
W hat is meant when we refer to a “smart plant”? We are
all aware of the extraordinary developments that are
ongoing in the computer and communication area.

Almost daily there is another report of the continuing decrease
in the cost and size of computing elements and the continuing
increase in the availability of communication bandwidth. Advances
in software and mathematical analysis have built on these devel-
opments to significantly increase our ability to model and optimize
process plant activities.

Many new developments in process sensor and measurement
devices have also appeared. These developments have led to new
methods and procedures for operating production facilities that offer:

• More comprehensive and frequent measurements of the
current state of the plant

• Increased use of models and other analytical techniques to
compare what the plant is currently producing against what is
expected and to understand the differences

• Earlier detection of anomalous conditions
• Tools to plan future operation with increased confidence.
While we may be aware of these developments as individual

advances, their cumulative and combinatorial aspects are perhaps
less well recognized. The combination of these technologies has led
to an evolutionary change in the way plants can operate. This
change affects decisions and actions based primarily on the best
available prediction of expected future conditions rather than ones
principally triggered by reactions to what has just happened. This
shift in focus is the defining characteristic of the smart plant.

A second related subject is the expected economic benefits from
plant investments in these technologies. The link between tech-
nology developments and improved economic results, including
increased productivity, is not always apparent. Many unsupportable
claims on potential benefits are made. Correspondingly, many
technology developments are believed to be beneficial, but how
to translate this belief into realistic monetary values is not clear.

INCENTIVES FOR CHANGE
Why do we need to consider these new smart technologies

for applications in plants? What plant problems are they solving
that can’t be solved more economically by other means? In
responding to these questions, let’s review three major incentive
areas: financial returns; safety and environmental issues; and
workforce demographics.

Financial. Operational excellence is the goal of most plants.
This excellence has many components. Among these, some key

objectives have a direct and significant impact on the site’s finan-
cial performance. Across a wide range of HPI plants and compa-
nies, these can be summarized as:

• Produce the highest valued product mix possible
• Maximize production from existing equipment 
• Maximize equipments’ onstream operating (service) factor
• Continually reduce costs and pursue operational efficiencies
• Keep inventories as low as possible
• Minimize health, safety and environmental (HSE) incidents.
The last objective implicitly recognizes the reality that HSE

issues can often be governing.
Looking at overall financial performance, the five-year aver-

age return on invested capital for the US refining industry from
1996 to 2001 has been approximately 9.5%.1 This is at or below
the cost of capital for the industry, with 2002 results generally
lower. The return for the US chemical industry has been even
lower for the same period at 4.5%.2 Clearly, there are individual dif-
ferences in financial performance among companies, and com-
petitive pressures force the industry to pursue all avenues for
improvement.

Where are the operational opportunities that will contribute to
improved financial performance?

Energy. Energy costs remain the largest single cost compo-
nent in the plants after feedstock purchases. From 1996 to 2001,
they averaged approximately 8% of the value of feedstock pur-
chases and about 30% of all nonfeedstock operating costs for the
overall US refining industry.1 Many opportunities for energy sav-
ings in the average plant remain unpursued.

Reliability. Lost production due to unscheduled shutdowns
or slowdowns of plant equipment and process units remains an
ongoing problem. Average losses across the process industries in
potential capacity are 3% to 7%.

Maintenance. Maintenance costs are the third largest cost
component after feedstocks and energy at 10% to 20% of the
nonfeedstock operating costs. But often the maintenance action is
provided too early when it is not required and sometimes (regret-
tably) too late.

Inventory. Large inventories of feedstocks, intermediates and
products are characteristic of many plants and their associated
supply and distribution channels. Excessive inventory increases
working capital and reduces the return on invested capital.

Smart plant components provide some of the most cost-effec-
tive investments available to achieve the operational excellence
objectives listed above and improve the financial performance of
process plants.
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Safety and environmental issues. The public widely
views the HPI’s safety and environmental performance as unsat-
isfactory. Analysis of the cause of recent accidents and incidents
indicate that many factors—including design, change control and
operational issues—contributed to the incidents.3,4 However,
reviewing the incidents and potential amelioration indicates that
improved measurements and real-time analysis/detection might
have prevented or at least substantially reduced the damage from
a significant percentage—perhaps 25% to 50%.

Environmental emissions from plants continue to be a major
problem. Although the US chemical industry reduced its emis-
sions by 56.3% from 1989 to 1999 while increasing production by
33.3%,5 it still remains the largest single US manufacturing indus-
try source of toxic emissions.6 Industry along the Texas Gulf
Coast—which is the world’s single largest concentration of HPI
sites—is under government mandates to reduce NOx emissions a
full 80% by 2007.7 The US chemical industry has agreed to an
18% reduction in greenhouse gases from 1990 levels by 2012.8

Meeting these goals and continuing the reduction will require
many changes in plant design and operation. Improved measure-
ments, modeling, analysis and control are key components of the
required changes.

Demographics. The demographics of process plant operators
in North America are changing. With industry downsizing, there
was very limited hiring in the ’80s and ’90s. As a result, 75+% of
the operators in the HPI are expected to retire in the next 10 to 15
years.9 Clearly, the average operator experience level will drop as
a result. In addition, the demands for enhanced analytical skills in
the operator’s job are increasing. A partial solution to this problem
is again to use plant measurements, modeling and analytical tech-
niques to automate routine decision processes or at least provide
the information to make the decision process more efficient.

PREDICTION VS. REACTION
What is meant by decisions based on intelligent prediction rather

than reaction? The concept can perhaps best be understood in the con-
text of the normal decision process in the plant (Fig. 1). We mea-
sure a condition in the plant or detect a change of state, analyze the
data to potentially spot an anomaly, predict the effect of alternative
action scenarios, decide which scenario to implement, and then actu-
ally implement the scenarios. After this, the cycle repeats.

Examples of decisions made in this framework include: what
products to produce and when to produce them; what resources are
required for production including feedstocks and manpower; and
when to perform maintenance on a particular equipment item.
Here are the characteristics of these decision-making activities:

Measure. Modern plants produce a lot of data. It is not unusual
for a large plantsite to have 100,000 distinct measurements. If
these measurements are scanned once a minute, one gigabyte of
new data will be produced every week. However, the data is natively
of poor quality. Instrument readings drift and noise corrupts the
measurements. Even when actual measurements are good, statis-
tical properties are not—the data are cross-correlated and serially
auto-correlated. It is often hard to detect changes or trends.

Analyze. Analysis in this context is obtaining the best possible esti-
mate of the current performance of the system (plant) and its history.
Generally this means processing the raw data through some kind of
a model to obtain a performance indicator, perhaps of an individ-
ual piece of equipment or of the overall plant or site. This perfor-
mance indicator is then compared against a standard. The standard
could be the normal, new or clean performance of the equipment;
it could be the financial budget for the plant; or it could be envi-
ronmental or design limits. The model could be simply our mem-
ory of how things behaved previously, or it could be a formal math-
ematical formulation. Key issues with analysis are to detect under-
(or over-) performance and precursors of abnormal events.

Predict. The next step in the decision process is to project the
expected behavior of the system based on the information available.
In some cases, this is done by simply extrapolating future behav-
ior to be the same as current or to expect future behavior to follow
the same pattern the system has exhibited in the past under sim-
ilar conditions.

In more complicated situations, we can use an estimate of the
current state, a model of the system, and assumptions about the dis-
turbances or effects that the system will experience. Again, analy-
sis refers to obtaining the best possible estimate of the system’s
current and past state; prediction refers to obtaining the best pos-
sible projection of future behavior.

Decide. Ultimately it becomes necessary to make a decision
about the action to take in the future—including no new action
and no change in condition. Normally this is done by evaluating
a set of feasible alternative decision sequences and then choosing
one that maximizes or minimizes a combined set of objectives
within the imposed set of constraints—with this evaluation and
choice done within the time available.

Implement. Implementation is the actual execution of the sce-
nario chosen. It involves all the activities required to make some
change occur, most particularly, inducing individuals in the plant

SPECIALREPORT IMPROVING PROCESS CONTROL

Implement

MeasureDecide

AnalyzePredict

Normal plant decision process follows this cycle.FIG. 1.

Plant

PID
algorithm
to make

error zero

Current
measured value

for single
controlled
variable

Move single
manipulated

variable

Control moves based on current
measurement

Setpoint Error

+
–

Standard PID loop. Controller reacts to the current
measurement.

FIG. 2.

HYDROCARBON PROCESSING  OCTOBER 2003

202063.qxd  11/21/03  4:30 PM  Page 42



to perform or not perform an action. Without implementation,
measurement, analysis and prediction are merely an exercise.

These decision steps are obviously not new and, in fact, have
been followed in plants for many years before computers and
networks had any major impact. Those charged with decisions did
the best they could at obtaining information on the state of the
plant, estimating its current performance and predicting what
would happen with various decision scenarios. However, the
uncertainty levels were very high and most decisions were not
analytically based.

Moving toward smart operation. We can improve the
overall decision process by knowing better what the plant is doing
now. This implies more accurate measurements with less delay
and more frequent measurements of previously difficult-to-mea-
sure conditions. Better comparison of what the plant is doing
against what it is expected to do and understanding the differ-
ences leads to model-based analysis and techniques to better com-
prehend the information. The result is improved predicting of
the effect of alternate decisions in the future. Examples from dif-
ferent operational areas may make this clearer.

Predictive control example. The first is from the control field.
Consider the evolution from the PID controller to advanced con-
trollers utilizing multivariable predictive constraint control
(MPCC) algorithms. Fig. 2 shows a standard PID loop.

The controller senses the current measurement of the con-
trolled variable, compares it with the desired setpoint to calculate
an error, and then takes corrective action based on the parameter
settings of the controller. It reacts to the current measurement.
Contrast this with the action of an MPCC algorithm in Fig. 3.

For MPCC, there is a formal mathematical model relating the
response of the controlled variable to changes in the manipulated vari-
able.10 This then allows the control algorithm to use the history and
current values of manipulated, measured disturbance and controlled
variable moves to predict the behavior of the plant in the future and to
take action based on this prediction. The controller predicts if a con-
trolled variable is likely, in the time period of the prediction horizon,
to deviate from its specification or violate a plant limit.

Control action can then be taken to correct the condition before
there is ever an actual deviation or violation detected. The imple-
mentation part of the decision process is done automatically via
closed loop control. Moreover, we can combine the models for
multiple controlled, disturbance and manipulated variables into
one controller that explicitly recognizes the interaction between

them (Fig. 4). The result is significantly improved control perfor-
mance. Reductions in standard deviation of 30% to 70% over
standard PID control are routinely reported with MPCC imple-
mentation. Payout period of a few months for investments in this
technology are often reported.

Predictive maintenance example. The second example
concerns plant maintenance.11 There are several approaches. One
is to wait until the equipment breaks and then react to fix it, if it
is really important. Many plants still operate in this mode. The sec-
ond, known as preventative maintenance, uses average times to
failure for equipment and schedules maintenance before the
expected failure time. However, equipment can vary widely in
actual performance.

Predictive maintenance attempts to find techniques to determine
more precisely if equipment is underperforming or about to fail.
With the continuing improvement in computing and communi-
cation capabilities, predictive maintenance can be based on actual
device performance data, obtained and analyzed in near real time.
The overall objective is to catch potential equipment problems
early, which leads to less expensive repairs and less downtime.
Conversely, we want to avoid shutting expensive equipment down
unnecessarily (Fig. 5). Detecting anomalies early and deciding
what they imply with respect to the equipment is the goal.

For example, the vibration patterns of rotating equipment vary
with deterioration of the equipment and can be used as predic-
tors of failure. In operation, data from the process and the equip-
ment is validated and brought to performance models. These cal-
culate the performance and correct it to standard conditions. With
economic information, the cost of poor performance is also cal-
culated. This can be used for predictions of unscheduled removal
(or replacement) of part(s), disruption of service or delays of capac-
ity. Maintenance based on this approach has been shown to reduce
unscheduled maintenance costs by as much as 20% to 30%, while
simultaneously improving equipment reliability.

Predictive product demand forecast example. The
staff at every plant needs to make a decision on the quantity of
each product to produce in the next production period, and this
decision is based partially on a forecast of market demand. The
forecast will always have uncertainty due to market fluctuations,
production interruptions and transportation issues. The response
is to have substantial product inventories to ensure that actual
demands seldom go unmet.

In fact, many plants set their schedules in large measure to pro-
duce to inventory, i.e., there is a target inventory of each product
and when the actual amount falls below this amount, they react and
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produce more to fill the tanks back to the desired levels.
Other elements of the supply chain—production, terminals

and retail outlets—all contain more stocks of feed and product
inventory. These inventories tend to be controlled locally and set
based on problem avoidance at the individual site. The result is
excessive inventory in the supply chain that consumes unneeded
working capital. Modern product demand forecasting systems
utilize sophisticated modeling of expected demand based on exten-
sive analysis of historical records and correlations with demand
triggers, i.e., expected weather patterns.

These are combined with real-time information about the cur-
rent total state of inventory across the supply chain (Fig. 6) to pre-
dict demand and set production targets.12 Analysis of the projected
risk of not meeting demand compared with the cost of inventory can
then be made. One oil company reported a substantial increase in
profitability largely attributed to implementing this technology.13

ENABLING TECHNOLOGIES
Dozens and perhaps even hundreds of enabling technologies

permit plants to move from reacting to predicting. The following
sections present those new developments having the most important
impact on operations. They are referenced to their specific deci-
sion cycle position as shown in Fig. 7. Since space limits how much

functionality can be covered in this article, some
references are provided on sources for more infor-
mation. The emphasis again is on the cumula-
tive and combined effect of these developments
to support the smart plant operation.

Measure.
Smart field devices. One of the most dra-

matic technology developments has been in the
general area of smart field devices.14 Increases
in processor speeds, data storage and miniatur-
ization have led to devices that are both smaller
and more powerful. As microprocessors have
shrunk, they have been incorporated directly
into basic plant equipment. In the instrumen-
tation area, this has included transmitters, valves
and primary measurement devices including
process analyzers.

These devices have become in essence small
data servers. A basic transmitter a few years ago
would send one 4-20 mA signal back to the con-

trol system as an indication of the measured value. Today, a mod-
ern transmitter sends back multiple readings plus at least six dif-
ferent alarm conditions. Modern valves now calculate and retain
in local data history a current valve signature of pressure versus
stem travel, compare it with the signature when the valve was
installed and provide diagnostic information or alarming on the dif-
ference. Fig. 8 shows an example of a valve that is clearly mal-
functioning and is reporting this malfunctioning in real time.

In addition to normal measurements, cheap sensors allowing
thermal photographic and audiometric data monitoring on major
equipment are being routinely used. The data transfer is not just
from the devices to the central database. Configuration and cali-
bration information is entered remotely and executed without
needing local activation.

Advances are not limited to instrumentation. A standard elec-
tric motor that previously had no real-time measurements now
has as many as 15 sensors providing temperatures, flux, run times,
etc., that are available for recording and diagnosis. 

Analytical procedures that could only be performed in labora-
tories a few years ago are now migrating to field devices. Exam-
ples include near infrared and nuclear magnetic resonance analyses.

Digital plant networks. Supporting the increases in local mea-
surement and analytical capability has been a change from analog-
based communication for field instrumentation to digital bus
structures.15, 16 This provides a corresponding increase in com-
munication bandwidth of several orders of magnitude and per-
mits much more diagnostic information to be moved from the
smart devices to the data analysis system.

Adoption of industry standard software formats and commu-
nication protocols for these buses has facilitated interoperability
among devices from multiple manufacturers. Connectivity between
the plant instrumentation network, control network and plant IT
network has also evolved into a reliable data transfer backbone for
plant systems. This infrastructure is required to support the other
applications that analyze and use the data. The continuing evolution
in remote access through developments in the Internet is well known.
What perhaps is less well known is the penetration of wireless com-
munication into the plant environment. Remote sensors are being
installed without wires on plant equipment where there is no need
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for two-way communication, and absolute relia-
bility is not as important.

Comprehensive plant databases. Once all
the data has been read from the devices and
moved through the digital networks, it must be
stored somewhere for analysis. Although plant
databases have existed for many years, the con-
tinued evolution in their functionality has main-
tained their importance as the basic infrastruc-
ture or enabler for other applications. Previously
the databases were primarily intended for stor-
age of real-time process data and related calcu-
lations for historical records and trending.

Today there is a much larger set of informa-
tion that must be maintained for real-time access.
This includes equipment purchase specifica-
tions, spare parts and cost information; mechan-
ical, electrical, P&I and process drawings; initial
and current configuration information along
with an audit trail of changes; maintenance
records; safety procedures; MSDS sheets; etc.
All the diagnostic information reported by the
smart devices must be captured. Product analyses, blend recipes and
other production specifications are also accumulated.

Objects stored in the database are not just numbers and text but
also pictures, spectral analyses, links to other data sources, etc.
Once the data are in the database, techniques to permit efficient
retrieval of this information are a key to determining the state of
the plant. When something goes wrong in the plant, the primary
objective is fixing the problem as soon as possible. Gathering
information about the problem area—drawings, spec sheets, pro-
cess conditions, maintenance history—is usually necessary.

Without a comprehensive database, this data gathering often
takes more time than diagnosing the problem. Developing a com-
mon and adequate user interface for these systems is a specific chal-
lenge. Generally, the interfaces are icon-based with some views
keying off graphic process layouts that permit all information to be
retrieved by moving a pointer to the desired piece of equipment. 

Analyze. To reiterate, analysis techniques are intended to deter-
mine the best possible estimate of the current and historical state
of the plant. New developments in the measurement area plus
the general increase in computer capabilities generally mean much
more data are available—more than one can hope to process man-
ually. Part of the response to this increase in data is an increase in
automated analysis. This takes several forms.

Data mining. Real-time data available from the plants presents
special challenges. As mentioned earlier, it is usually corrupted by
noise and is non-independent, i.e., both auto-correlated and cross-
correlated. In addition, there are a lot of data—our ability to gather
data has far outstripped our ability to analyze it. This problem is not
unique to the process industries. One perhaps lesser known statis-
tic is that the capacity of digital data storage worldwide has doubled
every nine months for at least a decade, which is a rate twice that of
Moore’s law on semiconductor densities.17

However, if correlations in data relating to production vari-
ables can be found or if precursors to failure can be identified, the
potential benefits are large. Data mining is derived from tradi-
tional types of statistical analysis but is focused on processing large
databases to find undetected patterns and associations. First-level

tools include a number of special linear statistical techniques such
as PCA and PLS.18

These tools should always be the first to be used for analysis
since they have well-developed statistical properties that other
approaches do not have. When these are not sufficient, a large num-
ber of more general tools has been developed to provide more gen-
eral pattern recognition, including relations between events and
determining how attributes are linked.17, 19 Again, the major issue
is the poor underlying statistical quality of process data. This makes
techniques that are useful in other fields less useful in analyzing
process data.

Associated with data mining is the whole issue of visualization
of large databases. Pattern recognition is significantly improved
if data can be visually displayed in a form that accentuates pat-
terns and potential correlations.

Model-based performance monitoring. To mange some-
thing, you generally have to measure it. For plant performance, this
normally implies using the data in some sort of model to calculate
performance measures, often called key performance indicators
(KPIs). These performance measures are used to compare actual
against plan or actual against original condition.20
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An example is calculating specific energy consumption, i.e.,
energy consumed per unit of feed or product. To accurately assess
unit operation, this calculated value has to be corrected for the cur-
rent feed and product types and distribution—for the current pro-
duction rate—and for the run time since the last equipment main-
tenance. This correction can only be performed practically via a
model of process operation. Data validation and reconciliation pro-
cedures must be used to bring the input data to the standard required
by the performance analysis. With the corrected KPIs, actual oper-
ation versus plan can be accurately assessed and deviations noted.

Important questions that can then be answered include:
• What is the true maximum capacity of our equipment?

Today? If it were clean? If it were new?
• What really stopped us from making our production tar-

gets last month?
• How do we accurately and consistently compare perfor-

mance across all our sites?
• How do we make sure everybody is looking at the same set

of numbers?
“Virtual analyzers” or “soft sensors” are a special case of model-

based performance monitoring and involve the use of common
process measurements (temperatures, pressures, flows, etc.) to infer
a difficult-to-measure property using an empirical or semi-empiri-
cal model. This is, unfortunately, one of the development areas
where the claims have outpaced reality by a large measure. How-
ever, progress has continued, and a number of actual installations are
obtaining real value.21 Three key limitations that are not always
recognized are:

� The estimate is only good within the data region used to
train the model. To obtain reliable results, experiments must generally
be run that exercise the plant over the full range of operation. Often,
normal operation is over a very narrow range, and attempting to
build models on this data leads to very limited predictive power.

� Unsteady state process conditions with a steady state model
will not generally yield acceptable dynamic results since the
dynamic response of the process output to changing inputs will
normally be different for different measurements.

� Noncausal models can estimate current conditions but
cannot be used to predict future behavior. 

Predict.
Predictive analytics. Predictive analytics is the general name for

developing the best possible estimate of a system’s future behavior
based on a model and an estimate of the current state. It includes
a variety of techniques. In the predictive control example above, it
is the model between the manipulated and controlled variables. In
the maintenance example, it is the model relating deterioration
in performance to potential failure. In the supply chain example,
it is the demand forecasting model. Note that the control model
is deterministic, i.e., a specific set of outputs is calculated for each
set of inputs; the supply chain forecast model will be statistically
based—a range of outputs is calculated; and the maintenance
model is event driven. These are the general types of prediction
models of interest to the process industries. Most prediction model
building approaches are application-specific at this time. 

Decide. As mentioned earlier, a key to good decisions is effi-
ciently evaluating the full range of potential solutions within the
decision time available. Clearly, improved modeling and compu-
tational capabilities have resulted in a significant improvement

in the plant staff ’s ability to evaluate alternatives.
For example, if there were a production problem in one process

unit, the normal reaction in the past was to correct the problem by
following the response pattern of previous similar outages. This was
done not necessarily because the staff believed that it was the opti-
mal response, but rather because the time available to respond and
the available information did not support any other response. Today,
it is normally possible to analyze multiple potential responses and
choose one that reflects current actual demands and availabilities.

Optimization. This is the general technique for determining
the best set of decisions within the constraints imposed that max-
imize or minimize the specific result desired. Most developments
in plant logistics planning, operations scheduling and advanced
control algorithms are, in reality, developments in applied con-
strained optimization.

As optimization algorithms have become more computation-
ally efficient and as computer processing speeds have increased, we
are able to model systems in more detail with more independent
variables and still complete the required optimization calculations
fast enough for useful answers. For advanced control, the required
execution time may be seconds or even milliseconds. In schedul-
ing, execution times of a few minutes are acceptable, while for
planning even an hour may be satisfactory. Naturally the models
and numbers of variables will be different.

Linear programming problems, which use the most computa-
tionally efficient algorithms, are now routinely able to solve problems
with as many as seven million constraint equations.22 Mixed inte-
ger optimization algorithms, which have applicability to scheduling
and other problems, have similarly increased capabilities. The recent
history of all these applications is the use of more complex and
hopefully more realistic models that exploit the rapid advance in
computing power to permit solution in a reasonable time.

Real-time simulation. The increased use of real-time simu-
lation as a tool for learning about complex systems such as a plant
is one of the most significant ongoing developments. This is most
valuable in situations with very low tolerance for error or with
very infrequent occurrences. Normal examples include training
plant operators to deal with emergency situations or with plant
startup and shutdown.

The key improvement is a faster and safer response to these
types of situations. An interesting development is the adoption
of 3D virtual plant representations for this safety training. How-
ever, the use of simulation is not limited to operator training. In
fact, one of the biggest areas of increased use for this technology is
in overall business simulation, particularly in logistics.

Expert systems. Another technology where the hype has sig-
nificantly outpaced reality has been in using expert-system tech-
nology to assist in decision-making, most particularly as opera-
tor guidance systems. Much has been proposed, but few actual
systems have been implemented and even fewer have stayed in
use for multiple years. Modeling actual decisions has proven to
be more challenging in practice than anticipated. Of perhaps more
importance has been the difficulty in maintaining the expert sys-
tems current as situations in the plant change.

However, in spite of these implementation issues, there
remains a real need for such systems—particularly in the general
area of abnormal event detection, diagnosis and prevention—
and an expectation of increased use in the future. (See reference
23 for recent academic work and reference 24 for some industrial
comments.)
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One special but important situation for expert system use is
analysis of process alarms during upset conditions. As a precursor
incident causes other problems in plant conditions, the number of
alarms grows geometrically, and the alarm system becomes a liability
rather than an asset in identifying the incident’s cause. Expert sys-
tems are used to analyze the sequence and pattern of the alarms to
indicate the most likely cause of the problem.10

ECONOMIC BENEFITS
Smart field devices and plant digital networks are often justi-

fied on the basis of reduced capital costs versus alternate required
investments and/or reduced maintenance requirements. These
can be quantified based on experience with similar installations and
can be substantial. Advanced controls and real-time optimization
also have developed methodologies for benefit analysis.20

However, many of the developments in a smart HPI involve
more, better and faster measurements of process and equipment
conditions and use of models to analyze the data. How do we esti-
mate the value of these developments or of a database?

Sometimes these economic benefits are calculated by multi-
plying a small potential percentage improvement in production per-
formance times a large number, such as product value, and claim-
ing that the result is plausibly the expected benefit. The causal
map between the technology implementation and the improve-
ment in production performance is not really specified. A close
review of the claims shows, however, that many developments are
each professing to achieve the same improvement. The concept of
diminishing returns seems absent. One source of confusion in
evaluating the benefits is that only the action, the implementa-
tion, actually creates business profit or loss. How then, can we
estimate the value of improved information that permits a better
decision and implementation of a superior strategy?

Assume that we have determined the “optimum” operating
policy for the plant and this generates an expected economic profit
(Fig. 9). Any estimate that we have of the current best operating
policy has some uncertainty, represented by the confidence limits
around the operating line. Moreover, as we project the optimum
operating policy into the future, the expected confidence limits
increase, and the increase is proportional to the distance into the
future we project the optimum policy.

This uncertainty is reflected back into the present and creates
uncertainty about what the current best policy is. In other words,
we now have most of the information to tell us how we should
have operated last week, but we don’t know precisely how to oper-
ate today since it depends on events that will happen in the future.

How can we improve the accuracy of the future prediction,
which permits us to decide better how to operate today? In general,
it will be enhanced by having more accurate models, a better esti-
mate of the current state and more information about future dis-
turbances. The decision is improved by increasing the set of fea-
sible sequences considered, by better projection of the implication
of future decisions including risk factors, and by better knowl-
edge of the current state and more frequent evaluations. Simply put,
the earlier a problem is detected, the easier it is to solve.

Further, many technology developments can be categorized
by their reduction in the expected error limits on estimates of cur-
rent performance and predictions of future system behavior shown
previously in Fig. 9. The cumulative effect of these developments
over the past 30 years has been a steady reduction in the uncertainty
of the planning projections (Fig. 10). We are able to predict bet-
ter and hence make better decisions. In mathematical terms, this
corresponds to tightening the confidence limits around the pro-
jection into the future.

FCC unit example. One of the most important process units
in a refinery is the fluid catalytic cracking unit. It operates by con-
tacting a fluidized stream of hot granular catalyst with a vapor-
ized hydrocarbon feed in the reactor. This induces a reaction to con-
vert the feed into a variety of lower molecular weight, higher
valued products. The catalyst is separated from the hydrocarbon
and sent to a catalyst regenerator where the heavy reaction byprod-
ucts, “coke,” are burned off the catalyst so that it can be reused.

Supporting the process operation is a hydraulic circuit of catalyst
as it passes through the reactor and regenerator. This hydraulic circuit
generally operates with a relatively low pressure gradient, and catalyst
fluidization properties are important. Poor circulation can eventu-
ally lead to an unplanned unit shutdown. Restarting the unit after
such a shutdown is expensive; lost production from the unplanned
shutdown is also an economic loss. Avoiding unnecessary shutdowns
while maintaining safe operation is therefore a challenge. 

Past Present Future
Time

Pr
of

it
, $

/h
r

Projected
maximum
profit
scenario

Confidence limits

Analysis Prediction

Actual

Prediction versus analysis/estimation. “Optimum”
decision uncertainty increases with distance forward from
current time.

FIG. 9.

Past Present Future
Time

N
or

m
al

 v
ar

ia
nc

e 
of

 a
na

ly
si

s/
pr

ed
ic

ti
on

1970

1990

Today

Analysis

Prediction

Variance evolution. Effect of smart plant developments is
to reduce uncertainty. 

FIG. 10.

HYDROCARBON PROCESSING  OCTOBER 2003

IMPROVING PROCESS CONTROL SPECIALREPORT

202063.qxd  11/21/03  4:31 PM  Page 48



Pressure measurements in the reactor circuit are used to provide
early indication of circulation problems. With the circulating
granular catalyst, small particles, catalyst “fines,” are produced.
Occasionally these fines can plug the leads to the pressure drop
transmitter, preventing detection of circulation problems that
might cause an unnecessary shutdown.

Fig. 11 shows how a modern smart transmitter with automatic
detection of a plugged transfer line can be used to correct this
problem.25 Standard deviation of the current measured signal is cal-
culated and compared with the values when it was first installed.
If there is a significant reduction in the standard deviation, it indi-
cates the possibility of plugging. The alert is sent to the operator,
who can investigate and avoid an unnecessary shutdown without
any loss of safety. One major HPI group estimated that installation
of this technology across their group of plant FCCUs would save
at least $1 million/year in shutdown/startup costs and $3 mil-
lion/year in lost production operating margin. 

Outstanding issues. Clearly there have been many new devel-
opments in the smart HPI arena and many successful technology
adoptions. However, numerous practical issues have delayed
widespread adoption of these applications. While technology is
part of the equation, the primary issue concerns individuals and
organizations. The author’s experience is that the technology gen-
erally works—if not totally, at least partially. However, many new
technology implementations fail on the human issues involved.

Individuals and organizations are highly resistant to change.
If you introduce new technology but don’t change the business
processes to take advantage of it, obviously the business benefits will
be less. How to make individuals feel comfortable with the new
technology and how to fit the new decision models into an orga-
nization’s existing decision and power structure are some open
questions. While these questions may seem outside the normal
range of inquiry for technologists, finding appropriate answers is
important to continued progress.

Also important is to retain a sense of proportion regarding
technology. Improving HPI productivity and efficiency is the

goal—not technology development. Technologies that provide
quick approximate answers to the right question are more impor-
tant than those giving elegant answers to the wrong one or precise
answers to the right question delivered long after the issue has
passed.  HP
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