CSA Hazardous Area Approvals
Fisher™ FIELDVUE™ DVC6200 Series
Digital Valve Controllers

Hazardous Area Approvals and Special Instructions for “Safe Use” and Installations in Hazardous Locations

Certain nameplates may carry more than one approval, and each approval may have unique installation/wiring requirements and/or conditions of “safe use”. These special instructions for “safe use” are in addition to, and may override, the standard installation procedures. Special instructions are listed by approval type.

Note
This information supplements the nameplate markings affixed to the product and the DVC6200 Series quick start guide (D103556X012), available from your Emerson sales office or Local Business Partner, or at Fisher.com. Always refer to the nameplate itself to identify the appropriate certification.

⚠️ WARNING
Failure to follow these conditions of “safe use” could result in personal injury or property damage from fire or explosion and area re-classification.

Ordinary Locations Approval
Complies with general electrical safety CAN/CSA-C22.2 No. 61010-1-2004 SELV, conduit connected, Enclosure Type 4X, IP66, Installation Category I, Pollution Degree 4

DVC6200 Series (HART HW1, FOUNDATION Fieldbus, PROFIBUS)
- Rated Input 9-30 VDC, 4-20 mA
- -52°C to +80°C Ambient

DVC6205 (HART HW1, FOUNDATION Fieldbus, PROFIBUS)
- Rated Input 9-30 VDC, 4-20 mA
- Outputs 0-9.6 VDC, 0-3.5 mA
- -52°C to +80°C Ambient

DVC6215 Remote Mount
- Rated Input 10 VDC max, 3.5 mA max
- -52 to 125°C Ambient
Explosion-proof and Dust Ignition-proof

DVC6200 and DVC6205 Series (HART HW1 & HW2, SIS, FOUNDATION Fieldbus, PROFIBUS)

- Class I, Division 1, Groups B,C,D ; Class I, Division 2, Groups A,B,C,D
- Class II, Division 1, Groups E,F,G ; Class II, Division 2, Groups F,G
- Class III, Division 1
 - Ex d IIC
 - Ex nC IIC
 - Type 4X, IP66
 - Single Seal Device (HART HW2 and SIS pending)
- Rated input 30 V_{max}, 20 mA
- -52°C < Ambient < +80°C
- Max inlet pressure 10 bar (145 psig) (air or natural gas)
- Temperature Code: T6 (T_{amb} ≤ 75°C), T5 (T_{amb} ≤ 80°C)

DVC6215 Remote Mount

- Class I, Division 1, Groups A,B,C,D ; Class I, Division 2, Groups A,B,C,D
- Class II, Division 1, Groups E,F,G ; Class II, Division 2, Groups F,G
- Class III, Division 1
 - Ex d IIC
 - Ex nA IIC
 - Type 4X, IP66
- Rated input 30 V_{max}, 20 mA
- -52°C < Ambient < +125°C
- Temperature Code: T6 (T_{amb} ≤ 75°C), T5 (T_{amb} ≤ 90°C), T4 (T_{amb} ≤ 125°C)

Intrinsically Safe

- Class I, Division 1, Groups A,B,C,D
- Class II, Division 1, Groups E,F,G
- Class III, Division 1
 - Ex ia IIC
 - Type 4X, IP66
 - Single Seal Device (HART HW2 and SIS pending)
- Rated input 30 V_{DC} max, 20 mA
- -52°C < Ambient < +80°C (-52°C to 125°C for DVC6215)
- Max inlet pressure 10 bar (145 psig) (air or natural gas)

Intrinsically safe when connected per installation drawing GE42818, as shown in the following figures

- **DVC6200 HW2 and DVC6200 SIS** figure 1 and 6
- **DVC6205, DVC6205 SIS, and DVC6215 Remote Mount** figure 2 and 6
- **DVC6200f and DVC6200p** figure 3 and 6
- **DVC6205f, DVC6205p, and DVC6215 Remote Mount** figure 4 and 6
- **DVC6200 HW1** figure 5 and 6
Figure 1. CSA Loop Schematics—FIELDVUE DVC6200 HW2 and DVC6200 SIS

HAZARDOUS LOCATION

NON-HAZARDOUS LOCATION

CLASS I, ZONE 0, GROUP IIC

CLASS I, DIV 1, GROUPS ABCD

CLASS II, DIV 1, GROUPS EFG

CLASS III

HW2 - WITH OR WITHOUT I/O PACKAGE

DVC6200, DVC6200S

LOOP TERMINALS

- $V_{max} = 30 \text{ VDC}$
- $I_{max} = 130 \text{ mA}$
- $C_i = 15 \text{ nF}$
- $L_i = 0.55 \text{ mH}$
- $P_i = 1.0 \text{ W}$

OUTPUT TERMINALS

- $V_{max} = 28 \text{ VDC}$
- $I_{max} = 100 \text{ mA}$
- $C_i = 15 \text{ nF}$
- $L_i = 0.5 \text{ mH}$
- $P_i = 1.0 \text{ W}$

CSA APPROVED BARRIER

POWER MAY BE APPLIED TO EITHER THE LOOP TERMINALS OR OUTPUT TERMINALS OR TO BOTH SETS OF TERMINALS AT THE SAME TIME

UNITS WITHOUT THE I/O PACKAGE WILL NOT HAVE "OUTPUT TERMINALS" AVAILABLE FOR CONNECTION

NOTE 1, 3, 4, 5, 6

T CODE

<table>
<thead>
<tr>
<th>T Code</th>
<th>T (amb) (with I/O package)</th>
<th>T (amb) (without I/O package)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5</td>
<td>≤ 80°C</td>
<td>≤ 80°C</td>
</tr>
<tr>
<td>T6</td>
<td>≤ 61°C</td>
<td>≤ 74°C</td>
</tr>
</tbody>
</table>

NOTE 7

SEE NOTES IN Figure 6
Figure 2. CSA Loop Schematics—FIELDVUE DVC6205, DVC6205 SIS, and DVC6215

HAZARDOUS LOCATION

<table>
<thead>
<tr>
<th>DVC6215</th>
<th>Vmax = 30 VDC</th>
<th>Imax = 226 mA</th>
<th>Ci = 50 nF</th>
<th>Li = 0.55 mH</th>
<th>Pi = 1.4 W</th>
</tr>
</thead>
</table>

NON-HAZARDOUS LOCATION

HW2 - WITH OR WITHOUT I/O PACKAGE

- **DVC6205**
 - Loop Terminals
 - Vmax = 30 VDC
 - Imax = 130 mA
 - Ci = 15 nF
 - Li = 0.55 mH
 - Po = 1.0 W
 - Output Terminals
 - Vmax = 28 VDC
 - Imax = 100 mA
 - Ci = 15 nF
 - Li = 0.5 mH
 - Po = 1.0 W

NOTE 7

> SEE NOTES IN FIGURE 6
Figure 3. CSA Loop Schematics—FIELDVUE DVC6200f and DVC6200p

<table>
<thead>
<tr>
<th>T CODE</th>
<th>T (amb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>≤ 80°C</td>
</tr>
<tr>
<td>T5</td>
<td>≤ 77°C</td>
</tr>
<tr>
<td>T6</td>
<td>≤ 62°C</td>
</tr>
</tbody>
</table>

HAZARDOUS LOCATION

- CLASS I, ZONE 0, GROUP IIC
- CLASS I, DIV 1, GROUPS ABCD
- CLASS II, DIV 1, GROUPS EFG
- CLASS III

- DVC6200F, DVC6200FS
- DVC6200P, DVC6200PS

- Vmax = 24 VDC
- Imax = 380 mA
- Ci = 5 nF
- Li = 0 mH
- Pi = 1.4 W

NON-HAZARDOUS LOCATION

- CSA APPROVED

ENTITY FIELDVUE LOOP

NOTE 7

SEE NOTES IN FIGURE 6

NOTE 1, 3

NOTE 2, 3

FISCO LOOP

<table>
<thead>
<tr>
<th>T CODE</th>
<th>T (amb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>≤ 80°C</td>
</tr>
<tr>
<td>T5</td>
<td>≤ 77°C</td>
</tr>
<tr>
<td>T6</td>
<td>≤ 62°C</td>
</tr>
</tbody>
</table>

HAZARDOUS LOCATION

- CLASS I, ZONE 0, GROUP IIC
- CLASS I, DIV 1, GROUPS ABCD
- CLASS II, DIV 1, GROUPS EFG
- CLASS III

- DVC6200F, DVC6200FS
- DVC6200P, DVC6200PS

- Vmax = 17.5 VDC
- Imax = 380 mA
- Ci = 5 nF
- Li = 0 mH
- Pi = 5.32 W

NON-HAZARDOUS LOCATION

- CSA APPROVED

NOTE 2, 3

NOTE 2, 3

SEE NOTES IN FIGURE 6
Figure 4. CSA Loop Schematics—FIELDVUE DVC6205f, DVC6205p, and DVC6215

NOTE 1

NOTE 2

NOTE 3

NOTE 4

NOTE 5

NOTE 6

NOTE 7

SEE NOTES IN FIGURE 6
Figure 5. CSA Loop Schematic—FIELDVUE DVC6200 HW1

<table>
<thead>
<tr>
<th>CLASS I, ZONE 0, GROUP IIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS I, DIV 1, GROUPS ABCD</td>
</tr>
<tr>
<td>CLASS II, DIV 1, GROUPS EFG</td>
</tr>
<tr>
<td>CLASS III</td>
</tr>
</tbody>
</table>

DVC6200, DVC6200S

- \(V_{\text{max}} = 30 \text{ VDC} \)
- \(I_{\text{max}} = 226 \text{ mA} \)
- \(C_i = 5 \text{ nF} \)
- \(L_i = 0.55 \text{ mH} \)
- \(P_i = 1.4 \text{ W} \)

HAZARDOUS LOCATION

NON-HAZARDOUS LOCATION

- CSA APPROVED BARRIER

<table>
<thead>
<tr>
<th>T CODE</th>
<th>T (amb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5</td>
<td>≤ 80°C</td>
</tr>
<tr>
<td>T6</td>
<td>≤ 75°C</td>
</tr>
</tbody>
</table>

\[\text{T CODE} \quad | \quad T (\text{amb}) \]

\[\begin{align*}
T5 & \leq 80°C \\
T6 & \leq 75°C
\end{align*} \]

\[\text{T NOTE 7} \]

\[\text{SEE NOTES IN FIGURE 6} \]

Figure 6. Notes for CSA Loop Schematics

1. **THE ENTITY CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALLY SAFE APPARATUS TO ASSOCIATED APPARATUS NOT SPECIFICALLY EXAMINED IN SUCH COMBINATION.** THE CRITERIA FOR INTERCONNECTION IS THAT THE VOLTAGE (\(V_{\text{max}} \) or \(U_i \)), THE CURRENT (\(I_{\text{max}} \) or \(I_i \)), AND THE POWER (\(P_{\text{max}} \) or \(P_i \)) OF THE INTRINSICALLY SAFE APPARATUS MUST BE EQUAL TO OR GREATER THAN THE VOLTAGE (\(V_{\text{oic}} \) or \(U_o \)), AND THE CURRENT (\(I_{\text{sc}} \) or \(I_o \)), AND THE POWER (\(P_{\text{o}} \)) DEFINED BY THE ASSOCIATED APPARATUS. IN ADDITION, THE SUM OF THE MAX UNPROTECTED CAPACITANCE (\(C_i \)) AND MAX UNPROTECTED INDUCTANCE (\(L_i \)), INCLUDING THE INTERCONNECTING CABLING CAPACITANCE (\(C_{\text{cable}} \)) AND CABLING INDUCTANCE (\(L_{\text{cable}} \)) MUST BE LESS THAN THE ALLOWABLE CAPACITANCE (\(C_a \)) AND INDUCTANCE (\(L_a \)) DEFINED BY THE ASSOCIATED APPARATUS. IF THE ABOVE CRITERIA IS MET, THEN THE COMBINATION MAY BE CONNECTED.

\[V_{\text{max}} \text{ or } U_i \geq V_{\text{oic}} \text{ or } U_o \quad I_{\text{max}} \text{ or } I_i \geq I_{\text{sc}} \text{ or } I_o \quad P_{\text{max}} \text{ or } P_i \geq P_{\text{o}} \quad C_i + C_{\text{cable}} \leq C_a \quad L_i + L_{\text{cable}} \leq L_a \]

2. **THE FISCO CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALLY SAFE APPARATUS TO ASSOCIATED APPARATUS NOT SPECIFICALLY EXAMINED IN SUCH COMBINATION.** THE CRITERIA FOR THE INTERCONNECTION IS THAT THE VOLTAGE (\(V_{\text{max}} \) or \(U_i \)), CURRENT (\(I_{\text{max}} \) or \(I_i \)), AND POWER (\(P_{\text{max}} \) or \(P_i \)), WHICH AN INTRINSICALLY SAFE APPARATUS CAN RECEIVE AND REMAIN INTRINSICALLY SAFE, CONSIDERING FAULTS, MUST BE EQUAL TO OR GREATER THAN THE VOLTAGE (\(V_{\text{oic}} \) or \(U_o \)), CURRENT (\(I_{\text{sc}} \) or \(I_o \)), AND POWER (\(P_{\text{o}} \)) LEVELS WHICH CAN BE DELIVERED BY THE ASSOCIATED APPARATUS, CONSIDERING FAULTS AND APPLICABLE FACTORS. IN ADDITION THE MAXIMUM UNPROTECTED CAPACITANCE (\(C_i \)) AND INDUCTANCE (\(L_i \)) OF EACH APPARATUS (OTHER THAN THE TERMINATION) CONNECTED TO THE FIELDBUS MUST BE LESS THAN OR EQUAL TO 5 nF AND 10 uH RESPECTIVELY.

In each segment only one active device, normally the associated apparatus, is allowed to provide the necessary energy for the FIELDBUS system. The voltage (\(U_o \) or \(V_t \)) of the associated apparatus has to be limited to the range of 9 V to 17.5 VDC. All other equipment connected to the bus cable has to be passive, meaning that they are not allowed to provide energy to the system, except for a leakage current of 50 uA for each connected device. Separately powered equipment needs a galvanic isolation to assure that the intrinsically safe FIELDBUS circuit remains passive.

\[\text{CONTINUED ON NEXT PAGE...} \]
THE CABLE USED TO CONNECT THE DEVICES NEEDS TO HAVE THE PARAMETERS IN THE FOLLOWING RANGE:

LOOP RESISTANCE R': 15 TO 150 ohms/km
INDUCTANCE PER UNIT LENGTH L: 0.4 TO 1 mH/km
CAPACITANCE PER UNIT LENGTH C': 80 TO 200 nF/km

\[C = \frac{C}{\text{LINE/LINE}} + 0.5 \cdot \frac{C}{\text{LINE/SCREEN}}, \text{IF BOTH LINES ARE FLOATING OR} \]
\[C = \frac{C}{\text{LINE/LINE}} + \frac{C}{\text{LINE/SCREEN}}, \text{IF THE SCREEN IS CONNECTED TO ONE LINE.} \]

LENGTH OF SPlice: < 1 m (T-BOX MUST ONLY CONTAIN TERMINAL CONNECTIONS WITH NO ENERGY STORAGE CAPABILITY)
LENGTH OF SPUR CABLE: < 30 M
LENGTH OF TRUNK CABLE: < 1 km

AT EACH END OF THE TRUNK CABLE AN APPROVED INFALLIBLE TERMINATION WITH THE FOLLOWING PARAMETERS IS SUITABLE:
R = 90 TO 100 ohms AND C = 0 TO 2.2 uF

NOTE, A BUILT-IN TERMINATOR IS INCLUDED IN THE FIELD SIDE AND A SELECTABLE TERMINATOR IS AVAILABLE ON THE HOST SIDE.

THE NUMBER OF PASSIVE DEVICES CONNECTED TO THE BUS SEGMENT IS NOT LIMITED IN THE FISCO CONCEPT FOR INTRINSICALLY SAFE REASONS. IF THE ABOVE RULES ARE RESPECTED, UP TO A TOTAL LENGTH OF 1000 m (SUM OF THE LENGTH OF THE TRUNK CABLE AND ALL SPUR CABLES), THE INDUCTANCE AND CAPACITANCE OF THE CABLE WILL NOT IMPAIR THE INTRINSIC SAFETY OF THE INSTALLATION.

INSTALLATION MUST BE IN ACCORDANCE WITH THE CANADIAN ELECTRICAL CODE (CEC) AND ANSI/ISA RP12.6.

MAXIMUM SAFE AREA VOLTAGE SHOULD NOT EXCEED 250 Vrms.

RESISTANCE BETWEEN INTRINSICALLY SAFE GROUND AND EARTH GROUND MUST BE LESS THAN ONE OHM

LOOPS MUST BE CONNECTED ACCORDING TO THE BARRIER MANUFACTURER’S INSTRUCTIONS.

IF HAND-HELD COMMUNICATOR OR MULTIPLEXER IS USED, IT MUST BE CSA APPROVED WITH ENTITY PARAMETERS AND INSTALLED PER THE MANUFACTURER’S CONTROL DRAWINGS.