For directions and recommended hotels, please click here.

CANCELLATION POLICY

If you cancel before the deadline, we will either refund the cost of the course or reschedule at your convenience. The cancellation deadline is no later than two weeks before the start of the course. If you cancel after the deadline but before the course begins, we will refund 50% of the cost. If you cancel after the course begins or do not show up, you forfeit the entire cost of the course.

In case of a sudden, serious illness or a death in your immediate family, you or your company must notify us within 24 hours that you cannot attend. This will give another person an opportunity to attend the course.

If you do not notify us within 24 hours after an emergency arises, you must pay the 50% penalty for late cancellation.

If you register for a course attendance with a certificate, you may cancel before the deadline and reschedule. If you cancel after the deadline but before the course begins, you will owe the 50% cancellation fee. If you cancel after the course begins, however, you forfeit the course attendance. To reschedule a course, you must pay full price.