Online Gas Analysis of Hydrogen-cooled Generators

Application
Emerson Process Management offers Rosemount Analytical gas analyzer technology to provide on-line analysis of hydrogen-cooled electric power generators to improve both profitability and operational safety.

Background
Early electric generators were air-cooled, but as generators became increasingly larger, the use of air as a cooling medium became inadequate. Larger generators produced more heat and required more intense cooling procedures. These larger generators also introduced other complications such as windage losses caused by wind resistance and friction on the spinning generator shaft.

Helium was considered for cooling, but helium was not found in abundance and, as a result, cost much more than other gases. Hydrogen, however, was readily available and had a thermal conductivity much higher than air which made hydrogen a very good cooling medium. Additionally, hydrogen had a much lower viscosity than air. This significantly decreased the windage losses, thus increasing the efficiency of the generator. Around 1937, hydrogen replaced air as the primary gas used to remove heat from stator windings, rotor windings, and stator core iron in larger generators.

However, hydrogen poses fire hazards that are not a concern with air or helium. Fortunately, hydrogen does not support combustion in a nearly pure state (> 90 %) with a balance of air. With proper operation, including the use of on-line gas analysis, fire hazards can be almost completely eliminated.

Gas Analyzer Application
On-line gas analysis is used in hydrogen-cooled generators for the following purposes:

- Commercial: maintaining a high concentration of hydrogen coolant increases the cooling efficiency of the generator (For cost of decreased hydrogen purity, see Figure 1).
- Safety - Explosion: air in the hydrogen coolant can quickly lead to an explosive condition.
- Safety - Maintenance: air must be present inside the generator before personnel can perform maintenance inside the generator.

Measurements need to be done during normal operation and during start-up and shutdown purging operations. During normal operation, the hydrogen purity is monitored in an 80 to 100 % H₂ range to detect air leaks or hydrogen supply problems. During the start-up of a hydrogen-cooled generator, air in the generator is first displaced with carbon dioxide.

After the first purge operation is complete, the generator is filled with hydrogen. During shutdown, typically for maintenance, the opposite scenario takes place. During start-up and shutdown, monitoring the carbon dioxide and hydrogen helps the operators minimize start-up and shutdown time, and keeps the maintenance operation safe since they know from analyzer reading when the purge circle is complete.

A thermal conductivity analyzer set up with two measurements is typically used for this application:

- Measurement 1: 0–100 % H₂ in CO₂/air or 80–100 % H₂ in air (adjustable)
- Measurement 2: 0–100 % CO₂ in air
Start-up Mode

Hydrogen must replace other gases for efficient generator operation

- First purge operation during start-up:
 - Ambient air is first replaced by CO₂, since mixing H₂ directly with air would produce an unsafe condition.
 - Measure 0–100 % CO₂ (with air as background)
- Second purge operation during start-up:
 - CO₂ is then safely replaced with H₂
 - Measure 0–100 % H₂ with special linearization 0–40 % H₂ (with CO₂ as background gas), 40–80 % H₂ (extrapolation between air and CO₂ as background gas), 80–100 % H₂ (with air as background gas)

Operation Mode

Hydrogen purity needs to be measured.

- Measure 80–100 % H₂ (with air as background gas)

Maintenance Mode

Breathing air must replace other gases before personnel can perform maintenance inside the generator.

- First purge operation during shutdown for maintenance:
 - H₂ is first replaced with CO₂, since mixing air directly with H₂ would produce an unsafe condition
 - Measure 0–100 % H₂ with special linearization
- Second purge operation during shutdown for maintenance:
 - CO₂ is then safely replaced with breathing air
 - Measure 0–100 % CO₂ (with air as background gas)

Setup Options

The analyzer comes standard with two measurements and two analog outputs. Measurement 1: 0–100 % H₂ in CO₂/air is zoomed to 80–100 % H₂ in air. Customers can switch manually to 0–100 % H₂ in CO₂/air.

The instrument is setup to provide a zoom indicator on digital output 4, so the customer can monitor the zoom status Measurement 2 detects 0–100 % CO₂ in air.

Optionally, a three-measurement configuration is also possible:

- 80–100 % H₂ in air
- 0–100 % CO₂ in air
- 0–100 % H₂ in CO₂/air

For this configuration a third analog output has to be ordered. Emerson can supply either a Rosemount Analytical X-STREAM flameproof analyzer or an X-STREAM purged/pressurized analyzer for this application. The analyzer can be used to ensure power plant safety, and to maximize the efficiency and profitability of running the generator.

www.RosemountAnalytical.com