Applying the Digital Twin to Batch Digesters

Dynamic simulation with Mimic Simulation Software provides a high-performance solution for operator training and control system optimization. This Digital Twin technology delivers the complete environment for control system optimization and is an effective tool for teaching process and control engineers the control and operation of pulp and paper mill production.

Batch Digester Modeling

Solutions for batch digesters include dynamic models of the following process areas:

- Batch (Kraft) Digester
- Wood Chips Chute
- Medium Pressure Steam System
- Low Pressure Steam System
- Black Liquor Tank
- White Liquor Tank
- Wash Liquor Tank
- Pulp Storage Tank

Application Capabilities

- Dynamic real time mass and energy balances for individual components
- Dynamic vapor liquid equilibrium balance accounting for reaction mixture interaction with external streams, chemical transformations due to the reaction kinetics
- Ion-exchange or affinity reaction models using the power law dependencies with the Arrhenius type equation for reaction rate constants
- Tunable reaction rate constants (activation energies, pre-exponential factors, and reaction orders) for both forward and reverse reactions
- Real-time display of digester conversion and process performance using Mimic Reactor View

Mimic Simulation Software

- Train operators on infrequent and dangerous process occurrences
- Test control system enhancements
- Transfer knowledge from seasoned to inexperienced operators
- Increase overall plant safety
Instructor Station

Instructor controls in Mimic and instructor screens in Mimic Component Studio allow your training team to prepare for working with the control system and process. Any element in Mimic can be manipulated or controlled, and instructor screens provide easy access in one location. Typical controls allow instructors to manipulate operating conditions, such as boundary conditions and compositions, introduce ad-hoc device failures, control scripted training scenarios, and restore snapshots to steady-state operations.

Operating Conditions
- Manipulate operating conditions such as boundary condition compositions.

Ad-Hoc Process
- Switches for individual unit failures.

Process Snapshots
- Control and restore full steady-state, cold, or other plant conditions.

Scripted Scenarios
- Pre-engineered scenarios with dynamic representation of student scores.

©2019, Emerson. All rights reserved.

The Emerson logo is a trademark and service mark of Emerson Electric Co. All other marks are the property of their respective owners.

The contents of this publication are presented for informational purposes only, and while diligent efforts were made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available on request. We reserve the right to modify or improve the designs or specifications of our products at any time without notice.