

The Dual Challenge

Meeting the increasing demand for resources from a growing population with rising standards of living, while also addressing sustainability goals. GLOBAL ENERGY DEMAND GROWTH

> 50% by 2050⁴ GLOBAL ELECTRICITY GENERATION GROWTH 75% by 2050, 90% renewables ⁸

Global Population¹ 2022 2050 8.0B 9.7B

METALS FOR ELECTRIFICATION

600%

production growth in lithium by 2035 ⁵ Net-Zero Carbon Emissions by 2050

GLOBAL CHEMICALS

300%

by 2050 ⁶

INFRASTRUCTURE GROWTH

\$150T

energy sector investment by 2050⁷

1. International Institute for Sustainable Development, SDG Knowledge Hub, Aug 2020 2. IEA - For the first time in decades, the number of people without access to electricity is set to increase in 2022, Oct 22 3. Visualizing the Future of the Pharma Market Visual Capitalist, Jan 2019 4. IEA projects nearly 50% increase in world energy usage by 2050, International Energy Outlook 2021, EIA, Oct 21 . Lithium supply from mineral will lead the growth, Wood Mackenzie Mar 22 . WEF — Global Chemical companies collaborate in pivotal move to net zero Oc . IRENA — World Energy Transitions Outlook 2023 Preview . World Energy Outlook Report 2021 — IEA Rev Dec 21 . When will the global consumer class recover?, K.Wu and M.Thomasberger, Brookings, Nov 2020

AspenTech At-a-Glance

World Leader in Industrial Software for Asset-Intensive Industries

Optimizing assets to run safer, greener, longer and faster

3000+ CUSTOMERS WORLDWIDE

3700+

EMPLOYEES

40+ YEARS OF INNOVATION **170+** ESTABLISHED PARTNERSHIPS

Annual Customer Value Delivered

(aspentech

Mt = million metric tons $| CO_2 e = CO_2$ equivalent of various GHG

CO2e EMISSIONS REDUCTION *IN GLOBAL REFINING

Asset Optimization — Extending the Lifecycle

DFSIGN

Pushing the Boundaries of What's Possible

Running to the Limits of Performance

OPERATE

Driving Uptime Through Actionable Insights

MAINTAI

Asset Performance Management

Subsurface Science & Engineering

Industrial Data Management

Data Insights

Data Management, AI/ML, Advanced Analytics

Domain Expertise

Engineering Fundamentals Industry Experience

Industrial Al¹⁰¹

Insights | Guidance | Automation

Convergence of Industrial Automation Technology Enablers

Quantum Computing

aspentech

Generative Al

Cloud and Edge Computing

Hyperscale Computing

AR/VR

High Performance Computing

Robotics

Industrial Data Management

5G

Convergence of Industrial Automation Technology Enablers

AspenTech Emissions Management Solution

Reduce Emissions and Maintain Margins

Energy and CO₂ Tracking, Forecasting and Decision Making

Safer Operation

More Sustainable

Higher Margins

Improved Reliability

The Self-Optimizing Asset

The Path to Greater Operational Autonomy

Technologies and processes that work together to predict future state and prescribe or automate actions to help meet operating and sustainability goals

Self-learning

Self-adapting

Self-sustaining

Co-Innovating to Meet the Dual Challenge

Joint solution development

Customer priorities and use cases

Ideation and feedback

(aspentech

New Business and Operational Models

Require Organizational Excellence to Achieve and Sustain Value

2500

And Support for a New Generation of Users with High Expectations for Software Applications

Sustainability Pathways to Address the Dual Challenge

(aspentech

AspenTech Sustainability Pathway: CCS/CCUS

Development & Project Execution

Optimization & Monitoring

CCS, Green H₂ & Bio-Feedstocks Surge of Sustainability Projects

Major Energy and Chemical Companies are Investing in Sustainability

Carbon Capture

193 global project announcements since 2020 Total value of **\$226B**

Green Hydrogen

Bio-feedstocks

152 global project
announcements since 2020
Total value of \$62B

451 global project announcements since 2020 Total value of \$5888

Source: EIC DataStream 2023

Enabling Customer Competency Development

	Energy Efficiency	SUS-H101/P101 Estimate energy consumption	SUS-E101 /102/201 Improve process & equipment efficien	cies	SUS-U101 Plan utilities to energy usage	optimize	AFR101 Prevent un efficiency	nplanned ever loss	ts	MES101/AEI101 Report energy usage and monitor KPIs
	Emissions Management	SUS-H101/P101 Estimate emissions through process modeling	EAP301 Model Digital Twin control and optimiz emissions	to ze	SUS-R101 Select crudes to minimize CO2 emissions		AUS101 Plan operations to contr emissions at the sources		ol	SUS-H202 Design safe and effective flare networks
	Electrification	G-310 OSI Forecast including load and renewable forecast		G-232 OSI Real-tin and renewa	al-time generation control including newable generation management		firm	G-250 OSI Integra DERMS (Distributed Energy Resource Management)		esource Management)
	Bio-Based Feedstocks	SUS-P207 Leverage on solid handling capat to characterize biomass feedstoo	207 age on solid handling capabilities aracterize biomass feedstock			SUS-P101/EAP2311 Analyze the process to create bio-oil from renewable sources through custom model			planning for refinery feedstock	
H ₂	Hydrogen Economy	SUS-P205 Model alkaline electrolysis proce in hydrogen production	SUS-P2051 Model sola energy sou hydrogen	r cells as a renewable rce to produce green		SUS-P101/EHY250/SCM20 Ensure feasibility and safe liquefaction for storage and transportation		y of	AFR101 System de-risk to prioritize investment return	
(CO ₂)	Carbon Capture & Storage	SUS-P203 Evaluate carbon capture technologies via simulation	SUS-S101 Model geology for carbon capture and	EEE101/EEE1 Evaluate eco storage feasibility		03/SUS-E101 omic Digital		efficiency with control using vin		AFR101 System de-risk to prioritize investment return
69	Materials Circularity	SUS-P207 Leverage on solid handling capabilities to model waste pyrolysis	SUS-P208 Model pro from waste	duction of rene e oil	wable fuel	AFR101 Evaluate reliability to ave unplanned shutdowns a disruptions that create v		l	SCM201 Plan distribution for complex supply chains	
() aspentech										

