
Application Data Document
415AD-20a
July 30, 2007 - Page �

IEC - 61131 - 3 - The First Universal
Process Control Language
Bruce Morris, Presenter

Website: www.EmersonProcess.com/Remote

Remote Automation Solutions

Introduction

IEC-61131-3, from Emerson Process Management,
is the first international standard for process control
software. By using IEC-61131-3, a programmer can
develop a control algorithm for a particular brand of
controller, and import that same program to another
brand with minimum modifications, primarily to pro-
cess input/output subsystems.

Description of the Fundamental Con-
cepts of IEC-1131

The basic principle of IEC-61131-3 is that a pro-
grammer can develop a control algorithm (referred
to as a “Project”) using any combination of five
control languages; Instruction List, Structured Text,
Ladder Diagram, Function Block Diagram, and Se-
quential Function Chart. The control algorithm can
include reusable entities referred to as “program
organization units (POUs)” which include Functions,
Function Blocks, and Programs. These POUs are
reusable within a program and can be stored in
user-declared libraries for import into other control
programs.

The IEC-61131-3 Standard includes a library of
pre-programmed functions and function blocks. Any
controller that is IEC compliant supports these as a
“firmware” library, that is, the code for these is pre-
written into a prom or flash ram on the device.

Additionally, manufacturers can supply libraries of
their own functions. Typically, these would also be
firmware libraries. An important consideration here
is that, if a firmware library is used, the device that
receives the program must support that library.

Users can also develop their own libraries, which
can include calls to the IEC standard library and any
applicable manufacturers’ libraries.

All user-declared POUs, regardless of type, can be
written in any of the five languages. Under some
circumstances, a POU can have a combination of
languages. A function block program, for example,
can incorporate ladder diagram logic in it.

The general construct of a control algorithm in-
cludes the use of “tasks”, each of which can have
one or more Program POUs. A task can be as-
signed a cyclic rate, can be event driven, or be trig-
gered by specific system functions, such as startup.

The Five Languages

Instruction List (IL) -
The Assembler-style Language

Instruction List is most popular for relatively simple,
yet frequently used, algorithms. Assembler lan-
guage is relatively tedious to program, but is sup-
posedly faster to execute. The following is the
code used to calculate the absolute value of the
difference between two variables named IN1 and
IN2 (comments are contained between the (* and *)
symbols:

LD IN1 (* Load IN1 into the calculations
register *)

SUB IN2 (* Subtract IN2 from that register, stor-
ing the result into that register *)

ABS (* Perform the Absolute Value function on
that register *)

ST	 Error_Calc (* Store the value in the register
into the variable called Error_Calc *)

Application Data Document
415AD-20a
July 30, 2007 - Page �

IEC - 61131- 3 - The First Universal
Process Control Language

Remote Automation Solutions
Website: www.EmersonProcess.com/Remote

Structured Text (ST) -
The High-Level Language

Structured Text is a Pascal-like language that gen-
erally allows greater flexibility, and less tedium, in
writing control algorithms. It has operators to allow
logical branching (IF), multiple branching (CASE),
and looping (FOR, WHILE, REPEAT). Typically, a
programmer would create his own algorithms as
Functions or Function Blocks in Structured Text and
use them as callable procedures in any of the five
languages. Using Structured text, the code above
is written as: Error_Calc := ABS(IN1-IN2);

Ladder Diagram (LD) -
The Electrical Technicians’ Language

Ladder Diagram is probably the most popular
language for situations that involve relay logic with
AND and OR gates. This allows graphical repre-
sentation of logic in a form easily understood by
electrical technicians and engineers alike. A brief
example would be:

If this algorithm were to be written in Structured
Text, it would be:
C000 := (C001 & (NOT C002)) OR C003;

Function Block Diagram (FBD) -
The Graphical Language

The Function Block Diagram Language allows con-
trol algorithms to be developed graphically by insert-
ing the program units called Functions and Function
Blocks into a control program. These blocks can
be called from a library of functions specified by the
IEC standard, or can be called from manufacturer-
supplied or user-created libraries. These function
blocks can be written in any of the five languages,
including the Function Block Diagram language
again. Inputs and outputs between the blocks are
wired graphically using a mouse.

The following is the calculation shown in Instruction
List and Structured Text above, as a Function Block
Diagram:

Sequential Function Chart (SFC) -
The “Everything” Language

Sequential Function charts allow complex algo-
rithms to be executed using a series of “steps” and
“transitions”. In the example below, the box called
“Start” is a step upon which the program stops until
the statement “st_trans_1” is driven

TRUE. This could be done by anything within the
program. The box called “st_action_1” represents
a calculation, called an “Action Block”, which will be
continuously executed while on that step. The pro-
gram then stops on the next step, “S004”, until the
ladder diagram shown is driven to TRUE. While on
that step, the Action Block “st_action_2” will continu-
ously execute.

Complex algorithms can be developed using mul-
tiple branching techniques., and several actions can
be linked to a step. Also actions can be directed to
continue running, run once, or terminate, instead of
running continuously.

Application Data Document
415AD-20a
July 30, 2007 - Page �

IEC - 61131- 3 - The First Universal
Process Control Language

Remote Automation Solutions
Website: www.EmersonProcess.com/Remote

Program Organization Units (POUs)

Functions

Functions are pre-programmed calculations that
accept numerous inputs, but return only one output.
The Function must be declared as a variable type,
can be created in any of the five languages, and
can be used in any of the five languages. It is al-
ways referred to by its created name. The standard
library of IEC-61131-3 consists mostly of Functions.

A Function, when used, does not consume addition-
al memory. It is simply a procedure call, which uses
an existing equation.

The following is an example of the Function shown
on the previous page, in a Structured Text equation:

Error :=Error_Calc (IN1 ,IN2);

Function Blocks

Function Blocks are pre-programmed calculations
that accept numerous inputs, and can return sev-
eral outputs. The Function Block can be created in
any of the five languages, and can be used in any
of the five languages. Any use of a Function Block
is referred to as an “instance” of that block. Each
instance must be given a name that is unique to the
POU in which the block resides. What distinguishes
a Function Block from a Function is that each
instance contains a unique set of values that are
retained with every execution of the instance.

The following Function Block code was created us-
ing a combination of a standard IEC Function Block
called “TON” (notice it has been given the instance
name “On_Delay_Timer”), and Ladder Diagram
code. Its purpose is to generate a Boolean pulse
(the coil “Output”) at regular intervals when started
by a Boolean variable (the relay “Run”) going high,
and it can be stopped by another Boolean variable
(the relay “Reset”) going high:

If shown as a Function Block, it looks like this:

If shown as Structured Text, it looks like this:

Restarting_Timer_1(
Set_Time := Time_Var,
Run := Start,
Reset := Stop);
Pulse := Restarting_Timer_1.Output;
Elapsed_Time := Restarting_Timer_1.E_Time;

Programs

Programs are simply POUs created in any of the
languages, which can incorporate unique code, or
can include any Functions or Function Blocks, cre-
ated locally to a Project, or referenced from external
Libraries. A Program is the only POU type that can
be inserted into a running Task.

Tasks

System

Tasks are the devices that execute Program POUs.
System tasks are triggered to execute once on
specific events within the running program. These
include cold and warm program starts, floating point
errors, and stack overflows.

Cyclic

Cyclic tasks run at programmer-declared intervals.
IEC allows multiple tasks, and these can be as-
signed priorities from 0 to 31 (0 being highest).

Application Data Document
415AD-20a
July 30, 2007 - Page �

IEC - 61131- 3 - The First Universal
Process Control Language

Remote Automation Solutions
Website: www.EmersonProcess.com/Remote

Variable Declarations

Variable Types

All variables used within a project must be declared,
either locally to a POU or globally to the project.
Regardless of the type of POU or Language used,
all variables must be declared.

IEC-61131-3 allows a full range of variable types,
including integer (INT,SINT,DINT), logical (BOOL),
and floating point (REAL), byte (BYTE, WORD,
DWORD), and time period (TIME).

Additionally, user-declared variable types can be
created that are “structures”, or combinations of
several variable types. Also, arrays can be created
that are combinations of structures. An example is:

TYPE

		 Scada_Record	 :	 STRUCT
		 Time_Stamp	 :	 DWORD;
		 F101_Avg	 :	 REAL;
		 F101_Max	 :	 REAL;
		 F101_Min	 :	 REAL;
		 F102_Avg	 :	 REAL;
		 F102_Max	 :	 REAL;
		 F102_Min	 :	 REAL;
					 END_STRUCT;
		 Scada_Array 	 : 	 ARRAY [1..60]
					 OF Scada_Record;

		 Totals_Record	 : 	 STRUCT
		 Time_Stamp	 :	 DWORD;
		 F101_Tot	 :	 REAL;
		 F102_Tot	 :	 REAL;
					 END_STRUCT;

		 Totals_Array 	 : 	 ARRAY [1..144]
					 OF Totals_Record;

END_TYPE

Local (to POU)

When POUs are created, variables used within
them may be declared as “local” to that POU; that
is. The variable’s name can be used in other POUs
with no conflict within the project. An example:

VAR
	 Pulse_3_Min : BOOL;
	 Temp_Scada_Record : Scada_Record;
	 Scada_Record_Conf : Scada_Record;
	 Scada_Conf_1 : DWORD;
	 Scada_Conf_2 : REAL;
	 Scada_Conf_3 : REAL;
	 Scada_Conf_4 : REAL;
	 Scada_Conf_5 : REAL;
	 Scada_Conf_6 : REAL;
	 Scada_Conf_7 : REAL;

END_VAR

Notice the “Scada_Record” variables that are
variables of the user-declared type in the previous
example.

Input/Output

Input/Output variables are a special case for local
variables. When a Function or Function Block is
created, it must have input and output terminals.
These terminals are the Input/Output variables. An
example:

VAR_INPUT
	 Input : REAL;
	 Reset : BOOL := FALSE;
END_VAR
VAR_OUTPUT
	 Output_Current : REAL;
	 Output_Previous : REAL := 1.0e+30;

END_VAR

Notice that Input and Output variables can be as-
signed initial values. The Input named “Reset”
above has been assigned a default value of FALSE,
which will be used if the “Reset” terminal is left
unwired. The Output named “Output_Previous” has
also been given an initial value, which will be used
on initial execution of the Function Block.

Application Data Document
415AD-20a
July 30, 2007 - Page �

Emerson Process Management
Remote Automation Solutions

Watertown, CT 06795 USA		 T 1 (860) 945-2200
Mississauga, ON 06795 Canada	 T 1 (905) 362-0880
Worcester WR3 8YB UK		 T 44 (1) 905-856950

Website: www.EmersonProcess.com/Remote

© 2007 Remote Automation Solutions, division of Emerson Process Management. All rights reserved.

Bristol, Inc., Bristol Babcock Ltd, Bristol Canada, BBI SA de CV and the Flow Computer Division , are wholly owned subsidiaries of Emerson Electric Co. doing business as Remote Auto-
mation Solutions (“RAS”), a division of Emerson Process Management. FloBoss, ROCLINK, Bristol, Bristol Babcock, ControlWave, TeleFlow and Helicoid are trademarks of RAS. AMS,
PlantWeb and the PlantWeb logo are marks of Emerson Electric Co. The Emerson logo is a trademark and service mark of the Emerson Electric Co. All other marks are property of their
respective owners.

The contents of this publication are presented for informational purposes only. While every effort has been made to ensure informational accuracy, they are not to be construed as war-
ranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. RAS reserves the right to modify or improve the designs or
specifications of such products at any time without notice. All sales are governed by RAS’ terms and conditions which are available upon request. RAS does not assume responsibility for
the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any RAS product remains solely with the purchaser and end-user.

IEC - 61131- 3 - The First Universal
Process Control Language

Global

When variables are to be linked to I/O points, or are
to be used in several POU’s in a project, they must
be declared “Globally”. An example:

VAR_GLOBAL
	 F101_SETPOINT_001	 :	 REAL;
	 F101_SETPOINT_002	 :	 REAL;
	 F101_SETPOINT_003	 :	 REAL;
	 F101_SETPOINT_004	 :	 REAL;
	 F101_SETPOINT_005	 :	 REAL;
	 F101_SETPOINT_006	 :	 REAL;
	 F101_SETPOINT_007	 :	 REAL;
	 F101_SETPOINT_008	 :	 REAL;
	 Trend_Data_1 : Scada_Array;
	 Trend_Data_2 : Scada_Array;
	 Totals_Data : Totals_Array;

END_VAR

This declaration would occur in the “System Re-
source” section of the project.

External

Once variables have been declared globally, they
can then be used in any POU by being re-declared
as “External”.

An example:

VAR_EXTERNAL
	 F101_SETPOINT_001	 :	 REAL;
	 F101_SETPOINT_002	 :	 REAL;
	 F101_SETPOINT_003	 :	 REAL;
	 F101_SETPOINT_004	 :	 REAL;
	 F101_SETPOINT_005	 :	 REAL;
	 F101_SETPOINT_006	 :	 REAL;
	 F101_SETPOINT_007	 :	 REAL;
	 F101_SETPOINT_008	 :	 REAL;
	 Trend_Data_1 : Scada_Array;
	 Trend_Data_2 : Scada_Array;
	 Totals_Data : Totals_Array;

END_VAR

Bringing It All Together

IEC-61131-3 is a powerful, flexible, and adaptable
standard that includes something for every pro-
gramming taste and style. Users can create pro-
grams in any combination of the five languages, and
can develop code as POUs that are re-usable within
a project, and can be stored as libraries for use in
other projects. The manufacturers who support this
standard are free to use their own on-line interface
software, and future developments will allow more
powerful communications capabilities between con-
trollers of different manufacturers.

This declaration would occur in the “System Re-
source” section of the project.

