Most Productive US Coal Bed Methane Basin Produced Using Emerson RTUs and Flow Computers

RESULTS

- Monitoring and control of over 10,000 remote wells in the San Juan Basin, covering 7,500 square miles
- Includes local well control, deliquidiﬁcation, gathering, compression, and preliminary processing
- Turnkey solutions include RTU, enclosures, battery, power systems, and communications
- Solution delivers production optimization, minimized ﬁeld manpower requirements, and enhanced safety and environmental responsiveness

APPLICATION

Monitoring, control, and deliquidiﬁcation of coal bed methane ﬁeld

CUSTOMER

Multiple oil and gas companies, comprising 95% of total basin production

CHALLENGE

Coal bed methane comprises a signiﬁcant source of natural gas production within the United States, and presents unique challenges. Extracting the methane gas resident in subsurface coal seams requires a large number of wells, typically spread out over a signiﬁcantly large geography. Additionally many wells require deliquidiﬁcation either initially or continuously over the life of the well. Given the remote and geographically-dispersed nature of the formation, having a means to safely and reliably produce, monitor, and optimize production is critical.

“More than 4,000 RTUs have been deployed to monitor and control over 10,000 wells – providing process and production monitoring, ﬁscal measurement, production control, and emergency shutdown logic.”
SOLUTION

Turnkey solutions have been developed for single, double, and quadruple wellpad designs. Leveraging these, more than 4,000 RTUs have been deployed to monitor and control over 10,000 wells. These RTUs provide process and production monitoring, fiscal measurement, production control, and emergency shutdown logic. The low power solar capability, battery backup, and integrated communications provided reliable operation in remote areas. Autonomous control and optimization improved performance and safety, while enabling remote monitoring and reducing need for field visits.