Fisher™ 8560 Eccentric Disk Butterfly Control Valve

Contents
Introduction ... 1
Scope of Manual 1
Description .. 1
Specifications 2
Installation .. 3
Valve Orientation 5
Maintenance .. 9
Packing Maintenance 12
Seal Ring Maintenance for NPS 3 through 12 Only 16
Seal Ring Maintenance for NPS 2 21
Disk, Drive Shaft and Bearing Maintenance for NPS 3 through 12 Only 22
Disk, Drive Shaft and Bearing Maintenance for NPS 2 25
Actuator Mounting 26
Parts Ordering 28
Retrofit Kits for ENVIRO-SEAL™ Packing 29
Repair Kits for ENVIRO-SEAL Packing 29
Parts List ... 29

Figure 1. Fisher 8560 Valve with 1052 Actuator and DVC6000 Series Digital Valve Controller

Introduction

Scope of Manual

This instruction manual includes installation, maintenance, and parts information for NPS 2 through 12 8560 Eccentric Disk Butterfly Control Valves (see figure 1). Refer to separate instruction manuals for information covering the actuator and accessories.

Do not install, operate, or maintain 8560 valves without being fully trained and qualified in valve, actuator, and accessory installation, operation, and maintenance. To avoid personal injury or property damage, it is important to carefully read, understand, and follow all the contents of this manual, including all safety cautions and warnings. If you have any questions about these instructions, contact your Emerson sales office before proceeding.

Description

The seal design of the 8560 eccentric disk high performance butterfly valve provides excellent shutoff capability. The valve includes PTFE-filled or graphite packing rings that electrically bond the shaft to the valve body. This valve has a spline drive shaft end, and soft or metal seal rings for use in a wide variety of applications.
Table 1. Specifications

<table>
<thead>
<tr>
<th>Valve Size and End Connection Styles</th>
<th>Flow Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPS 2, 3, 4, 6, 8, 10, and 12 valves and in Wafer or Single flanged style (NPS 2 available in wafer only)</td>
<td>Approximately linear</td>
</tr>
</tbody>
</table>

Maximum Inlet Pressure

Carbon Steel and Stainless Steel Valve Bodies: Consistent with CL150 and 300 pressure/temperature ratings per ASME B16.34 unless limited by material temperature capabilities. NPS 2 is also consistent with CL600.

Maximum Pressure Drops

Consistent with CL150 and 300 pressure-temperature ratings per ASME B16.34 except for PTFE, UHMWPE and Phoenix III seals which are derated at some higher pressure-temperature values. Refer to figure 2

Shutoff Classifications

- **PTFE, Reinforced PTFE, and UHMWPE (3) Seals**: Bidirectional shutoff to Class VI per ANSI/FCI 70-2 and IEC 60534-4.
- **NPS 2 Metal Seal**: Bidirectional shutoff. 0.001% of maximum valve capacity (1/10) of Class IV per ANSI/FCI 70-2 and IEC 60534-4. Maximum Pressure drop is 51 bar (740 psi) forward and 6.9 bar (100 psi) reverse.
- **NOVEX Seal**: For NPS 3 through 12. Unidirectional shutoff is 0.0001% of maximum valve capacity (1% of Class IV) in the reverse flow direction per ANSI/FCI 70-2 and IEC 60534-4.
- **Phoenix III Seal**: For NPS 3 through 12. Bidirectional shutoff to Class VI per ANSI/FCI 70-2 and IEC 60534-4. For the optional Phoenix III Fire-Tested seal, consult your Emerson sales office.

1. The pressure/temperature limits in this manual and any applicable standard or code limitation for valves should not be exceeded.
2. For components selection and applicable fire tested standards and codes, consult your Emerson sales office.
3. UHMWPE stands for ultra high molecular weight polyethylene.

Flow Characteristics

- Approximately linear

Disk Rotation

Clockwise to close (when viewing from the drive shaft end) through 90 degrees of disk rotation (see figure 10)

Flow Direction

See figure 3

Actuator/Valve Action

With the diaphragm or piston actuators, the valve action is field-reversible. Refer to information in the Installation section.

Valve Classification

Face-to-face dimensions of NPS 3 through 12 are in CL150 and 300, and meet API 609 or MSS-SP-68 standards for face-to-face dimensions of wafer-style and single flange valves.

Shaft Diameters

See table 2

Approximate Weights

See table 2

ENVIRO-SEAL Packing

This optional PTFE or graphite packing system provides excellent sealing, guiding, and transmission of loading forces to control liquid and gas emissions (see figure 8). See bulletin 59.3:041 ENVIRO-SEAL Packing System for Rotary Valves (D101638X012) for more information.
Table 2. Valve Size, Shaft Diameter, and Approximate Weight

<table>
<thead>
<tr>
<th>VALVE SIZE, NPS</th>
<th>CLASS</th>
<th>SHAFT DIAMETER</th>
<th>APPROXIMATE WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mm</td>
<td>Inches</td>
</tr>
<tr>
<td>2</td>
<td>150/300/600</td>
<td>12.7</td>
<td>1/2</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>12.7</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>15.9</td>
<td>5/8</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>15.9</td>
<td>5/8</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>19.1</td>
<td>3/4</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
<td>19.1</td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>25.4</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>150</td>
<td>25.4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>31.8</td>
<td>1-1/4</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>31.8</td>
<td>1-1/4</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>38.1</td>
<td>1-1/2</td>
</tr>
<tr>
<td>12</td>
<td>150</td>
<td>38.1</td>
<td>1-1/2</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>44.5</td>
<td>1-3/4</td>
</tr>
</tbody>
</table>

Installation

The valve is normally shipped as part of a control valve assembly, with the power actuator mounted on the valve. If the valve or actuator have been purchased separately, or if the actuator has been removed for maintenance, mount the actuator on the valve, and adjust actuator travel before inserting the valve body into the line. This is necessary due to the measurements that must be made during the actuator calibration adjustment process. Refer to the Actuator Mounting section of this manual to mount the actuator on the valve. Refer to the actuator instruction manual for mounting and adjusting instructions before proceeding.

⚠️ WARNING

Always wear protective gloves, clothing, and eyewear when performing any installation operations to avoid personal injury.

To avoid personal injury or property damage resulting from the sudden release of pressure, do not install the valve assembly where service conditions could exceed the limits given in this manual, the limits on the appropriate nameplates, or the matching pipe flange rating. Use pressure-relieving devices as required by government or accepted industry codes and good engineering practices.

Check with your process or safety engineer for any additional measures that must be taken to protect against process media.

If installing into an existing application, also refer to the WARNING at the beginning of the Maintenance section in this instruction manual.

⚠️ WARNING

The valve configuration and construction materials are selected to meet particular pressure, temperature, pressure drop, and controlled fluid conditions. Responsibility for the safety of process media and compatibility of valve materials with process media rests solely with the purchaser and end-user. Since some valve body/trim material combinations are limited in their pressure drop and temperature range capabilities, do not apply any other conditions to the valve without first contacting your Emerson sales office.
Table 3. Maximum Allowable Inlet Pressure for M35-1 and CW2M Valve Bodies\(^{(1)}\)

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>M35-1</th>
<th>CW2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>150 Bar</td>
<td>150 Bar</td>
</tr>
<tr>
<td>-46 to 38</td>
<td>15.8</td>
<td>15.8</td>
</tr>
<tr>
<td>93</td>
<td>13.8</td>
<td>13.8</td>
</tr>
<tr>
<td>149</td>
<td>13.1</td>
<td>13.1</td>
</tr>
<tr>
<td>204</td>
<td>12.7</td>
<td>12.7</td>
</tr>
<tr>
<td>260</td>
<td>11.7</td>
<td>11.7</td>
</tr>
<tr>
<td>150</td>
<td>300 Bar</td>
<td>300 Bar</td>
</tr>
<tr>
<td>-46 to 38</td>
<td>41.3</td>
<td>41.3</td>
</tr>
<tr>
<td>93</td>
<td>36.5</td>
<td>36.5</td>
</tr>
<tr>
<td>149</td>
<td>34.1</td>
<td>34.1</td>
</tr>
<tr>
<td>204</td>
<td>33.1</td>
<td>33.1</td>
</tr>
<tr>
<td>260</td>
<td>32.8</td>
<td>32.8</td>
</tr>
<tr>
<td>600</td>
<td>82.7</td>
<td>82.7</td>
</tr>
<tr>
<td>150</td>
<td>17.9</td>
<td>17.9</td>
</tr>
<tr>
<td>149</td>
<td>15.9</td>
<td>15.9</td>
</tr>
<tr>
<td>204</td>
<td>13.8</td>
<td>13.8</td>
</tr>
<tr>
<td>260</td>
<td>11.7</td>
<td>11.7</td>
</tr>
<tr>
<td>150 Bar</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>150 Bar</td>
<td>17.9</td>
<td>17.9</td>
</tr>
<tr>
<td>150 Bar</td>
<td>15.9</td>
<td>15.9</td>
</tr>
<tr>
<td>150 Bar</td>
<td>13.8</td>
<td>13.8</td>
</tr>
<tr>
<td>150 Bar</td>
<td>11.7</td>
<td>11.7</td>
</tr>
<tr>
<td>150 Bar</td>
<td>51.7</td>
<td>51.7</td>
</tr>
<tr>
<td>150 Bar</td>
<td>50.3</td>
<td>50.3</td>
</tr>
<tr>
<td>150 Bar</td>
<td>48.6</td>
<td>48.6</td>
</tr>
<tr>
<td>150 Bar</td>
<td>45.9</td>
<td>45.9</td>
</tr>
<tr>
<td>150 Bar</td>
<td>103.4</td>
<td>103.4</td>
</tr>
<tr>
<td>150 Bar</td>
<td>100.3</td>
<td>100.3</td>
</tr>
<tr>
<td>150 Bar</td>
<td>97.2</td>
<td>97.2</td>
</tr>
<tr>
<td>150 Bar</td>
<td>91.7</td>
<td>91.7</td>
</tr>
</tbody>
</table>

\(^{(1)}\) M35-1 and CW2M valve material are not included in ASME B16.34 pressure/temperature ratings. The designations 150 and 300 for this valve material are used only to indicate relative pressure/retaining capabilities and are not ASME pressure/temperature rated classes.

\(^{(2)}\) CL600 is only available in the NPS 2.

Table 4. Construction Material Temperature Limits\(^{(1)}\)

<table>
<thead>
<tr>
<th>COMPONENTS AND MATERIALS OF CONSTRUCTION</th>
<th>TEMPERATURE LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Valves Body Material / Disk / Shaft Material</td>
<td>-29 to 427</td>
</tr>
<tr>
<td>Carbon Steel / CF8M / S17400</td>
<td>-29 to 427</td>
</tr>
<tr>
<td>Carbon Steel / CF8M / S20910</td>
<td>-73 to 427</td>
</tr>
<tr>
<td>CF8M / CF8M / S17400</td>
<td>-198 to 538</td>
</tr>
<tr>
<td>CG8M / CG8M / S20910</td>
<td>-198 to 538</td>
</tr>
<tr>
<td>Bearing Material</td>
<td>-73 to 260</td>
</tr>
<tr>
<td>PEEK / PTFE lined</td>
<td>-198 to 538</td>
</tr>
<tr>
<td>Metal (NOVEX or Phoenix III only)</td>
<td>-46 to 232</td>
</tr>
<tr>
<td>Packing Material</td>
<td>-18 to 93</td>
</tr>
<tr>
<td>PTFE V-Rings</td>
<td>-46 to 232</td>
</tr>
<tr>
<td>Graphite rings (NOVEX or Phoenix III only)</td>
<td>-198 to 538</td>
</tr>
<tr>
<td>Seal Ring</td>
<td>-46 to 232</td>
</tr>
<tr>
<td>PTFE (Standard) Soft Seal Ring</td>
<td>-46 to 232</td>
</tr>
<tr>
<td>Reinforced PTFE Soft Seal Ring</td>
<td>-46 to 232</td>
</tr>
<tr>
<td>UHMWPE Soft Seal Ring</td>
<td>-18 to 93</td>
</tr>
<tr>
<td>NOVEX Metal Seal Ring</td>
<td>-46 to 538</td>
</tr>
<tr>
<td>Phoenix III Metal Seal Ring</td>
<td>-40 to 232</td>
</tr>
<tr>
<td>Fluorocarbon backup ring</td>
<td>-40 to 232</td>
</tr>
</tbody>
</table>
| Phoenix III Fire-Tested\(^{(2)}\) Metal Seal Ring | -40 to 232\(^{(2)}\) | -40 to 450\(^{(2)}\)

\(^{(1)}\) Refer to Ordering Matrix for 8560 Valves. For selection temperatures not shown above, contact your Emerson sales office.

\(^{(2)}\) For component selection and applicable fire-tested standards and codes, consult your Emerson sales office.

1. Install a three-valve bypass around the control valve assembly if continuous operation is necessary during inspection and maintenance of the valve.
2. Inspect the valve to be certain that it is free of foreign material.

CAUTION

Be certain that adjacent pipelines are free of any foreign material, such as pipe scale or welding slag, that could damage the valve sealing surfaces.
Valve Orientation

When installing the valve, it is recommended that the valve drive shaft be horizontal as shown in figure 1.

Note

Due to its weight, the 1052 size 70 actuator must be externally supported when mounted in a horizontal position.

Valve Direction

The high performance butterfly valve is designed to allow flow in either direction when in the open position. When in the closed position, high pressure should be applied to a specific side of the disk to provide best performance and optimal valve life (see list of seal types below). See figure 3.

Applications with bi-directional seals, such as soft or Phoenix III, under normal operating conditions can (at different times) experience pressure in both directions; the highest of the two pressures should be exerted on the preferred side of the disk. If the two pressures are equal, then the one lasting the longest period of time should be applied to the preferred side.

1. For PTFE, Reinforced PTFE, and UHMWPE seal rings: This seal is bidirectional. For optimal performance, high pressure should be applied to the front (retaining ring side) of the disk.

2. For metal seal rings:
 a. NOVEX seal: The NOVEX seal is uni-directional. High pressure at the closed position MUST be at the back (waterway side) of the disk.
 b. Phoenix III Seal: This seal is bidirectional. For best performance, high pressure at the closed position should be applied to the back (waterway side) of the disk.
 c. NPS 2 Seal: The preferred direction of installation is with high pressure at the front (retaining ring side) of the disk. Reverse shutoff is permissible at lower pressure (see the specifications table).
Figure 3. Flow Direction

NOTES:
1. By Emerson Automation Solutions definition:
 - Forward flow is into the face side of the disk.
 - Reverse flow is into the hub side of the disk.

Table 5. Special Spiral Wound Gasket Dimensions, Inches

<table>
<thead>
<tr>
<th>Valve Size, NPS</th>
<th>Class</th>
<th>Gasket Internal Diameter</th>
<th>Gasket Outside Diameter</th>
<th>Centering Outside Diameter(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>150</td>
<td>4.25</td>
<td>5.00</td>
<td>5.375</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>4.25</td>
<td>5.00</td>
<td>5.875</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>5.25</td>
<td>6.125</td>
<td>6.875</td>
</tr>
<tr>
<td>4</td>
<td>300</td>
<td>5.25</td>
<td>6.125</td>
<td>7.125</td>
</tr>
</tbody>
</table>

1. Dimension per API 601 and ASME 16.5 flanges.
Table 6. Stud Bolt and Hex Head Cap Screw Data(1)

<table>
<thead>
<tr>
<th>VALVE SIZE, NPS</th>
<th>WAFER STYLE</th>
<th></th>
<th></th>
<th>SINGLE FLANGE STYLE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CL150</td>
<td>CL300</td>
<td>CL150</td>
<td>CL300</td>
<td>CL150</td>
<td>CL300</td>
</tr>
<tr>
<td></td>
<td>No. of Stud Bolts</td>
<td>Size Dia Inch & Thread</td>
<td>A Dimension, Inch</td>
<td>No. of Stud Bolts</td>
<td>Size Dia Inch & Thread</td>
<td>A Dimension, Inch</td>
</tr>
<tr>
<td>2(2)</td>
<td>4</td>
<td>5/8-11</td>
<td>5</td>
<td>8</td>
<td>5/8-11</td>
<td>5.25</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5/8-11</td>
<td>5.75</td>
<td>8</td>
<td>3/4-10</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>5/8-11</td>
<td>6</td>
<td>8</td>
<td>3/4-10</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>3/4-10</td>
<td>6.5</td>
<td>12</td>
<td>3/4-10</td>
<td>7.5</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>3/4-10</td>
<td>7</td>
<td>12</td>
<td>7/8-9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>7/8-9</td>
<td>8</td>
<td>16</td>
<td>1-8</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>7/8-9</td>
<td>8.5</td>
<td>16</td>
<td>1-1/8-8</td>
<td>11</td>
</tr>
</tbody>
</table>

1. Thread engagement in accordance with ASME B31.3.
2. The NPS 2 valve is only available in wafer style and is multirated to CL150, 300 and 600. The CL600 stud bolts require 8 bolts, have a dia. of 5/8-11, and are 6 inches long.

Figure 4. Stud Bolts and Cap Screws for Installation (also see table 6)

Installing the Valve in the Pipeline

⚠️ WARNING

The edges of a rotating disk have a shearing effect that may result in personal injury. To help prevent such injury, stay clear of the disk edges when rotating the disk (key 3, figure 14).

⚠️ CAUTION

Damage to the disk will occur if any pipe flanges or piping connected to the valve interfere with the disk rotation path. If the piping flange has a smaller inner diameter than what is specified for schedule 80 piping, measure carefully to be certain the disk rotates without interference before putting the valve into operation.

⚠️ CAUTION

Damage to the disk (key 3) sealing surfaces may occur if the disk is not closed when the valve is being removed from the pipeline. If necessary, use a temporary pressure source on the actuator to retain the disk in the closed position while removing the valve from the pipeline.
1. For Fail-Open Actuators: It will be necessary to provide a temporary loading pressure to the actuator diaphragm to move the valve disk to the closed position. Observe the above Warning when closing the valve. If a loading pressure is required, use caution when working with the valve. If the loading pressure is disconnected, the disk will open rapidly.

2. With the disk in the closed position, install line flange gaskets, and install the valve between the pipeline flanges.

WARNING

If spiral wound gaskets are to be used with an NPS 3 or 4 CL150 or 300 single flange valve, special spiral wound gaskets conforming to the dimensions listed in the table 5 MUST be used. Improperly sized gaskets may increase the likelihood of 1) excessive seat leakage, 2) damage due to contact with valve internals, and 3) external leakage; which may result in personal injury and/or property damage due to a sudden increase or decrease of pressure within - or release of pressure from - the pipeline. The special dimension spiral wound gaskets can be obtained from your local spiral wound gasket vendor.

Note

The remaining single flange valve sizes (NPS 6 through 12) and all wafer style valves (NPS 2 through 12) use the standard size spiral wound gaskets. Only the single flange valves in the sizes and pressures listed in table 5 require special spiral wound gaskets.

Select the appropriate gaskets for the application. Flat sheet, spiral wound (NPS 6 through 12), or other gasket types made to ASME 16.5 group or a user's standards can be used for 8560 valves depending on the service conditions and applications.

3. Install the flange studs:

Note

Lubricate line flange studs or bolts before inserting them into flanges. If necessary, provide additional support for the control valve assembly because of its combined weight.

- **Flange studs**: Install two or more line flange studs into the line flanges to help hold the valve in position while centering the valve. Carefully center the valve on the flanges to ensure disk clearance.

Figure 5. Optional Shaft-to-Valve Body Bonding Strap Assembly
Select and install two pipe line gaskets.

- **Flange Cap Screws:** If line flange cap screws are used, be certain the cap screw threads engage the tapped holes to a depth equal to the flange cap screw diameter.

4. Install the remaining line flange bolting to secure the valve in the pipeline. Tighten the nuts to the line flange studs, or cap screws, in a crisscross pattern to ensure proper alignment of valve, gaskets, and flanges.

Packing Adjustment and Shaft Bonding

WARNING

Personal injury could result from packing leakage. Valve packing was tightened before shipment; however the packing might require some readjustment to meet specific service conditions. Check with your process or safety engineer for any additional measures that must be taken to protect against process media.

CAUTION

Use caution when tightening packing follower nuts because over-tightening the nuts will accelerate wear and could produce higher rotating friction loads on the valve stem.

1. For PTFE or graphite packing: tighten standard packing follower nuts only enough to prevent shaft leakage. Excessive tightening of packing will accelerate wear and could produce higher rotating friction loads on the valve stem. If necessary, refer to the Packing Maintenance section.
2. **ENVIRO-SEAL Packing System** will not require this initial re-adjustment. Refer to the separate ENVIRO-SEAL Packing System for Rotary Valves instruction manual (D101643X012) for repair and replacement procedures.
3. For hazardous atmosphere or oxygen service valves, read the following Warning, and provide the bonding strap assembly mentioned below if the valve is used in an explosive atmosphere.

WARNING

The valve drive shaft is not necessarily grounded to the pipeline when installed. Personal injury or property damage could result from an explosion caused by a discharge of static electricity from the valve components if the process fluid or the atmosphere around the valve is flammable. To avoid personal injury or property damage, make sure the valve is grounded to the pipeline before placing the valve assembly into service.

Standard PTFE packing is composed of a partially conductive carbon-filled PTFE female adaptor with PTFE V-ring packing. Standard graphite packing is composed of all conductive graphite ribbon packing rings. Alternate shaft-to-valve bonding is available for hazardous service areas where the standard packing is not sufficient to bond the shaft to the valve (see the following step).

For oxygen service applications it is necessary to provide alternate shaft-to-valve body bonding according to the following step.

4. Attach the bonding strap assembly (key 131, figure 5) to the shaft with the clamp (key 130, figure 5), and connect the other end of the bonding strap assembly to the valve with the cap screw (key 22, figure 5).
5. For more information, refer to the Packing Maintenance subsection below.

Maintenance

Valve parts are subject to normal wear and must be inspected and replaced as necessary. The frequency of inspection and replacement depends upon the severity of service conditions. Instructions are given in this section for replacing...
packing, seal ring, disk, shaft, bearings, and other valve parts. Also, instructions are provided for changing valve action, mounting, and adjusting the actuator. Refer to the actuator instruction manual for additional information for mounting and adjusting the actuator.

CAUTION

It is possible to damage the valve if the actuator travel stops are not properly adjusted before stroking the valve.

WARNING

Avoid personal injury or property damage from sudden release of process pressure or bursting of parts. Before performing any maintenance operations:

- Do not remove the actuator from the valve while the valve is still pressurized.
- Always wear protective gloves, clothing, and eyewear when performing any maintenance operations to avoid personal injury.
- Disconnect any operating lines providing air pressure, electric power, or a control signal to the actuator. Be sure the actuator cannot suddenly open or close the valve.
- Use bypass valves or completely shut off the process to isolate the valve from process pressure. Relieve process pressure from both sides of the valve. Drain the process media from both sides of the valve.
- Vent the pneumatic actuator loading pressure and relieve any actuator spring precompression.
- Use lock-out procedures to be sure that the above measures stay in effect while you work on the equipment.
- The valve packing box may contain process fluids that are pressurized, even when the valve has been removed from the pipeline. Process fluids may spray out under pressure when removing the packing hardware or packing rings, or when loosening the packing box pipe plug.
- The edges of a rotating disk have a shearing effect that may result in personal injury. To help prevent such injury, stay clear of the disk edges when rotating the disk (key 3).
- Check with your process or safety engineer for any additional measures that must be taken to protect against process media.

CAUTION

During any of the following steps, do not rotate the disk past 90 degrees in the open direction. Rotating the disk past 90 degrees can damage the seal ring.

Stopping Leakage

For PTFE-filled or graphite standard packing arrangements covered in this manual, often leakage from the packing can be stopped by tightening the packing flange nuts just enough to stop the leak.

CAUTION

Use caution when tightening the nuts because over-tightening the nuts can damage packing box parts.
If tightening the packing flange nuts does not stop the leakage, use the following procedures to remove the control valve assembly from the pipeline. Remove the actuator when removing and replacing packing parts.

- If the leakage comes from the outside diameter of the packing box, it is possible that the leakage is caused by nicks or scratches on the packing box wall. Carefully inspect the packing box bore and valve drive shaft when the packing is removed. Use the following steps to remove the actuator and to remove and replace the packing parts.

Removing the Actuator

1. Isolate the control valve from the line pressure, release pressure from both sides of the valve body, and drain the process media from both sides of the valve. If using a power actuator, also shut off all pressure lines to the power actuator, and release all pressure from the actuator. Use lock-out procedures to be sure that the above measures stay in effect while you work on the equipment.

CAUTION

Damage to the disk (key 3) sealing surfaces may occur if the disk is not closed when the valve is being removed from the pipeline. If necessary to overcome spring force, use a temporary pressure source on the actuator to close the disk. Also, maintain the pressure to retain the disk in the closed position while removing the valve from the pipeline.

2. Be sure the disk is in the closed position before attempting to remove the valve from the pipeline or flanges.

WARNING

The edges of a rotating disk close with a shearing effect that may result in personal injury. To help prevent such injury, stay clear of the disk edges when rotating the disk (key 3).

For Fail-Open Actuators: It will be necessary to provide a temporary loading pressure to the actuator diaphragm to move the valve disk to the closed position. Observe the above Warning when closing the valve. If a loading pressure is required, use caution when working with the valve. If the loading pressure is disconnected, the disk will open rapidly.

Figure 6. Lever-Shaft Orientation

3. With the disk in the closed position, remove line bolting, remove the control valve assembly from the pipeline, and place it on a flat working surface with the seal retainer ring facing up.

4. If a grounding strap is used (see figure 5), remove the hex nut to release the end of the strap. Remove the clamp (key 130) and strap (key 131).

5. Note the orientation of the actuator with respect to the valve body (see figure 6), and remove the actuator cover to note the lever orientation with respect to the valve drive shaft (see figure 7).

When re-assembling the control valve assembly, you will need to correctly position the marks on the end of the valve drive shaft and the valve body with respect to the actuator case and lever arm. Refer to the Actuator Mounting section and figure 7 for the location of the marks on the valve drive shaft end. Additional information is provided in the actuator manual to assist with disassembly, re-assembly, and travel adjustments. When removing the valve drive shaft from the actuator lever, do not loosen the actuator turnbuckle adjustment. Remove the cap screw from the actuator lever (figure 7).

CAUTION

When removing the actuator from the valve, do not use a hammer or similar tool to drive the actuator lever off the valve shaft. Driving the lever off the valve shaft could damage the disk, seal ring, bearings or valve body.

If necessary, use a wheel puller to remove the actuator lever from the valve shaft. It is okay to tap the wheel puller screw lightly to loosen the lever, but hitting the screw with excessive force could damage the disk, seal ring, bearings or valve body.

6. Remove the actuator mounting screws (key 14, figure 14).

7. Remove the valve from the actuator.

Packing Maintenance

Standard graphite packing is composed of all conductive packing rings. PTFE-filled packing has a partially conductive packing ring (such as a carbon-filled PTFE female adaptor) to electrically bond the shaft to the valve body.

If the valve is equipped with the optional ENVIRO-SEAL Packing System, refer to the separate ENVIRO-SEAL Packing System for Rotary Valves instruction manual (D101643X012) for packing maintenance procedures.

When replacing the packing, it is recommended to remove the control valve assembly from the pipeline because valve/actuator adjustments must be made with the valve out of the pipeline.

Disassembly

Key numbers and part locations are shown in figure 8 unless otherwise noted.

1. Remove the packing flange nuts (key 101) and the packing flange (key 102).

2. Remove the old packing rings, using a formed hook.

CAUTION

Carefully use the hook. Avoid damaging the drive shaft or packing box wall. Scratches on valve surfaces can cause leakage. (Note: the packing box ring (Key 107) can remain in place when replacing packing only.)

3. Clean all accessible metal parts and surfaces to remove particles that would prevent the packing from sealing.
Assembly
Inspect the shaft: If it is damaged, it cannot make a good seal with the packing, and it must be replaced. If the leakage comes from the outside diameter of the packing, it is possible that the leakage is caused by nicks or scratches around the packing box wall. Inspect the packing box wall for nicks and scratches when performing the following procedures.

If the valve is equipped with the ENVIRO-SEAL packing system refer to the ENVIRO-SEAL Packing System for Rotary Valves instruction manual for assembly.

Note
Except with oxygen service, lightly lubricate new PTFE V-rings with a silicone-base lubricant to aid in assembly.

⚠️ WARNING
Do not lubricate parts when used in oxygen service, or where the lubrication is incompatible with the process media. Any use of lubricant can lead to the sudden explosion of media due to the oil/oxygen mixture, causing personal injury or property damage.
Figure 7. Actuator Mounting Styles and Positions (continued)

<table>
<thead>
<tr>
<th>ACTUATOR MOUNTING STYLE</th>
<th>VALVE CLOSED</th>
<th>MOUNTING POSITION 1</th>
<th>MOUNTING POSITION 2</th>
<th>MOUNTING POSITION 3</th>
<th>MOUNTING POSITION 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>STYLE A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIGHT-HAND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STYLE B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEFT-HAND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STYLE C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STYLE D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Arrow on lever indicates direction of actuator thrust to open valve.
2. F - Forward Flow; R - Reverse Flow
Figure 8. Packing Arrangements

STANDARD PACKING

PTFE V-RING PACKING
PACKING FOLLOWER (KEY 102)
PACKING SET (KEY 105)
PACKING RING (KEY 108)
PACKING BOX RING (KEY 107)
GRAPHITE RIBBON PACKING

ENVIRO-SEAL PTFE PACKING SYSTEM

PTFE V-RING PACKING
PACKING FOLLOWER (KEY 102)
SPRING PACK ASSEMBLY (KEY 103)
ANTI-EXTRUSION RING (KEY 106)
PACKING SET (KEY 105)
Packing Flange Nut (KEY 101)
LUBRICANT (KEY 113)
Packing Flange Stud (KEY 100)
Packing Box Ring (KEY 107)

ENVIRO-SEAL GRAPHITE PACKING SYSTEM

PTFE V-RING PACKING
PACKING FOLLOWER (KEY 102)
SPRING PACK ASSEMBLY (KEY 103)
Packing Set (KEY 105)
Packing Flange Nut (KEY 101)
LUBRICANT (KEY 113)
Packing Flange Stud (KEY 100)
Packing Box Ring (KEY 107)

NOTE:
INCLUDES ZINC WASHERS FOR GRAPHITE RIBBON PACKING ONLY

11B5895-A
10B6817-A
42B8445-B
C0785-1
1. Install the new packing parts (see figure 8). Install the packing follower and finger tighten the packing flange nuts onto the studs only enough to stop leakage.

2. If the valve was equipped with a bonding strap assembly (figure 5), re-install the assembly.

3. Refer to the Actuator Mounting section of this manual. If necessary, refer to the separate actuator instruction manual for adjustment procedures.

4. When the control valve is being placed into operation, check around the packing follower for leakage.

For PTFE-filled or graphite standard packing arrangements covered in this manual, leakage from the packing can often be stopped by tightening the packing flange nuts just enough to stop the leak.

CAUTION

Use caution when tightening the nuts. Overtightening the nuts can damage packing box parts and result in increased drive shaft friction.

Seal Ring Maintenance for NPS 3 through 12

Perform this procedure if the control valve is not shutting-off properly (if it is leaking downstream). It is recommended, but not required, to remove the actuator for easier handling of the valve during the following procedures.

CAUTION

During any of the following steps, do not rotate the disk past 90 degrees in the open direction. Rotating the disk past 90 degrees can damage the seal ring.

Figure 9. Retainer Ring Knock-Out Flat

Key numbers are shown in figure 14 unless otherwise noted.

Disassembly

Refer to the Removing the Actuator section. Most maintenance procedures will require the actuator to be removed.
1. Remove the retainer ring (key 2, figure 10):
 For valves with press-fit retainer rings:
 - Place the valve on blocks with the seal retainer facing down. (Note: Position blocks so they do not restrict the retainer ring removal.)
 - Rotate the disk to the open position as shown in figure 9.
 - Locate one of the knock-out points machined on the retainer ring. Using a hammer and flat end punch on the knock-out point, pop out the retainer ring from the valve body.

 CAUTION
 When popping out the retainer ring, be very careful to hit only the knock-out points. Hitting anywhere else can cause non-repairable damage to the t-slot area.

 - Clean all sealing surfaces and parts before re-assembly.
 For valves with screwed retainer rings
 - Place the valve on blocks with the seal retainer facing up.
 - Remove the retainer ring screws (key 17). If necessary, use two of the retainer screws in the tapped holes in the retainer ring (key 2, figure 14) to jack the retainer ring loose from the valve body surface.

2. Remove the seal ring from the valve body seal ring slot.
 For valves with PTFE seal rings, remove the spring (key 5) as it may be necessary to re-install the spring into the new PTFE seal ring.
 For valves with metal seals, remove the gasket (key 16) from the valve body surface, and discard it as replacement is recommended.

3. If it is necessary to replace the disk, drive shaft, and the bearings, refer to that section below before proceeding with the assembly procedures for the seal ring and retainer. The seal ring could be damaged if it is in place while removing the disk.

Assembly
Place the valve on blocks with the seal retainer facing up. If the replacement disk, shaft, and bearings have not been installed in the valve body, go to the proper assembly procedures to install them.

CAUTION
Do not install the seal ring without the disk being in place. The seal ring could be damaged while installing the disk.

WARNING
Do not lubricate parts when used in oxygen service, or where the lubrication is incompatible with the process media. Any use of lubricant can lead to the sudden explosion of media due to the oil/oxygen mixture, causing personal injury or property damage.
CAUTION

Do not rotate the disk past 90 degrees in the open direction. Rotating the disk past 90 degrees can damage the seal ring or other component parts.

Note

PTFE, NOVEX, and Phoenix III seal rings used in other valve types are not interchangeable with seal rings used in the 8560 valve. The 8560 seal rings are not interchangeable with seal rings in any other valve type. To order seal rings for this valve, provide the serial number on the valve.

1. Installing PTFE seal rings:
 a. The valve disk should be open while installing the seal ring. If not, rotate the disk to the open position as shown in figure 10.
 b. Hook the spring ends together, insert the spring (see figure 11) into the groove in the seal ring, and work the spring into the recess in the PTFE seal ring.
 c. Install the seal ring assembly into the slot in the valve body as shown in figure 11. Refer to Installing the retainer ring steps below.
2. Installing metal seals:

Note
For metal seals only, it may be necessary to apply a dry film lubricant or equivalent moly disulfide to the sealing surfaces of the disk, seal and the seal retainer groove. Prior to applying the lubricant the sealing surfaces should be inspected for injurious defects. Surfaces can be polished using a scuffing hand pad or equivalent. The edge of the seal that contacts the retaining ring groove should also be inspected and polished if necessary.

Note
Use the appropriate lubrication on parts when used in oxygen service, or where the lubrication is incompatible with the process media.

a. Rotate the disk to the open position as shown in figure 10.
CAUTION

The seal ring will be damaged if the disk remains in the closed position during seal and retainer ring assembly.

b. Install the metal seal ring assembly (see figure 11).

3. Installing the retainer ring:
 a. Valves with PTFE seal rings do not require a retainer ring gasket (key 16).
 b. Valves with metal seals require a retainer ring gasket (key 16).

CAUTION

When handling the new retainer ring gasket, be sure to avoid kinking, cracking, or breaking the gasket. Damage to the gasket can cause leakage between the seal retainer and valve body.

c. Lay the gasket (key 16) down so that it is accurately centered on the valve body.

4. For valves with press-fit retainer rings
 a. Wipe excessive oil off the retainer ring outside diameter, and off the retainer counterbore in the valve body.
 b. Rotate the disk to the open position.
 c. Lay the retainer ring on the valve body.
 d. Use a press, or a soft-faced hammer to press the retainer ring into its groove in the valve body.

CAUTION

It takes a considerable amount of force with a hammer to drive the retainer ring into place. Be sure not to damage retainer ring surfaces when installing the ring.

e. The retainer ring is properly seated when the face of the retainer ring is flush with the face of the valve body.

f. To ensure proper seal performance for metal seals, you may need to use the hammer to drive the disk open for the first few times. When closing the valve, use the C-clamps discussed in the next few steps.

CAUTION

Do not damage the gasket seating surfaces on either the valve body or the retainer ring when installing or removing the C-clamps. Protect the gasket surface by using a soft material between the clamp and valve body/retaining ring serrations to avoid damage.
g. Use three C-clamps to hold the retainer in place. Locate one of the C-clamps near the travel stop in the valve body, and the other two at 120 degrees from the stop.

h. When cycling the disk for the first three times, use a dead-blow hammer with a soft head to drive the disk closed. Also, you may need to use the hammer to drive the disk open for the first few times.

5. For valves with screwed retainer rings

a. Match the retainer ring with the holes in the valve by punching two holes in the gasket to locate where the screw holes are in the valve.

b. Lay the retainer ring over the gasket, while lining it up with the punched holes. Also insert two retainer screws (key 17). Finger tighten them.

c. Press the remaining screws through the gasket material and finger tighten them. When all retainer screws are in place, tighten them in a crisscross pattern.

d. The retainer ring is properly seated when the retainer face is nearly flush with the face of the valve.

6. Turn the disk into and out of the seal ring several times, to help break in the seal and reduce actuator torque requirements during adjustment.

7. If replacing the packing, remove all packing parts from the valve body. Upon re-assembly of the valve, refer to the Packing Maintenance procedures to replace the packing.

Seal Ring Maintenance for NPS 2

This procedure is to be performed if the control valve is not shutting off properly (that is, leaking downstream). This procedure does not require removing the actuator from the valve body. Part key numbers are shown in figure 15.

⚠️ WARNING

Refer to the WARNING at the beginning of the Maintenance section in this instruction manual.

1. Isolate the control valve from line pressure, and relieve pressure from the valve body. Shut off and disconnect all lines from the power actuator.

⚠️ WARNING

The edges of a rotating disk have a shearing effect that may result in personal injury. To help prevent such injury, stay clear of the disk edges when rotating the disk (key 3).

⚠️ CAUTION

Damage to the disk (key 3) may occur if the disk is not closed when the valve is being removed from the pipeline. If necessary, pressure the actuator temporarily to retain the disk in the closed position while removing the valve from the pipeline.

2. Unscrew the flange bolts, and remove the valve from the pipeline.
3. Unscrew the machine screws (key 17), and remove the seal retainer (key 2). Also remove the retainer clip (key 30).

4. Remove the seal ring or seal ring assembly (key 4). The spring (key 5) is removed with a PTFE seal ring.

5. For 316 stainless steel seal ring assemblies, replace the gaskets (key 4C) if the entire seal ring assembly is not replaced. Scrape off the old gaskets from both sides of the seal ring and the seal ring sides of the valve body (key 1) and seal retainer. Clean the gasket surfaces.

6. Reconnect or mount the actuator (if it was removed) before proceeding.

For an actuator with adjustable travel, also adjust the actuator before proceeding. This is necessary due to the measurements that must be made during the actuator adjustment process.

Refer to the Actuator Mounting section of this manual and to the separate actuator instruction manual for mounting and adjusting instructions.

7. The valve should be closed during seal ring installation to permit accurate centering of the seal. To install the new seal ring:

 For a PTFE seal, if the spring (key 5) was disassembled, hook the spring ends together. Work the spring into the recess in the seal ring (key 4). Install the seal ring and spring assembly into the recess in the valve body as shown in figure 15. For a complete 316 stainless steel seal ring assembly, install the seal ring assembly as shown in figure 15.

 CAUTION

 New seal ring gaskets (key 4C) are very fragile and must be handled very carefully to avoid gasket kinking, cracking, or breakage that can cause leakage between the seal ring, seal retainer, and valve body. To avoid gasket damage, make sure that the valve body is lying flat so that the gaskets do not shift before the following steps are completed.

8. For a 316 stainless steel seal ring on which the gaskets will be replaced, lay the following parts down in order so that they are accurately centered on the valve body: one new gasket; the seal ring oriented as shown in figure 15; and the second new gasket.

9. Attach the seal retainer and, if used, the retainer clips and washers to the valve body and secure with the machine screws. Tighten the machine screws evenly so as not to crack or break the 316 stainless steel seal ring gaskets, if used.

Be certain the disk is closed before installing the valve according to the Installation section of this instruction manual.

Disk, Drive Shaft, and Bearing Maintenance for NPS 3 through 12

This procedure is to be performed when replacing the valve disk, drive shaft, taper pins, hollow pins, and bearings due to wear or damage to one or more component parts.

Key numbers are shown in figure 14 unless otherwise noted.

Disassembly

1. Loosen the packing flange nuts (key 101). This allows the drive shaft (key 8) to turn without the friction caused by the packing.

2. Remove the actuator using the steps provided in the Removing the Actuator procedures above, and remove the seal ring using the steps provided in the seal ring maintenance procedures above.

3. Place the valve on a flat working surface with the seal ring slot facing down.

4. Use blocks to raise the valve body high enough to allow the disk to be rotated to the fully open position (see figure 10).
5. Rotate the disk (key 3) to the fully open position.

6. Locate the small ends of the taper pins. Drive the two taper pins (key 10) out towards the larger end of the pins.
 (Note: Attempting to drive the taper pins in the opposite direction only tightens the pins.) Also, remove the hollow
 pins (key 9) from the disk/shaft connection using the tool shown in figure 13.

 Note
 Make the tools for removal and installation of the hollow pin shown in figure 13.

7. Unscrew and remove the packing flange nuts (key 101), and the packing flange (key 102).

 WARNING
 Once the shaft has been removed in the following step, the disk may fall out of the valve body cavity. To avoid personal
 injury and property damage, support the disk to prevent it from falling as the shaft is being removed.

8. Pull the shaft out of the valve body, and remove the disk (key 3) from the valve body bore.

9. If the packing is to be replaced, remove all the packing parts from the valve body. Upon re-assembly of the valve,
 refer to the Packing Maintenance procedures to replace the packing parts.

10. Remove both of the bearings (key 6) from the valve body. For CL150 valves with metal bearings, refer to the
 following note.

 Note
 CL150 valves with metal bearing assemblies have three parts. A disk spacer, bearing, and bearing spacer (keys 7, 6, and 13) are
 used in place of a single piece bearing. The disk spacers may fall out of the valve when the disk is removed. If needed for
 re-assembly, retain disk spacer and bearing spacer parts.

11. Clean all the sealing surfaces and parts, and inspect and/or obtain replacements before assembly.

Assembly

1. Install the bearings (key 6):

 When installing the bearings in the opposite side of the valve body bore, repeat the following procedures.

 - **For PEEK/PTFE CL150 and CL300 metal bearings, one piece bearings:** Position the bearing edge to match the valve
 body bore, and insert the one piece bearing/disk spacer into the bearing bore with the bearing tab facing away from
 the disk stop as shown in figure 12.

 - **For CL150 metal bearings, three piece assemblies:** Bearings for CL150 valves are an assembly made up of three
 parts: disk spacer, bearing, and bearing spacer (keys 7, 6, and 13) as shown in the metal bearing detail shown in
 figure 14.

 a. Install the bearing spacer (key 13) into the bearing bore.

 b. Install the bearing into the bearing bore until the bearing is flush with the valve body bore.
c. When installing the disk spacer (key 7) position the curved side to match the valve body bore, and position it with the tab on the spacer pointing away from the disk stop as shown in figure 12.

Note
The disk spacer will have to be held in place when installing the disk and inserting the shaft through the valve body, bearings, bearing spacer, and disk. To help hold the spacer in place, apply some lubricant.

CAUTION

To avoid product damage, protect the disk sealing surfaces while inserting the disk into the valve body bore.

2. Position the disk to be certain that the holes in the disk are towards the actuator side of the valve. Carefully insert the disk into the valve body bore while protecting the disk sealing surfaces.

3. Install the shaft (key 8):
 - For PEEK/PTFE CL150 and CL300 metal bearings, one piece bearings: Slide the shaft through the valve body bore and bearing. Position the disk as stated above and slide the shaft through the disk and outer bearing. Refer to step 4 below.
 - For CL150 metal bearings, three piece assemblies: Slide the shaft into the valve body bore and bearing spacer. Position the disk spacer as stated above and hold it in place. Slide the shaft through the bearing and into the disk. Position the second disk space, and hold it in place. Slide the shaft through the disk spacer and into the outer bearing.

Installing the hollow pin and taper pin

4. Place the valve body on a flat working surface with the slot for the seal ring facing up. Block the valve body high enough to allow the disk to be rotated into the open position as shown in figure 13.

Figure 12. Orientation of Bearing/Spacer Tab

![Diagram of Bearing/Spacer Tab](image)

5. Rotate the disk to the open position. On the end of the drive shaft, locate the disk position mark on the end of the drive shaft. Rotate the shaft until it is in the appropriate disk position as shown in figure 13.

Note
Make sure the taper and hollow pins are free of particulate matter before continuing.
6. Line-up both holes in the disk hub with the holes in the drive shaft (key 8). (Note: The hole in the drive shaft is off-set to prevent the shaft from being installed in the wrong position. Be sure the hole in the shaft is lined up with the hole in the disk hub.)

7. Insert the hollow pins (key 9), into the disk hub as shown in figure 13.

Using the tool shown in figure 13, tap the hollow pin down into the disk hub and shaft until the hollow pin bottoms on the stop in the disk.

8. Insert the taper pins (key 10) into the hollow pins. Using a flat end punch, drive the taper pins into the hollow pins until solid contact is felt. Anchor the pins in place by staking them with a center-punch and hammer. The disk and shaft should rotate smoothly.

9. Install the seal ring assembly using the appropriate instructions in the Seal Ring Maintenance procedures.

10. Install the packing parts using the appropriate instructions provided in the Packing Maintenance procedures. Refer to the Actuator Mounting procedures before installing the valve in the pipeline.

Disk, Shaft Assembly and Bearing Maintenance for NPS 2

This procedure is to be performed to replace the valve disk, shaft, and taper pin assembly if the disk does not rotate in response to rotation of the actuator end of the valve shaft. Unless otherwise indicated, part key numbers are shown in figure 15.

Disassembly

1. Remove the seal ring according to steps 1 through 5 of the Replacing Seal Ring section.

CAUTION

Use a wheel puller to separate actuator parts from the valve shaft. Driving the parts off the valve shaft could move the valve bearings and disk away from the centered position, damaging the disk and valve body.

2. Remove the cap screws and, if used, the hex nuts. Remove the clamp if the strap is used. Remove the actuator from the valve body while referring to the separate actuator instruction manual for assistance.

3. Rotate the disk (key 3) to the fully open position.

4. Locate the half of the disk that has two C markings cast into it as shown in figure 10. Drive the two taper pins (key 3C) out toward the C-marked side of the disk. Attempting to drive the taper pins in the opposite direction only tightens the pins.

5. Unscrew and remove the packing flange nuts (key 101), packing followers (key 114), and packing flanges (key 102) if used, from both sides of the valve.

WARNING

Once the shaft has been removed in the following step, the disk may fall from the valve. To avoid personal injury and disk damage, support the disk to prevent it from falling as the shaft is being removed.

6. Pull the shaft out through the actuator side of the valve.

7. Remove the disk from the valve body.

8. Remove the packing rings (key 108), the packing washers (key 115) if used, and the packing box ring (key 107).
9. If either of the bearings (key 6) require maintenance or replacement, remove them.

CAUTION

When replacing a valve disk or shaft, a new disk/shaft/taper pin assembly (key 3) should be used. Using a new disk with a used shaft requires drilling and reaming new taper pin holes in the shaft. The extra set of taper pin holes weakens the shaft and may cause it to fail in service.

10. Clean the packing boxes and metal packing box parts.

Assembly

1. Drop in the new bearings. Make sure to orient the tab in the bearing with the slot in the seal.
2. Insert the disk into the valve body. Be certain the taper pin holes in the disk are on the actuator side of the valve. Also be certain the letter C stamped on either face of the disk is on the same side of the valve as the letter C stamped on the outside of the valve (figure 10).
3. Slide the shaft through the valve body and disk.
4. Install the disk and spacers into the valve body. Insert the shaft into the valve body and through the disk.
5. Slide the shaft all the way into the valve body.
6. To ensure that the direction of taper in the shaft taper pin holes matches that of the disk taper pin holes, temporarily install the packing follower (key 114) or, if used, the packing flange (key 102) with rotation tag (key 19). With the disk fully opened, rotate the shaft until the line on the end of the shaft indicates the open position, as shown in figure 10. Insert the taper pins (key 3C), small end first, into the taper pin holes on the C-marked side of the disk. Do not drive in the pins. Remove the packing follower or flange.

Actuator Mounting

Re-install the seal ring and packing rings using the appropriate procedures before installing the actuator on the valve. Mount the actuator on the valve body in accordance with the instructions in the actuator instruction manual and this section.

In the Packing Maintenance/Removing the Actuator steps, you should have noted the position of the mark on the end of the valve shaft, and its relationship to the actuator shaft. If not, determine the configuration needed to match your application.

Be certain that the disk is rotating counterclockwise to open when viewed from the actuator side of the valve, and that the disk is not rotated beyond its limits.

1. Orientate the valve drive shaft correctly to match the actuator or handlever position, and install it into the actuator and actuator lever arm until the mounting pads mate with each other.
2. Tighten the actuator-mounting cap screws (key 14, figure 14) to the appropriate bolt torque from table 7.

CAUTION

The valve disk stop, in the valve body bore is not to be used as a power actuator travel stop (see figure 9). Use the actuator travel stops to limit the rotation of the valve disk. It is possible to damage the valve component parts if full actuator thrust is applied to the valve disk stop.

For actuators with an adjustable turnbuckle, such as the 1051, 1052, or 1061 actuator, the turnbuckle must be adjusted so that the valve is closed (determined by measuring as shown in figure 7) when the diaphragm or piston is against the actuator travel stop.

For manually operated actuators or actuators without adjustable linkage, such as the 1066 or 1066SR actuator, make certain that the travel of the actuator stops before the disk rotates past the closed position.
REMOVAL TOOL DIMENSIONS

<table>
<thead>
<tr>
<th>Shaft Diameter</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.7 mm</td>
<td>3.91</td>
<td>28.43</td>
<td>6.35</td>
<td>4.19</td>
</tr>
<tr>
<td>15.88 mm</td>
<td>4.60</td>
<td>38.10</td>
<td>7.87</td>
<td>5.41</td>
</tr>
<tr>
<td>19.05 mm</td>
<td>5.13</td>
<td>44.45</td>
<td>9.65</td>
<td>7.26</td>
</tr>
<tr>
<td>25.4 mm</td>
<td>7.00</td>
<td>59.44</td>
<td>12.70</td>
<td>9.78</td>
</tr>
<tr>
<td>31.75 mm</td>
<td>9.50</td>
<td>76.20</td>
<td>19.05</td>
<td>11.10</td>
</tr>
<tr>
<td>38.1 mm</td>
<td>10.82</td>
<td>88.90</td>
<td>19.05</td>
<td>12.65</td>
</tr>
<tr>
<td>44.45 mm</td>
<td>12.37</td>
<td>114.30</td>
<td>22.35</td>
<td>12.65</td>
</tr>
</tbody>
</table>

INSTALLATION TOOL DIMENSIONS

<table>
<thead>
<tr>
<th>Shaft Diameter</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.7 mm</td>
<td>12.7</td>
<td>6.35</td>
<td>4.19</td>
<td>127.0</td>
<td>4.83</td>
</tr>
<tr>
<td>15.88 mm</td>
<td>12.7</td>
<td>5.41</td>
<td>4.19</td>
<td>127.0</td>
<td>4.83</td>
</tr>
<tr>
<td>19.05 mm</td>
<td>12.7</td>
<td>5.41</td>
<td>4.19</td>
<td>127.0</td>
<td>4.83</td>
</tr>
<tr>
<td>25.4 mm</td>
<td>12.7</td>
<td>7.26</td>
<td>9.78</td>
<td>127.0</td>
<td>4.83</td>
</tr>
<tr>
<td>31.75 mm</td>
<td>19.05</td>
<td>10.00</td>
<td>13.59</td>
<td>146.0</td>
<td>6.35</td>
</tr>
<tr>
<td>38.1 mm</td>
<td>19.05</td>
<td>11.10</td>
<td>15.24</td>
<td>146.0</td>
<td>6.35</td>
</tr>
<tr>
<td>44.45 mm</td>
<td>19.05</td>
<td>31.21</td>
<td>16.76</td>
<td>146.0</td>
<td>6.35</td>
</tr>
</tbody>
</table>

Table 7. Recommended Bolt Torques for Actuator/Mounting Cap Screws and Nuts

<table>
<thead>
<tr>
<th>VALVE SIZE, NPS</th>
<th>RECOMMENDED BOLT TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N-m</td>
</tr>
<tr>
<td>CL150 Valves</td>
<td></td>
</tr>
<tr>
<td>2(1), 3, 4, 6, & 8</td>
<td>88</td>
</tr>
<tr>
<td>10 & 12</td>
<td>135</td>
</tr>
<tr>
<td>CL300 Valves</td>
<td></td>
</tr>
<tr>
<td>2, 3, 4, & 6</td>
<td>88</td>
</tr>
<tr>
<td>8 & 10</td>
<td>135</td>
</tr>
<tr>
<td>12</td>
<td>183</td>
</tr>
</tbody>
</table>

1. Value for NPS 2 also applies to CL600 Valves.
Note
To obtain proper shutoff, the closed position of the A41/8560 valves must be set with the disk parallel to the retaining ring. Don't use the disk stop to set the actuator travel stops.

3. Adjust the actuator travel stop to limit the open and closed positions of the valve disk. (If necessary, refer to the actuator instruction manual for more information about adjustments.) Do not use the disk stop as a actuator travel stop as discussed in the Caution above.

4. For actuators with adjustable turnbuckles, adjust the turnbuckle to bring the disk to the fully closed position at the end of the actuator stroke. If necessary, refer to the appropriate actuator instruction manual for assistance.

5. If using a manual handwheel or handlever actuator, refer to the appropriate actuator instruction manual for mounting positions and adjustments.

6. To determine the fully closed disk position (zero degrees of disk rotation), measure the distances between the positions on the disk face as shown in figure 10. Use the actuator to rotate the disk while re-checking the two measurements. Repeat adjustment until the two measurements are equal.

Parts Ordering
When corresponding with your Emerson sales office about this equipment, always mention the valve serial number.

⚠️ WARNING
Use only genuine Fisher replacement parts. Components that are not supplied by Emerson Automation Solutions should not, under any circumstances, be used in any Fisher valve, because they may void your warranty, might adversely affect the performance of the valve, and could cause personal injury and property damage.

ENVIRO-SEAL Packing Arrangements
Retrofit kits and repair kits are listed in the tables below. For additional parts and repair information, refer to the ENVIRO-SEAL Packing System for Rotary Valves instruction manual (D101643X012) or contact your Emerson sales office for assistance.
Repair Kits for ENVIRO-SEAL Packing

Repair kits include replacement parts for key 105 and 106 for the shaft diameters listed below.

ENVIRO-SEAL Packing Repair Kits

<table>
<thead>
<tr>
<th>SHAFT DIAMETER(1)</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.7</td>
<td>1/2</td>
</tr>
<tr>
<td>15.9</td>
<td>5/8</td>
</tr>
<tr>
<td>19.1</td>
<td>3/4</td>
</tr>
<tr>
<td>25.4</td>
<td>1</td>
</tr>
<tr>
<td>31.8</td>
<td>1-1/4</td>
</tr>
<tr>
<td>38.1</td>
<td>1-1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>Packing set</td>
</tr>
<tr>
<td>106</td>
<td>Anti-extrusion washer</td>
</tr>
</tbody>
</table>

1. Diameter through the packing box.

Retrofit Kits for ENVIRO-SEAL Packing

Retrofit kits include new parts for the key numbers listed in the table below (see figure 8 for part locations).

ENVIRO-SEAL Packing Retrofit Kits

<table>
<thead>
<tr>
<th>SHAFT DIAMETER(1)</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.7</td>
<td>1/2</td>
</tr>
<tr>
<td>15.9</td>
<td>5/8</td>
</tr>
<tr>
<td>19.1</td>
<td>3/4</td>
</tr>
<tr>
<td>25.4</td>
<td>1</td>
</tr>
<tr>
<td>31.8</td>
<td>1-1/4</td>
</tr>
<tr>
<td>38.1</td>
<td>1-1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Packing stud</td>
</tr>
<tr>
<td>101</td>
<td>Packing nut</td>
</tr>
<tr>
<td>102</td>
<td>Packing flange</td>
</tr>
<tr>
<td>103</td>
<td>Spring pack assembly</td>
</tr>
<tr>
<td>105</td>
<td>Packing set</td>
</tr>
<tr>
<td>106</td>
<td>Anti-extrusion washer</td>
</tr>
<tr>
<td>107</td>
<td>Packing box ring</td>
</tr>
<tr>
<td>111</td>
<td>Tag</td>
</tr>
<tr>
<td>112</td>
<td>Tie cable</td>
</tr>
</tbody>
</table>

1. Diameter through the packing box.

Parts List

Note

For part ordering information contact your Emerson sales office.

Key

- 1 Valve Body
 - If you need a new valve body, order by valve size, serial number and desired material.
- 2* Seal Retainer
- 3 Valve Disk, NPS 3 through 12
- 3 Disk/Shaft Assembly, NPS 2 only
- 3A Shaft, NPS 2 only
- 3B Valve Disk, NPS 2 only
- 3C Taper Pin, NPS 2 only (2 req'd)
- 4* Seal Ring
- 4C Gasket, Included in 2-inch NOVEX Seal Ring
- 5* Spring
- 6* Bearing (2 req'd)
- 7* Disk Spacer (2 req'd)
 - w/ Metal Bearings, CL150 only
- 8* Drive Shaft
- 9* Hollow Pin
- 10* Taper Pin
- 11 Adaptor Plate
- 12 Socket Head Cap Screw (4 req'd)
- 13* Bearing Spacer (2 req'd)
 - w/ Metal Bearings, CL150 only
- 14 Hex Head Cap Screw (4 req'd)
- 14 Stud Bolt (4 req'd)
- 15* Backup Ring
- 16* Gasket, w/ Metal and Phoenix III seals
- 17 Hex Socket Cap Screw
- 18 Mfg Label
- 19 Drive Screw, w/ nameplate
- 20 Hex Nut (4 req'd)
- 21 Nameplate
- 22 Lead Seal & Wire
- 23 Bottom Cap, 12-inch only
- 24 Bottom Cap Stud, 12-inch only
- 25 Bottom Cap Hex Nut, 12-inch only
- 27 Bottom Cap Gasket, 12-inch only
- 29 Flow Arrow, 3- through 12-inch
- 30 Retainer Clip, 2-inch only

*Recommended spare parts
Packing

Note
Parts in this section are listed by shaft diameter (inches).

<table>
<thead>
<tr>
<th>SHAFT DIAMETER</th>
<th>VALVE SIZE CL150</th>
<th>VALVE SIZE CL300</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>2 & 3</td>
<td>2</td>
</tr>
<tr>
<td>5/8</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3/4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>1-1/4</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>1-1/2</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>1-3/4</td>
<td>---</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Packing Stud (2 req’d)</td>
</tr>
<tr>
<td>101</td>
<td>Packing Nut (2 req’d)</td>
</tr>
<tr>
<td>102</td>
<td>Packing Flange</td>
</tr>
<tr>
<td>103</td>
<td>Spring Pack Assembly, ENVIRO-SEAL & FFKM</td>
</tr>
<tr>
<td>105*</td>
<td>Packing Set</td>
</tr>
<tr>
<td>106*</td>
<td>Anti-Extrusion Ring, ENVIRO-SEAL PTFE (2 req’d)</td>
</tr>
<tr>
<td>107*</td>
<td>Packing Box Ring</td>
</tr>
<tr>
<td>108*</td>
<td>Packing Ring (4 req’d)</td>
</tr>
<tr>
<td>111</td>
<td>Tag</td>
</tr>
<tr>
<td>114</td>
<td>Packing Follower</td>
</tr>
<tr>
<td>115*</td>
<td>Packing Washer (3 req’d)</td>
</tr>
</tbody>
</table>

*Recommended spare parts
Figure 14. Valve Assembly for NPS 3 through 12

NOTE:
KEYS 21, 22, AND 28 ARE NOT SHOWN.
Figure 14. Valve Assembly for NPS 3 through 12 (Continued)

NOTE:
KEY NUMBERS NOT SHOWN ARE 21, 22, AND 115

SINGLE FLANGE-STYLE VALVE
Figure 15. Valve Assembly for NPS 2

NOTE: PARTS 21 AND 22 NOT SHOWN