Micro Motion®
Model 1500 eller
Model 2500 transmittere

Monteringsmanual
Indhold

Kapitel 1 Før du begynder ... 1
 1.1 Oversigt .. 1
 1.2 Sikkerhed ... 1
 1.3 Flowmålerkomponenter ... 1
 1.4 Procedure for transmittermontering 1
 1.5 Flowmålerdokumentation 2
 1.6 Micro Motion kundeservice 2

Kapitel 2 Montering af transmitteren 3
 2.1 Oversigt .. 3
 2.2 Installationens opstilling 3
 2.3 Sådan bestemmes en passende placering 4
 2.3.1 Strømkilde .. 4
 2.3.2 Maksimale kabellængder 5
 2.4 Montering og demontering af transmitteren 6
 2.5 Montering af MVD-modulet 7
 2.6 Jording af flowmålerens komponenter 8
 2.7 Forsyning af strøm .. 8

Kapitel 3 Sammenkobling af transmitteren og sensoren 11
 3.1 Oversigt .. 11
 3.2 Kabeltyper ... 11
 3.3 Tilslutning for 4-leder fjernmonteringer 12
 3.4 Sammenkobling af fjernmonteret MVD-modul med fjerntransmitterinstallationer ... 13

Kapitel 4 I/O-kabelføring .. 19
 4.1 Oversigt .. 19
 4.2 I/O-muligheder ... 19
 4.3 Tilslutning af mA-udgangskabler 20
 4.4 Kabelføring af frekvensudgang 21
 4.5 Kabelføring af diskret udgang 22
 4.6 Kabelføring af diskret indgang 24
 4.7 Tilslutning af RS-485 til en fjernhost 25
 4.8 Skemaer over spænding og modstand 25

Appendiks A Specifikationer .. 27
 A.1 Fysiske specifikationer 27
 A.2 Funktionelle specifikationer 29
 A.3 Klassifikationer af farlige områder 33
 A.4 Ydelsesspecifikationer 33
Kapitel 1
Før du begynder

1.1 Oversigt
Dette kapitel henviser til installationsmanualen og monteringsprocessen for Micro Motions® model 1500 eller model 2500 transmitterere.

1.2 Sikkerhed
I manuaen gives der sikkerhedsmeddelelser for at beskytte personale og udstyr. Læs hver enkelt sikkerhedsmeddelelse grundigt, før du fortsætter med det næste trin.

ADVARSEL

Ukorrekt installation i et farligt område genererer eksplosion.

Ægtes information om farlige anvendelser, henvises til Micro Motion godkendelsesdokumentation, som leveres med transmitteren eller kan fås på Micro Motions hjemmeside.

FORSIGTIG

Ukorrekt installation genererer målefejl eller flowmålerfejl.

Følg alle anvisninger for at sikre, at transmitteren fungerer korrekt.

1.3 Flowmålerkomponenter
Model 1500 eller model 2500 transmitteren er en komponent i Micro Motion-flowmåleren. Andre primære komponenter er:
- Sensoren, som leverer målefunktioner
- MVD-modulet, som leverer hukommelses- og procesfunktioner

1.4 Procedure for transmittermontering
For at montere transmitteren er følgende procedurer påkrævet:
- Montering af transmitteren – se kapitel 2
- Tilslut transmitteren til sensoren – se kapitel 3
- Tilslut transmitterens I/O-terminaler – se kapitel 4
Før du begynder

1.5 Flowmålerdokumentation

Tabel 1-1 viser dokumentationsmidler for andre påkrævede oplysninger.

<table>
<thead>
<tr>
<th>Emne</th>
<th>Dokument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montering af sensor</td>
<td>Monteringmanual fremsendes sammen med sensor</td>
</tr>
<tr>
<td>Montering af MVD-modul (hvis monteret fjerne fra sensoren)</td>
<td>Dette dokument</td>
</tr>
<tr>
<td>Transmitterkonfiguration, opstart og anvendelse af transmitter og transmitterfejlfinding</td>
<td>Konfiguration og anvendelse af transmitter: Serie 1000 og 2000 transmitter eller Konfiguration og brug af transmitter: Model 1500 transmitter med opfyldnings- og doseringsfunktion</td>
</tr>
</tbody>
</table>

1.6 Micro Motion kundeservice

For kundeservice bedes man ringe til det nærmeste supportcenter:

- I USA, ring +1-800-522-MASS (1-800-522-6277)
- I Canada og Latinamerika, ring (303) 527-5200
- I Asien, ring (65) 6770-8155
- I Danmark, ring 7025 3051
- Uden for Danmark (Europa), ring +31 (0) 318 495 441
Kapitel 2
Montering af transmitteren

2.1 Oversigt
Dette kapitel beskriver, hvordan man monterer Micro Motions model 1500 og 2500 transmittere. De følgende grundlæggende trin er påkrævet:

- Bestem installationens opstilling (se afsnit 2.2)
- Bestem placeringen af transmitteren og andre flowmålerkomponenter (se afsnit 2.3)
- Montér transmitteren (se afsnit 2.4)
- Montér MVD-modulet, hvis det er påkrævet (se afsnit 2.5)
- Jord flowmålerens komponenter (se afsnit 2.6)
- Forsyn flowmåleren med strøm (se afsnit 2.7)

2.2 Installationens opstilling

Figur 2-1 Installationsopstilling – 4-leder fjerntransmitter

![Diagram af installationsopstilling for 4-leder fjerntransmitter](image-url)
2.3 Sådan bestemmes en passende placering

For at bestemme et passende opstillingssted til transmitteren skal det sikres, at stedet opfylder de krav, som er beskrevet i Appendiks A.

Model 1500 eller 2500 transmitteren er konstrueret til installation på et sikkert område. De kan tilsluttes til et MVD-modul, som er placeret i et farligt område. Hvis det påtænkes at tilslutte transmitteren til et MVD-modul i et farligt område, skal det sikres, at alle kabler mellem transmitteren og sensoren opfylder de gældende krav for farlige områder. Flere oplysninger om klassificering af farlige områder findes i Appendiks A.

Derudover skal strømkildens placering, afstanden mellem transmitteren og sensoren eller MVD-modulet og adgang i forbindelse med vedligeholdelse overvejes.

2.3.1 Strømkilde

Transmitteren skal være tilsluttet en DC-spændingskilde (jævnstrøm). AC-strømforsyning (vekselstrøm) må ikke benyttes.

FORSIGTIG

Tilslutning af AC-spænding til transmitteren vil beskadige enheden.

For at undgå at beskadige transmitteren skal man undlade at tilslutte den til en AC-strømforsyning.

Se Tabel A-5 for krav til strømforsyning. For at tilpasse kablet, se Tabel 2-1, og anvend den følgende formel som retningslinje:

\[
\text{Minimumsstrømforsyning} = 19,2 \text{ V} + (\text{kabelmodstand} \times \text{kabellængde} \times 0,33 \text{ A})
\]
Montering af transmitteren

Tabel 2-1
Almindelig strømkabelsmodstand ved 20°C

<table>
<thead>
<tr>
<th>Standardmål</th>
<th>Modstand (Ω/fod)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 AWG</td>
<td>0.0050</td>
</tr>
<tr>
<td>16 AWG</td>
<td>0.0080</td>
</tr>
<tr>
<td>18 AWG</td>
<td>0.0128</td>
</tr>
<tr>
<td>20 AWG</td>
<td>0.0204</td>
</tr>
<tr>
<td>2,5 mm²</td>
<td>0.0136</td>
</tr>
<tr>
<td>1,5 mm²</td>
<td>0.0228</td>
</tr>
<tr>
<td>1 mm²</td>
<td>0.0340</td>
</tr>
<tr>
<td>0,75 mm²</td>
<td>0.0460</td>
</tr>
<tr>
<td>0,5 mm²</td>
<td>0.0680</td>
</tr>
</tbody>
</table>

(1) Disse værdier er baseret på kobberleder, og indeholder modstanden af begge ledere i kablet. Hvis du anvender et andet materiale end kobber, skal du følge specifikationerne for modstand i den type leder, du anvender.

Eksempel

Transmitteren er monteret 106,68 meter (350 ft) fra en DC-strømforsyning. Hvis du ønsker at bruge 16 AWG-kabel, skal du udregne den påkrævede spænding ved DC-strømforsyningen således:

- **Minimumsstrømforsyning** = 19,2 V + (kabelmodstand × kabellængde × 0,33 A)
- **Minimumsstrømforsyning** = 19,2 V + (0,0080 ohm/ft × 350 ft × 0,33 A)
- **Minimumsstrømforsyning** = 20,1 V

2.3.2 Maksimale kabellængder

Den maksimale kabellængde mellem flowmålerens komponenter afhænger af monteringstypen og kabeltypen: Se Figur 2-1 og Tabel 2-2.

Tabel 2-2 Maksimale kabellængder

<table>
<thead>
<tr>
<th>Kabeltype</th>
<th>Ledertykkelse</th>
<th>Maksimal længde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro Motion 9-leder (Afstand y)</td>
<td>Ej relevant</td>
<td>20 meter (60 ft)</td>
</tr>
<tr>
<td>Micro Motion 4-leder (Afstand x)</td>
<td>Ej relevant</td>
<td>300 meter (1000 ft)</td>
</tr>
<tr>
<td>Brugerleverede 4-leder (Afstand x i Figur 2-1 og 2-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Strømkabler (VDC)</td>
<td>0,35 mm² (22 AWG)</td>
<td>90 meter (300 ft)</td>
</tr>
<tr>
<td></td>
<td>0,5 mm² (20 AWG)</td>
<td>150 meter (500 ft)</td>
</tr>
<tr>
<td></td>
<td>0,8 mm² (18 AWG)</td>
<td>300 meter (1000 ft)</td>
</tr>
<tr>
<td>• Signalkabler (RS-485)</td>
<td>0,35 mm² (22 AWG) eller større</td>
<td>300 meter (1000 ft)</td>
</tr>
</tbody>
</table>
2.4 Montering og demontering af transmitteren

Transmitteren er designet til montering på en 35 mm DIN-skinne. DIN-skinnen skal jordes. Se Figur A-1 for dimensioner.

Transmitteren klikker på plads i DIN-skinnen. Transmitteren tages ud af skinnen ved at trække fjederklemmen væk fra transmitteren ved hjælp af fjederklemmens udløserøje. Se Figur 2-3.

Figur 2-3 Montering og demontering af transmitteren

Hvis temperaturen er over 45°C (113°F), og flere transsmittere monteres, skal de monteres således, at afstanden mellem dem er på mindst 8,5 mm (0,33 in.). Brug en lejekonsol eller en stopklods til adskillelse af transmitterne. Se Figur 2-4.

Figur 2-4 Montering af flere transsmittere
Montering af MVD-modulet

Dette trin er kun nødvendigt for et fjernmonteret MVD-modul med fjerntransmitterinstallationer (se Figur 2-2). Hvis du har en 4-leder installation, gå til afsnit 2.6.

Figur 2-5 viser et diagram over monteringsbeslaget leveret sammen med transmitteren. Både rør- og vægmontering er vist.

Montering af MVD-modulet:

1. Identificer komponenterne vist i Figur 2-6. Se Appendiks A vedrørende mål.
2. Hvis det ønskes, kan MVD-modulhuset vendes på beslaget.
 a. Løsn alle fire cylinderskruer (4 mm).
 b. Drej beslaget, så MVD-modulet vender som ønsket.
 c. Spænd cylinderskruerne til et moment på 3 til 4 N·m (30 til 38 in-lbs).
Jording af flowmålerens komponenter

Kravene for jording afhænger af installationsopstillingen (se Figur 2-1 og 2-2). Jordforbindelsesmetoder for alle flowmålerkomponenter er opført i Tabel 2-3.

Hvis nationale standarder ikke er gældende, skal disse retningslinier for jording af transmitter følges:

- Brug kobberleder, 2,5 mm² (14 AWG) eller større, til jording.
- Hold alle jordledere så korte som muligt, mindre end 1 Ω impedance.
- Tilslut jordledere direkte til jord, eller følg fabriksstandarderne.

Tabel 2-3 Metoder til jording af flowmålerkomponenter

<table>
<thead>
<tr>
<th>Installationens opstilling</th>
<th>Komponenter</th>
<th>Metode til jording</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-leder fjern</td>
<td>Sensor / MVD-modulen</td>
<td>Se sensorens dokumentation.</td>
</tr>
<tr>
<td></td>
<td>Transmitter</td>
<td>Forbind DIN-skinnen til jord. Skinneklemmen i bunden af transmitterindkapslingen jorder transmitteren til DIN-skinnen.</td>
</tr>
<tr>
<td>Fjernmonteret MVD-modul med fjerntransmitter</td>
<td>Sensor</td>
<td>Se sensorens dokumentation.</td>
</tr>
<tr>
<td></td>
<td>MVD-modul</td>
<td>Forbind MVD-modulet til jord i henhold til gældende lokale standarder med enten den interne eller eksterne jordingsskrue.</td>
</tr>
<tr>
<td></td>
<td>Transmitter</td>
<td>Forbind DIN-skinnen til jord. Skinneklemmen i bunden af transmitterindkapslingen jorder transmitteren til DIN-skinnen.</td>
</tr>
</tbody>
</table>

Forsyning af strøm

Ved alle monteringer skal transmitteren forsynes med strøm. Se afsnit 2.3.1 for oplysninger om transmitterens krav vedrørende strømforsyning.

Terminalerne 13 og 14 benyttes til strøm til jumperen til anden model 1500 eller 2500 transmitter. Maksimalt fem transmittere kan jumpses sammen.
Monteringsaf transmitteren

Figur 2-7 Tilslutning af transmitterens strømforsyning

Primær strømforsyning (DC)

Strømforsyningsjumper til maksimalt fire andre model 1500 eller 2500 transmittere
Kapitel 3
Sammenkobling af transmitteren og sensoren

3.1 Oversigt
Dette kapitel beskriver, hvordan man forbinder Micro Motion model 1500 eller 2500 transmitter til en Micro Motion sensor.
Sammenkoblingskravene mellem sensoren og transmitteren afhænger af installationskonfigurationen (se Figur 2-1 og 2-2):
• Hvis du har en 4-leder fjerntransmitterinstallation, se oplysningerne om 4-leder kabler i afsnit 3.2, og følg derefter vejledningen i afsnit 3.3.
• Hvis du har et fjernmonteret MVD-modul med en fjerntransmitterinstallation, se oplysningerne om både 4-leder og 9-leder kabler i afsnit 3.2, og følg derefter vejledningen i afsnit 3.4.

3.2 Kabeltyper
Micro Motion tilbyder to typer 4-leder kabler: afskærmet og armeret. Begge typer indeholder afskærmningsafsløbsledere.
Brugerleverede 4-leder kabler skal overholde følgende krav:
• Parsnoet konstruktion
• Kravene for standardmål beskrevet i Tabel 2-2
• De gældende krav vedrørende farligt område, hvis MVD-modulet er monteret i et farligt område (se godkendelses dokumenterne, der leveres med transmitteren eller kan findes på Micro Motions hjemmeside)

FORSIGTIG
Store elektromagnetiske felter kan interferere med flowmålerens signaler.
Ukorrekt installation af kabel eller rørledning genererer målingsfejl eller flowmålerfejl. For at reducere risikoen for målingsfejl eller flowmålerfejl skal man holde kabler eller rør væk fra enheder som transformere, motorer og strømkabler, som genererer store elektromagnetiske felter.
3.3 Tilslutning for 4-leder fjernmontering

Tilslut kablet ifølge Figur 2-1, og følg nedenstående trin.

1. Forbered kablet som anvist i sensordokumentationen.
2. Tilslut kablet til MVD-modulet som beskrevet i sensordokumentationen.
3. Tilslutning af kablet til transmitteren:
 a. Identificér lederne i 4-leder kablet. 4-leder kablet, der leveres af Micro Motion, består af ét par 0,75 mm² (18 AWG) leder (rød og sort), som skal bruges til VDC-tilsutningen, og ét par 0,35 mm² (22 AWG) leder (grøn og hvid), som skal bruges til RS-485 tilslutningen.

Figur 3-1 4-leder kabel mellem forlænget MVD-modul og transmitter

MVD-modulets klemmer

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-485/B (grøn)</td>
<td>RS-485/A (hvid)</td>
<td>VDC– (sort)</td>
<td>VDC+ (rød)</td>
</tr>
</tbody>
</table>

4-lederkabel

Maksimal kabellængde: se Table 2-2

Transmitterklemmer til sensortilsutning

RS-485/B (grøn)

RS-485/A (hvid)

VDC– (sort)

VDC+ (rød)

Brugerleverede eller fabriksleveret kabel

Figur 3-2 4-leder kabel mellem standard MVD-modul og transmitter

MVD-modulets klemmer

| VDC+ (rød) |
| RS-485/B (grøn) |
| VDC– (sort) |
| RS-485/A (hvid) |

4-leder kabel

Maksimal kabellængde: se Table 2-2

Transmitterklemmer til sensortilsutning

RS-485/B (grøn)

RS-485/A (hvid)

VDC– (sort)

VDC+ (rød)

Brugerleverede eller fabriksleveret kabel
3.4 Sammenkobling af fjernmonteret MVD-modul med fjerntransmitterinstallationer

Denne procedure består af to trin:

- Tilslutning af det fjernmonterede MVD-modul til transmitteren (4-leder kabel)
- Tilslutning af sensoren til det fjernmonterede MVD-modul (9-leder kabel)

Se Figur 2-2, og følg anvisningerne i dette afsnit.

Underopgave 1 Tilslut det fjernmonterede MVD-modul til transmitteren

1. Brug en af følgende metoder til afskærmning af kabelføringen fra MVD-modulet til transmitteren:
 - Hvis du installerer uafskærmede kabler i lige metalrør, der yder 360° afsluttet afskærmning af de indlagte kabler, gå til Trin 6 i Underopgave 1.
 - Installation af en kabelfslutning fra Micro Motion ved MVD-modulets indkapsling:
 - Ved brug af et afskærmet kabel klargøres dette, og der påføres afskærmningskrympemateriale (se Figur 3-3) som beskrevet i Underopgave 1, Trin 4. Afskærmningskrympematerialet giver en afslutning af afskærmningen, der egner sig til brug i kabelafslutningen, når der anvendes kabel med folieafskærmning og ikke net. Fortsæt til herunder.
 - Ved brug af et armeret kabel klargøres dette som beskrevet i Underopgave 1, Trin 4, men uden påføring af afskærmningskrympemateriale – udelad Trin 4d, e, f, og g.

2. Fjern dækslet fra MVD-modulet.

3. Skub kabelafslutningsmøtrikken og fastspændingsmuffen over kablet.

Figur 3-3 Micro Motions kabelafslutning og krympemateriale
Sammenkobling af transmitteren og sensoren

4. Ved tilslutning ved MVD-modulets indkapsling skal det afskærmede kabel forberedes på følgende måde (ved armeret kabel udelades trin d, e, f og g):
 a. Fjern 114 mm kabelkappe.
 b. Fjern den gennemsigtige indpakning, der findes inden i kabelkappen og fjern fyldmaterialet mellem lederne.
 c. Fjern folieafskærmningen rundt om de isolerede ledere, og lad 19 mm folie eller net og afløbsledere være blottet. Adskil derpå lederne.
 d. Vikl afskærmningsafløbslederen(erne) to gange rundt om den blottede folie. Skær overskydende leder væk. Se Figur 3-4.

 ![Figur 3-4 Vikling af afskærmningsafløbsledere](image)

 e. Placér afskærmningskrympematerialet over de(n) blottede afskærmningsafløbsleder(e). Materialet skal dække afløbslederne helt. Se Figur 3-5.
 f. Uden at brænde kablet påføres varme (120°C) til krympning af materialet.

 ![Figur 3-5 Påføring af krympematerialet](image)

 g. Placér kabelafslutningens fastspændingsmuffe således, at den inderste ende flugter med krympematerialet.
 h. Fold stofafskærmningen eller nettet og afløbslederne over fastspændingsmuffen og cirka 3 mm forbi O-ringen. Se Figur 3-6.
Sammenkobling af transmitteren og sensoren

i. Montér kabelafslutningskernen i MVD-modulindkapslingens røråbning. Se Figur 3-7.

Figur 3-6 Føldning af stofafskærmningen

5. Indsæt ledningerne gennem kabelafslutningskernen, og saml kabelafslutningen ved at spænde kabelafslutningsmøtrikken.

6. Identificér lederne i 4-leder kablet. Det 4-leder kabel, der leveres af Micro Motion, består af ét par 0,75 mm2 (18 AWG) ledere (rød og sort), som skal bruges til VDC-tilslutningen, og ét par 0,35 mm2 (22 AWG) ledere (grøn og hvid), som skal bruges til RS-485 tilslutningen. Tilslut de fire ledere til de nummererede stik på MVD-modulet, så det passer til de tilsvarende nummererede terminaler på transmitteren. Se Figur 3-8.
16

Transmittermontering: Model 1500 og 2500 transmitter

Sammenkobling af transmitteren og sensoren

7. Sæt MVD-modulets dæksel på igen.

! FORSIGTIG

Vridning af MVD-modulet vil beskadige udstyret.
Vrid ikke MVD-modulet.

Underopgave 2 Tilslutning af sensoren til det fjernmonterede MVD-modul

! FORSIGTIG

Kontakt mellem afskærmningsafløbsledere og sensorsamplingsboksen genererer flowmålerfejl.
Afskærmningsafløbsledere må ikke komme i kontakt med sensorsamplingsboksen.

 • Følg vejledningerne for din kabeltype ved sensorenden.
 • Ved MVD-modulets ende følges de anvisninger, der følger med den pågældende kabeltype med en MVD-transmitter.
Sammenkobling af transmitteren og sensoren

2. Se Micro Motions Vejledning for klargøring og monterting af 9-leder flowmålerkabel for at tilslutte ledningerne, og følg anvisningerne til den pågældende sensor med en MVD-transmitter. Yderligere oplysninger vedrørende tilslutning af ledere ved MVD-modulet findes nedenfor:
 a. Identificér komponenterne, der er vist i Figur 2-6.
 b. Fjern slutmuffen.
 c. Sæt 9-leder kabel ind gennem installationsrørsåbningen.
 d. Tilslut ledningerne til de stik, som følger med MVD-modulet.
 e. Sæt stikkene i stikdåserne inden i den nedre rørledningsring. Se Figur 3-9.

Figur 3-9 9-leder kabel mellem sensor og MVD-modul

9-leder kabel fra sensor

MVD-modul
Sammenkobling af transmitteren og sensoren

 Ved anvendelse af kabel med kappe:

 Ved anvendelse af afskærmet eller armeret kabel:

 b. Jord kabelnettet i begge ender ved at afslutte det inden i kabelafslutningerne.

 c. Kontrollér, at pakningerne er hele, og smør alle O-ringe. Luk derefter samlingsboksens indkapsling og MVD-modulets slutmuffe, og spænd alle skruer til.

\[\text{\textbf{FORSIGTIG}}\]

Beskadigelse af de ledere, der tilslutter transmitteren til sensoren, genererer målingsfejl eller flowmålerfejl.

For at reducere risikoen for målingsfejl eller flowmålerfejl, når indkapslingerne på sensor og MVD-modul lukkes, skal det kontrolleres, at ledningerne ikke sidder i klemme.
Kapitel 4
I/O-kabelføring

4.1 Oversigt
Dette kapitel beskriver, hvordan man tilslutter I/O-terminaler for en model 1500 eller model 2500 transmitter.
Det er brugerens ansvar at kontrollere, at den specifikke installation overholder lokale og nationale sikkerhedskrav og regler om el-installationer.

4.2 I/O-muligheder
I/O-muligheder for transmitterens terminaler (kanaler) er vist i Tabel 4-1. I denne tabel:

- "Intern" henviser til, at terminalerne strømføres automatisk af transmitteren.
 I/O-kabelføring af intern strøm omfatter ikke opstilling og kabelføring af strømforsyning.

<table>
<thead>
<tr>
<th>Terminaler (kanal)</th>
<th>Model 1500 standard</th>
<th>Model 1500 med opfyldnings- og doseringsfunktion</th>
<th>Model 2500</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 og 22 (A)</td>
<td>mA1(1) (HART)</td>
<td>mA1(1) Intern</td>
<td>mA1(1) (HART) Intern</td>
</tr>
<tr>
<td>23 og 24 (B)</td>
<td>–</td>
<td>DO1(2) Intern eller ekstern</td>
<td>mA2(3) Intern</td>
</tr>
<tr>
<td>31 og 32 (C)</td>
<td>FO(3) Intern</td>
<td>DO2(2) Intern eller ekstern</td>
<td>FO(3) Intern</td>
</tr>
<tr>
<td>33 og 34 (D)</td>
<td>RS-485</td>
<td>DI(4) Intern eller ekstern</td>
<td>RS-485</td>
</tr>
</tbody>
</table>

(1) mA1 og mA2 henviser til hhv. de primære og de sekundære mA-udgange.
(2) DO1 og DO2 henviser til hhv. diskret udgang 1 og 2.
(3) Frekvensudgang.
(4) Diskret indgang.
4.3 Tilslutning af mA-udgangskabler

Følgende valgmuligheder vises:

- Grundlæggende kabelføring for mA-udgangskabler – Figur 4-1
- Kabelføring af HART/analog enkeltsløjfe – Figur 4-2
- Kabelføring af HART multidrop – Figur 4-3

Bemærk: For model 1500 standard og model 2500 transmittere kan HART-kommunikation være overlagt den primære mA-udgang. HART-kommunikation er ikke tilgængelig på model 1500 transmitteren med opfyldnings- og doseringsfunktionen.

Figur 4-1 Grundlæggende tilslutning af mA-udgangskabler

Figur 4-2 Kabelføring af HART/analog enkeltsløjfe
I/O-kabelføring

Figur 4-3 Kabelføring af HART multidrop med SMART FAMILY™ transmitters og et konfigureringsværktøj

![Diagram of HART multidrop setup]

Der kræves en sløjfstrømforsyning på 24 VDC til HART 4–20 mA passivtransmittere.

Bemærk: For at opnå optimal HART-kommunikation skal det sikres, at udgangssløjfen er enkeltpunktsjordet til en instrumentklassificeret jording.

4.4 Kabelføring af frekvensudgang

Følgende valgmuligheder vises:

- Intern strøm – Figur 4-4
- Ekstern strøm – Figur 4-5

Figur 4-4 Kabelføring af frekvensudgang – Intern strøm

![Diagram of frequency output setup]

Udgangsspændingen er +15 VDC ±3% med høj modstandsbelastning. Figur 4-11 viser udgangsspænding versus belastningsmodstand.
I/O-kabelføring

4.5 Kabelføring af diskret udgang

Følgende valgmuligheder vises:

- Intern strøm – Figur 4-6
- Ekstern strøm – Figur 4-7

FORSIGTIG

For høj strøm vil beskadige transmitteren.

Overskrider ikke indgang på 30 VDC. Strømmen på terminalen skal være mindre end 500 mA.

Figur 4-5 Kabelføring af frekvensudgang – Ekstern strøm
I/O-kabelføring

Figur 4-6 Kabelføring af diskret udgang – Intern strøm

Modtageenhed for diskret udgang
Figur 4-12 viser udgangsspænding versus belastning.

FORSIGTIG

For høj strøm vil beskadige transmitteren.
Overskrid ikke indgang på 30 VDC. Strømmen på terminalen skal være mindre end 500 mA.

Figur 4-7 Kabelføring af diskret udgang – Ekstern strøm

Maksimal sink-strøm: 500 mA
Figur 4-13 viser anbefalet modstand versus forsyningsspænding.
4.6 Kabelføring af diskret indgang

Følgende valgmuligheder vises:

- Intern strøm – Figur 4-8
- Ekstern strøm – Figur 4-9

Hvis indgangen er konfigureret til ekstern strøm, kan den få strøm direkte fra en PLC eller en anden anordning eller ved direkte tilslutning til vekselstrøm. Se Tabel 4-2 for indgangsspændingsområder.

Tabel 4-2 Indgangsspændingsområder for ekstern strøm

<table>
<thead>
<tr>
<th>VDC</th>
<th>Område</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–30</td>
<td>Højt niveau</td>
</tr>
<tr>
<td>0–0,8</td>
<td>Lavt niveau</td>
</tr>
<tr>
<td>0,8–3</td>
<td>Udefineret</td>
</tr>
</tbody>
</table>

Figur 4-8 Kabelføring af diskret indgang – Intern strøm

Figur 4-9 Kabelføring af diskret indgang – Ekstern strøm

(Se Tabel 4-2)
I/O-kabelføring

4.7 Tilslutning af RS-485 til en fjernhost
Se Figur 4-10 for et kabelføringsdiagram for tilslutning af RS-485 til en fjernhost. For informationer om tilslutning af en fjernhost, se Tabel 4-3.

Figur 4-10 Tilslutning til en fjernhost.

Tabel 4-3 Terminaltildelinger for Modbus/RS-485

<table>
<thead>
<tr>
<th>RS-485 signal</th>
<th>Model 1500/2500 terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>33</td>
</tr>
<tr>
<td>B</td>
<td>34</td>
</tr>
</tbody>
</table>

4.8 Skemaer over spænding og modstand

Figur 4-11 Udgangsspænding versus belastningsmodstand – Terminal 23 og 24 (Kanal B) – Intern strøm

Udgangsspænding i åbent kredsløb = 15 VDC ±3%
I/O-kabelføring

Figur 4-12 **Udgangsspænding versus belastningsmodstand – Terminal 31 og 32 (kanal B) – Intern strøm**

Udgangsspænding i åbent kredsløb = 15 VDC ±3%

![Udgangsspænding versus belastningsmodstand](image)

Figur 4-13 **Anbefalet pull-up-modstand versus forsyningsspænding – Ekstern strøm**

Bemærk: Hvis et relæ drives af en diskret udgang, vælges en ekstern pull-up-modstand, der begrænser strømmen til under 500 mA.

![Anbefalet pull-up-modstand versus forsyningsspænding](image)
Appendiks A
Specifikationer

A.1 Fysiske specifikationer

Tabel A-1 Maksimale kabellængder

<table>
<thead>
<tr>
<th>Specifikation</th>
<th>Model 1500 og 2500 transmitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indkapsling</td>
<td>Polyamid PA 6.6</td>
</tr>
<tr>
<td>Vægt</td>
<td>0,24 kg (0.52 lbs)</td>
</tr>
<tr>
<td>Dimensioner</td>
<td>Figurerne A-1 og A-2 viser dimensionerne for model 1500 eller 2500 transmitter og det fjernmonterede MVD-modul. Se sensorspecificationerne for oplysninger om sensorens dimensioner.</td>
</tr>
<tr>
<td>Montering og tilslutning af kabler</td>
<td>DIN-skinnetransmittere monteres på en 35 mm skinne. Skinnen skal være forbundet til jord.</td>
</tr>
<tr>
<td>Status LED</td>
<td>Trefarvet status LED på transmitterens front viser flowmålerens umiddelbare tilstand vha. et konstant grønt, gult eller rødt lys. Nulstilling i forløb vises ved et blinkende gult lys.</td>
</tr>
<tr>
<td>Nul-knap</td>
<td>En nul-knap på transmitterens front kan anvendes til at starte transmitterens nulstillingsproces.</td>
</tr>
</tbody>
</table>

Figur A-1 Transmitterens dimensioner

Dimensioner i mm (in.)

<table>
<thead>
<tr>
<th>Fra siden</th>
<th>Nedefra</th>
<th>DIN-skinne</th>
</tr>
</thead>
<tbody>
<tr>
<td>99 (3.90)</td>
<td>112 (4.41)</td>
<td>35 (1.39)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45 (1.78)</td>
</tr>
</tbody>
</table>
Specifikationer

Figur A-2 Dimensioner for MVD-modulet

Dimensioner i mm (in.)

- Ø111 (4 3/8)
- 144 (5 11/16)
- 2X 76 (3)
- 57 (2 1/4)
- 67 (2 5/8)
- 71 (2 13/16)
- 71 (2 13/16)
- 146 (5 3/4)

Rørmontering

- 1/2"–14 NPT
- ELLER
- M20 X 1,5

Vægmontering

- 116 (4 9/16)
- 64 (2 1/2)

Til midterlinje ved 50 mm (2 in.) rør

Bemærk: Disse dimensioner gælder kun for MVD-modulkomponenten i fjernmonteret MVD-modul med fjerntransmitterinstallationer. Se Figur 2-2.
Specifikationer

A.2 Funktionelle specifikationer

Tabel A-2 Elektriske forbindelser

<table>
<thead>
<tr>
<th>Indgangs-/udgangsforbindelser</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>To par (model 1500 standard) eller tre par (model 1500 med opfyldings- og doseringsfunktion, model 2500) kabelterminaler for transmitterkabler</td>
<td>Stikkene kan benytte snoede eller solide ledere, 0,20 til 3,5 mm² (24 til 12 AWG)</td>
</tr>
<tr>
<td>Ét par terminaler til digital kommunikation (Modbus/RS-485)</td>
<td>Stikkene kan benytte snoede eller solide ledere, 0,20 til 3,5 mm² (24 til 12 AWG)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strømtilslutning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>To par terminaler til strømtilslutning:</td>
<td>Hvert par kan modtagte DC-strøm.</td>
</tr>
<tr>
<td>• Det resterende par anvendes til jumperforbindelse til en anden transmitter.</td>
<td>Stikkene kan benytte snoede eller solide ledere, 0,20 til 3,5 mm² (24 til 12 AWG)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serviceportforbindelse</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ét par terminaler understøtter Modbus/RS-485-signalfunktionen eller serviceportfunktionen. Efter anordningen er startet op, har brugeren 10 sekunder til at tilslutte den i serviceporttilstand. Efter 10 sekunder er terminalerne automatisk i Modbus/RS-485-tilstand.</td>
<td>Stikkene kan benytte snoede eller solide ledere, 0,20 til 3,5 mm² (24 til 12 AWG)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MVD-modulforbindelse</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>To par terminaler til 4-leder forbindelsen til MVD-modulet:</td>
<td>Ét par anvendes til RS-485-forbindelsen til DVD-modulet.</td>
</tr>
<tr>
<td>• Ét par anvendes til RS-485-forbindelsen til DVD-modulet.</td>
<td>Ét par anvendes til tilføring af strøm til MVD-modulet.</td>
</tr>
<tr>
<td>Stikkene kan benytte snoede eller solide ledere, 0,20 til 3,5 mm² (24 til 12 AWG)</td>
<td>Stikkene kan benytte snoede eller solide ledere, 0,20 til 3,5 mm² (24 til 12 AWG)</td>
</tr>
</tbody>
</table>

Tabel A-3 Indgangs-/udgangssignaler

<table>
<thead>
<tr>
<th>Model 1500 standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Én aktiv 4–20 (mA)-udgang</td>
<td>• Ikke egensikker</td>
</tr>
<tr>
<td>• Isoleret til ±50 VDC fra alle andre udgange og jord</td>
<td>• Maksimal belastningsgrænse: 600 ohm</td>
</tr>
<tr>
<td>• Kan vise massflow eller volumenflow</td>
<td>• Udgang er lineær med proces fra 3,8 til 20,5 mA, pr. NAMUR NE43 (juni 1994)</td>
</tr>
<tr>
<td>Én aktiv frekvens/pulsudgang</td>
<td>• Ikke egensikker</td>
</tr>
<tr>
<td>• Rapporterer samme proces som er tilgængelig for mA-udgang</td>
<td>• Skalerbar til 10.000 Hz</td>
</tr>
<tr>
<td>• Udgangsspændingen er +15 VDC ±3% med en 2,2 kΩ intern pull-up-modstand</td>
<td>• Udgangen er lineær med flowraten op til 12.500 Hz</td>
</tr>
<tr>
<td>Én nul-knap, der anvendes til flowmålerens nulstillingsprocedure</td>
<td>Én nul-knap, der anvendes til flowmålerens nulstillingsprocedure</td>
</tr>
</tbody>
</table>
Specifikationer

Tabel A-3 Indgangs-/udgangssignaler fortsat

Model 1500 med opfyldnings- og doseringsfunktion

<table>
<thead>
<tr>
<th>Specifikation</th>
<th>Beskrivelse</th>
</tr>
</thead>
</table>
| Én aktiv 4–20 (mA)-udgang | • Ikke egensikker
• Isoleret til ±50 VDC fra alle andre udgange og jord
• Maksimal belastningsgrænse: 600 Ohm
• Kan rapportere masseflow eller volumenflow eller regulere diskret ventil eller analog ventil med 3 indstillinger.
• Udgangen er lineær med proces fra 3,8 til 20,5 mA, pr. NAMUR NE43 (juni 1994) |
| En eller to diskrete udgange | • Kanal B og C er konfigurerbare til diskrete udgange
• Kan rapportere opfyldning i gang eller svigt eller regulere diskret ventil
• Maksimal forbrugskapacitet er 500 mA
• Konfigurerbar til intern eller ekstern strøm:
 - Intern strømdrevet til 15 VDC ±3%, internt 2,2 kohm pull-up, eller
 - Eksternt strømdrevet til 3-30 VDC maksimum, aftager med op til 500 mA ved 30 VDC maksimum |
| Én diskret indgang | • Kanal C er konfigurerbar til en diskret indgang
• Konfigurerbar til intern eller ekstern strøm
• Kan bruges til at begynde opfyldning, afslutte opfyldning, holde pause i opfyldning, genoptage opfyldning, nulstille samlet opfyldning, nulstille samlet masse, nulstille samlet volumen eller nulstille alle samlede værdier (inkl. samlet påfyldning) |
| Én nul-knap, der anvendes til flowmålerens nulstillingsprocedure |

Specifikationer

Tabel A-3 Indgangs-/udgangssignaler fortsat

<table>
<thead>
<tr>
<th>Model 2500</th>
<th>En eller to aktive 4–20 (mA)-udgange</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Kanal A er altid en mA-udgang, kanal B er konfigurerbar til en mA-udgang</td>
</tr>
<tr>
<td></td>
<td>• Ikke egensikker</td>
</tr>
<tr>
<td></td>
<td>• Isoleret til ±50 VDC fra alle andre udgange og jord</td>
</tr>
<tr>
<td></td>
<td>• Maksimal belastningsgrænse:</td>
</tr>
<tr>
<td></td>
<td>- Kanal A: 820 ohm</td>
</tr>
<tr>
<td></td>
<td>- Kanal B: 420 ohm</td>
</tr>
<tr>
<td></td>
<td>• Kan vise masseflow, volumenflow, massefylde, temperatur eller drevforegølse;</td>
</tr>
<tr>
<td></td>
<td>API-aktiveret transmittere kan ligeledes vise standard volumenflow og massefylde ved referencetemperatur</td>
</tr>
<tr>
<td></td>
<td>• Udgange er lineære med proces fra 3,8 til 20,5 mA, pr. NAMUR NE43 (juni 1994)</td>
</tr>
<tr>
<td></td>
<td>Én aktiv eller passiv frekvens/pulsudgang</td>
</tr>
<tr>
<td></td>
<td>• Kanal B og C er konfigurerbare til frekvens/pulsudgange</td>
</tr>
<tr>
<td></td>
<td>• Hvis vist gennem både kanal B og kanal C, fungererden som dobbelt pulsudgang,</td>
</tr>
<tr>
<td></td>
<td>som viser, at en enkelt proces er tilgængelig. Kanalerne er elektrisk isoleret men</td>
</tr>
<tr>
<td></td>
<td>ikke uafhængige.</td>
</tr>
<tr>
<td></td>
<td>• Ikke egensikker</td>
</tr>
<tr>
<td></td>
<td>• Kan vise masseflow eller volumenflow, som kan benyttes til at vise flowrate eller total</td>
</tr>
<tr>
<td></td>
<td>• Skalerbar til 10.000 Hz</td>
</tr>
<tr>
<td></td>
<td>• Konfigurerbar til intern eller ekstern strøm:</td>
</tr>
<tr>
<td></td>
<td>- Internt strømdrevet til 15 VDC ±3%, internt 2,2 kohm pull-up, eller</td>
</tr>
<tr>
<td></td>
<td>- Eksternt strømdrevet til 3-30 VDC-maksimum, forbruger op til 500 mA ved</td>
</tr>
<tr>
<td></td>
<td>30 VDC maksimum</td>
</tr>
<tr>
<td></td>
<td>• Udgangen er lineær med flowraten op til 12.500 Hz</td>
</tr>
<tr>
<td></td>
<td>• Konfigurerbar polaritet: aktiv høj eller aktiv lav</td>
</tr>
</tbody>
</table>

	En eller to diskrete udgange
	• Kanal B og C er konfigurerbare til diskrete udgange
	• Kan vise event 1, event 2, event 1 og 2, flowretning, flowswitch og kalibrering i gang eller fejl
	• Maksimal forbrugskapacitet er 500 mA
	• Konfigurerbar til intern eller ekstern strøm:
	- Internt strømdrevet til 15 VDC ±3%, internt 2,2 kohm pull-up, eller
	- Eksternt strømdrevet til 3-30 VDC-maksimum, aftager med op til 500 mA ved
	30 VDC maksimum

	Én diskret indgang
	• Kanal C er konfigurerbar til en diskret indgang
	• Konfigurerbar til intern eller ekstern strøm
	• Kan anvendes til at starte flowmålerens nulstillingsprocedure, nulstille totalmassen, nulstille totalvolumen, nulstille korrigerede totalvolumen eller nulstille alle totaler

| | **Én nul-knap, der anvendes til flowmålerens nulstillingsprocedure** |
Specifikationer

Tabel A-4 Digitale kommunikationer

Serviceport Efter anordningen er startet op, kan terminal 33 og 34 indstilles til serviceportfunktion i 10 sekunder:
 - Modbus RTU-protokol
 - 38.400 baud
 - Ingen paritet
 - Én stopbit
 - Adresse=111

Modbus/RS-485 Efter 10 sekunder indstilles terminal 33 og 34 automatisk på Modbus/RS-485:
 - Modbus RTU eller Modbus ASCII-protokol (standard: Modbus RTU)
 - 1200 til 38.400 baud (standard: 9600)
 - Stopbit konfigurerbar (standard: én stopbit)
 - Paritet konfigurerbar (standard: ulige paritet)

HART/Bell202(1) HART Bell 202-signal lægger over mA-udgangen, og kan fås til hostsystem-interface
 - Frekvens 1,2 og 2,2 kHz
 - Amplitude 0,8 mA top-til-top
 - 1200 baud
 - Kræver en belastningsmodstand på 250 til 600 ohm

(1) Ikke tilgængelig sammen med model 1500 transmitter med opfyldnings- og doseringsfunktion.

Tabel A-5 Strømforsyning

Kræver DC-strom Overholder installationskategorien (overspænding) II, krav til forureningsgrad 2

Stromkrav 19,2 til 28,8 VDC, 6,3 watt maksimum
 Ved opstart skal transmitterens strømkilde levere minimum 1,0 ampere startstrøm
 pr. transmitter.
 Strømkables længde og lederdiameter skal være af en sådan størrelse, at det kan
 levere minimum 19,2 VDC ved strømterminalerne ved en belastningsmodstand på
 330 mA

Sikring IEC 1,6 A trægsikring

Tabel A-6 Miljøgrænser

Omgivelsetemperaturgrænser I drift: -40 til +55°C
 Opbevaring: -40 til +85°C
 Hvis temperaturen er over 45°C, og flere transmittere monteres, skal de monteres
 således, at afstanden mellem dem er på mindst 8,5 mm.

Fugtighedsgrænser 5 til 95% relativ fugtighed, ikke-kondenserende ved 60°C

Vibrationsgrænser Overholder IEC68.2.6, holdbarhedstest, 5 til 2000 Hz, 50 sweepcyklusser ved 1,0 g

Tabel A-7 Miljøeffekter

EMI-effekter Overholder EMC-direktivet 89/336/EØF i ht. EN 61326 Industrial
 I overensstemmelse med NAMUR NE21 (maj 1999)

Omgivelsetemperaturreffekt På analoge udgange ≤0,005% af spænd pr. °C
Specifikationer

A.3 Klassefikationer af farlige områder

Transmitteren er muligvis udstyret med en godkendelsesmærkat vedr. installation på farligt område, som angiver egnethed til de områder, som er beskrevet nedenfor.

Tabel A-8 Klassefikationer af farlige områder

<table>
<thead>
<tr>
<th>CSA(1) og C-US</th>
<th>Transmitter</th>
<th>Klasse I, div. 2, gruppe A, B, C og D ved installation i en egnet indkapsling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensor og tilslutning af sensoren til transmitter</td>
<td>Klasse I, afd. 1, gruppe C og D eller klasse II, afd. 1, gruppe E, F og G</td>
</tr>
</tbody>
</table>

ATEX(2)

<table>
<thead>
<tr>
<th>Alle CE 0575-modeller II(2) G [EEx ib] IIB/IIC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I forbindelse med ATEX-overholdelse er omgivelserstemperaturen begrænset til −40°C til 55°C.</td>
</tr>
</tbody>
</table>

(1) CSA er en canadisk godkendelsesinstans, som udsteder godkendelser, der anerkendes i både Canada og USA (C-US).

(2) ATEX er et europæisk direktiv.

A.4 Ydelsesspecifikationer

Se sensorspecifikationerne i forbindelse med ydelsesspecifikationerne.
Appendiks B

Returneringspolitik

Oplysninger om returneringsprocedurer og skemaer hertil kan hentes på vores websupportsystem på www.micromotion.com eller kan fås ved at ringe til Micro Motions kundeservice.

B.1 Nyt og ubrugt udstyr
Kun udstyr, som ikke er taget ud af sin originale forsendelsesemballage, vil blive anset som nyt og ubrugt. Nyt og ubrugt udstyr kræver et udfyldt skema til godkendelse af udstyrsreturnering.

B.2 Brugt udstyr.
Alt udstyr, som ikke er klassificeret som nyt og ubrugt, betragtes som brugt. Dette udstyr skal gennemgå en komplet dekontaminering og rengøring, inden det returneres.

Brugt udstyr skal vedlægges et udfyldt skema til godkendelse af udstyrsreturnering og en dekontamineringserklæring for alle procesvæsker, som har været i kontakt med udstyret. Hvis det ikke er muligt at udfylde en dekontamineringserklæring (f.eks. for procesvæsker i fødevareklassen), skal der i stedet vedlægges en erklæring, der certificerer dekontaminering og dokumenterer alle fremmedmaterialer, der har været i kontakt med udstyret.
Indeks

Numerics
4-leder fjernmonteringer
 kabelføringsvejledning 12
 opstilling 3
4-leder kabel 11
 maksimal længde 5
9-leder kabel 11
 maksimal længde 5

D
Digitale kommunikationer 32
Dimensioner
 MVD-modul 28
 transmitter 6
Diskret indgang
 karakteristika 31
Diskret udgang
 karakteristika 31
Dokumentationsmidler 2

E
Ekstern strøm 19
Elektriske forbindelser 29
EMI-effekter 32

F
Fjernmonteret MVD-modul med fjerntransmitter
 kabelføringsvejledning 13
 montering af MVD-modulet 7
 opstilling 4
Flowmåler
 komponenter 1
Frekvensudgang
 karakteristika
 model 1500 29
 model 2500 31
Fugtighedsbegrensninger 32
Funktionelle specifikationer 29
Fysiske specifikationer 27, 33

I
I/O-signaler 29
Installation
 4-leder fjern 3
 fjernmonteret MVD-modul med
 fjerntransmitter 4
 kabelføring af transmitterens I/O 19
 I/O-muligheder 19
 kabellængder 5
 opstilling 3
Intern strøm 19

J
Jording af
 flowmålerens komponenter 8

K
Kabelføring
 afstande 5
 diskret indgang 24
 diskret udgang 22
 fjernhost 25
 frekvensudgang 21
 HART multidrop 21
 HART-ekskelsløjfe 20
 I/O-muligheder 19
 mA-udgange 20
 transmitterens I/O 19
Kabelføringsvejledning
 4-leder fjernmonteringer 12
 fjernmonteret MVD-modul med
 fjerntransmitterinstallationer 13
Kabellængder 5
Kabeltyper 11
Klassifikationer af farlige områder 33
Kundeservice 2
Indeks

M
mA-udgang
 karakteristika
 model 1500 29
 model 2500 31
Micro Motion kundeservice 2
Miljøeffekter 32
Miljøgrænser 32
Montering
 4-leder fjernmonteringer 12
 dimensioner 6
 fjernmonteret MVD-modul med
 fjerntransmitterinstallationer 13
 flere transmittere 6
 kabeltyper 11
 MVD-modul 7
 oversigt 1
 procedure 3
 strøm 8
 strømkvadrat 4
MVD-modul
 dimensioner 28
 jording 8
 montering 7

N
Nul-knap
 Model 1500 29
 Model 2500 31

O
Omgivende temperaturreffekt 32

P
Placering, sådan bestemmes en passende 4

R
Returneringspolitik 35

S
Sensor
 jording 8
 returneringspolitik 35
Sikkerhedsmeddelelser 1
Specifikationer
 digitale kommunikationer 32
 elektriske forbindelser 29
 funktionelle 29
 fysiske 27, 33
 I/O-signaler 29
 klassifikationer af farlige områder 33
 miljøgrænser 32
 miljøeffekter 32
 strømforsyning 32
Strøm
 forsyning, specifikationer 32
 krav 4

T
Temperaturgrænser 32
Tilslutning
 af mA-udgangskabler 20
 til en fjernhost 25
Transmitter
 dimensioner 6, 27
 fysiske specifikationer 27, 33
 jording 8
 kabelføring af I/O 19
 I/O-muligheder 19
 intern sammenlignet med ekstern strøm 19
 montering 3
 returneringspolitik 35
 sammenkobling til sensor 11
 specifikationer 29

V
Vibrationsgrænser 32