Proportional valves from Emerson speed up the tire maker’s testing system

RESULTS
• Provided continuous testing feedback with higher accuracy and speed
• Improved process safety and reliability
• Reduced testing changeover period from 50 seconds to less than one second
• Reduced maintenance downtime
• Enabled real-time production changes based on test results

APPLICATION
Tire Test Equipment

CHALLENGE
A global tire maker tests each product run for air leaks and uneven wear over a six-month period. The company was dissatisfied with the accuracy and reliability of the internally designed testing system. Its engineering team had been unable to develop a satisfactory process for the testing application. The company started exploring other testing options, which included upgrading the proportional valve that confirmed the inflation and deflation of the tires.

SOLUTION
The manufacturer’s engineers were introduced to the benefits of the ASCO™ Sentronic proportional valves at a company conference. As a result, they invited Emerson to help develop an optimal solution for the tire testing application. The process included the evaluation of Sentronic samples to find the best combination of models and options that met the application’s requirements. The ASCO SentronicHD and SentronicPLUS valves were selected as the most functional products for the system. Once installed in the new process, the customer could perform the testing with continuous data feedback, plus greater process reliability and safety. While the previous testing process required a 50-second changeover between procedures, the ASCO Sentronic valves completed the same function in less than one second. The Emerson solution reduced maintenance downtime, and the new system’s greater information accuracy and speed enabled the company to make real-time production changes based on test results.

The tire manufacturer’s previous testing process required a 50-second changeover between procedures. The ASCO™ Sentronic valves completed the same function in less than one second.