Introduction

The product covered in this document is no longer in production; it has been a Supported product since October 2013. This document, which includes the latest published version of the instruction manual, is made available to provide updates of newer safety procedures. Be sure to follow the safety procedures in this supplement as well as the specific instructions in the included instruction manual.

Part numbers in the included instruction manual should not be relied on to order replacement parts. For replacement parts, contact your Emerson sales office.

For more than 20 years, Fisher products have been manufactured with asbestos-free components. The included manual might mention asbestos containing parts. Since 1988, any gasket or packing which may have contained some asbestos, has been replaced by a suitable non-asbestos material. Replacement parts in other materials are available from your sales office.

Safety Instructions

Please read these safety warnings, cautions, and instructions carefully before using the product.

These instructions cannot cover every installation and situation. Do not install, operate, or maintain this product without being fully trained and qualified in valve, actuator and accessory installation, operation and maintenance. To avoid personal injury or property damage it is important to carefully read, understand, and follow all of the contents of
this manual, including all safety cautions and warnings. If you have any questions about these instructions, contact your Emerson sales office before proceeding.

Specifications

This product was intended for a specific range of service conditions—pressure, pressure drop, process and ambient temperature, temperature variations, process fluid, and possibly other specifications. Do not expose the product to service conditions or variables other than those for which the product was intended. If you are not sure what these conditions or variables are, contact your Emerson sales office for assistance. Provide the product serial number and all other pertinent information that you have available.

Inspection and Maintenance Schedules

All products must be inspected periodically and maintained as needed. The schedule for inspection can only be determined based on the severity of your service conditions. Your installation might also be subject to inspection schedules set by applicable governmental codes and regulations, industry standards, company standards, or plant standards.

In order to avoid increasing dust explosion risk, periodically clean dust deposits from all equipment.

When equipment is installed in a hazardous area location (potentially explosive atmosphere), prevent sparks by proper tool selection and avoiding other types of impact energy. Control Valve surface temperature is dependent upon process operating conditions.

⚠️ WARNING

Control valve surface temperature is dependent upon process operating conditions. Personal injury or property damage, caused by fire or explosion, can result if the valve body surface temperature exceeds the acceptable temperature for the hazardous area classification. To avoid an increase of instrumentation and/or accessory surface temperature due to process operating conditions, ensure adequate ventilation, shielding, or insulation of control valve components installed in a potentially hazardous or explosive atmosphere.

Parts Ordering

Whenever ordering parts for older products, always specify the serial number of the product and provide all other pertinent information that you can, such as product size, part material, age of the product, and general service conditions. If you have modified the product since it was originally purchased, include that information with your request.

⚠️ WARNING

Use only genuine Fisher replacement parts. Components that are not supplied by Emerson Automation Solutions should not, under any circumstances, be used in any Fisher product. Use of components not supplied by Emerson Automation Solutions may void your warranty, might adversely affect the performance of the product and could result in personal injury and property damage.
Installation

WARNING

Avoid personal injury or property damage from sudden release of process pressure or bursting of parts. Before mounting the product:

- Do not install any system component where service conditions could exceed the limits given in this manual or the limits on the appropriate nameplates. Use pressure-relieving devices as required by government or accepted industry codes and good engineering practices.
- Always wear protective gloves, clothing, and eyewear when performing any installation operations.
- Do not remove the actuator from the valve while the valve is still pressurized.
- Disconnect any operating lines providing air pressure, electric power, or a control signal to the actuator. Be sure the actuator cannot suddenly open or close the valve.
- Use bypass valves or completely shut off the process to isolate the valve from process pressure. Relieve process pressure from both sides of the valve.
- Vent the pneumatic actuator loading pressure and relieve any actuator spring precompression so the actuator is not applying force to the valve stem; this will allow for the safe removal of the stem connector.
- Use lock-out procedures to be sure that the above measures stay in effect while you work on the equipment.
- The valve packing box might contain process fluids that are pressurized, *even when the valve has been removed from the pipeline*. Process fluids might spray out under pressure when removing the packing hardware or packing rings, or when loosening the packing box pipe plug. Cautiously remove parts so that fluid escapes slowly and safely.
- The instrument is capable of supplying full supply pressure to connected equipment. To avoid personal injury and equipment damage, caused by sudden release of process pressure or bursting of parts, make sure the supply pressure never exceeds the maximum safe working pressure of any connected equipment.
- Severe personal injury or property damage may occur from an uncontrolled process if the instrument air supply is not clean, dry and oil-free, or noncorrosive gas. While use and regular maintenance of a filter that removes particles larger than 40 microns will suffice in most applications, check with an Emerson Automation Solutions field office and Industry Instrument air quality standards for use with corrosive gas or if you are unsure about the proper amount or method of air filtration or filter maintenance.
- For corrosive media, make sure the tubing and instrument components that contact the corrosive media are of suitable corrosion-resistant material. The use of unsuitable materials might result in personal injury or property damage due to the uncontrolled release of the corrosive media.
- If natural gas or other flammable or hazardous gas is to be used as the supply pressure medium and preventive measures are not taken, personal injury and property damage could result from fire or explosion of accumulated gas or from contact with hazardous gas. Preventive measures may include, but are not limited to: Remote venting of the unit, re-evaluating the hazardous area classification, ensuring adequate ventilation, and the removal of any ignition sources.
- To avoid personal injury or property damage resulting from the sudden release of process pressure, use a high-pressure regulator system when operating the controller or transmitter from a high-pressure source.
- The instrument or instrument/actuator assembly does not form a gas-tight seal, and when the assembly is in an enclosed area, a remote vent line, adequate ventilation, and necessary safety measures should be used. Vent line piping should comply with local and regional codes and should be as short as possible with adequate inside diameter and few bends to reduce case pressure buildup. However, a remote vent pipe alone cannot be relied upon to remove all hazardous gas, and leaks may still occur.
- Personal injury or property damage can result from the discharge of static electricity when flammable or hazardous gases are present. Connect a 14 AWG (2.08 mm²) ground strap between the instrument and earth ground when flammable or hazardous gases are present. Refer to national and local codes and standards for grounding requirements.
- Personal injury or property damage caused by fire or explosion may occur if electrical connections are attempted in an area that contains a potentially explosive atmosphere or has been classified as hazardous. Confirm that area classification and atmosphere conditions permit the safe removal of covers before proceeding.
For instruments with a hollow liquid level displacer, the displacer might retain process fluid or pressure. Personal injury or property damage due to sudden release of pressure, contact with hazardous fluid, fire, or explosion can be caused by puncturing, heating, or repairing a displacer that is retaining process pressure or fluid. This danger may not be readily apparent when disassembling the sensor or removing the displacer. Before disassembling the sensor or removing the displacer, observe the appropriate warnings provided in the sensor instruction manual.

Personal injury or property damage, caused by fire or explosion from the leakage of flammable or hazardous gas, can result if a suitable conduit seal is not installed. For explosion-proof applications, install the seal no more than 457 mm (18 inches) from the instrument when required by the nameplate. For ATEX applications use the proper cable gland certified to the required category. Equipment must be installed per local and national electric codes.

Check with your process or safety engineer for any additional measures that must be taken to protect against process media.

If installing into an existing application, also refer to the WARNING in the Maintenance section.

Special Instructions for Safe Use and Installations in Hazardous Locations

Certain nameplates may carry more than one approval, and each approval may have unique installation requirements and/or conditions of safe use. Special instructions are listed by agency/approval. To get these instructions, contact Emerson sales office. Read and understand these special conditions of use before installing.

WARNING

Failure to follow conditions of safe use could result in personal injury or property damage from fire or explosion, or area re-classification.

Operation

With instruments, switches, and other accessories that are controlling valves or other final control elements, it is possible to lose control of the final control element when you adjust or calibrate the instrument. If it is necessary to take the instrument out of service for calibration or other adjustments, observe the following warning before proceeding.

WARNING

Avoid personal injury or equipment damage from uncontrolled process. Provide some temporary means of control for the process before taking the instrument out of service.

Maintenance

WARNING

Before performing any maintenance operations on an actuator-mounted instrument or accessory:
To avoid personal injury, always wear protective gloves, clothing, and eyewear.

- Provide some temporary measure of control to the process before taking the instrument out of service.
- Provide means of containing the process fluid before removing any measurement devices from the process.
- Disconnect any operating lines providing air pressure, electric power, or a control signal to the actuator. Be sure the actuator cannot suddenly open or close the valve.
- Use bypass valves or completely shut off the process to isolate the valve from process pressure. Relieve process pressure from both sides of the valve.
- Vent the pneumatic actuator loading pressure and relieve any actuator spring precompression so the actuator is not applying force to the valve stem; this will allow for the safe removal of the stem connector.
- Personal injury or property damage may result from fire or explosion if natural gas or other flammable or hazardous gas is used as the supply medium and preventive measures are not taken. Preventive measures may include, but are not limited to: Remote venting of the unit, re-evaluating the hazardous area classification, ensuring adequate ventilation, and the removal of any ignition sources. For information on remote venting of this instrument, refer to the Installation section.
- Use lock-out procedures to be sure that the above measures stay in effect while you work on the equipment.
- The valve packing box might contain process fluids that are pressurized, even when the valve has been removed from the pipeline. Process fluids might spray out under pressure when removing the packing hardware or packing rings, or when loosening the packing box pipe plug. Cautiously remove parts so that fluid escapes slowly and safely.
- Check with your process or safety engineer for any additional measures that must be taken to protect against process media.
- On an explosion-proof instrument, remove the electrical power before removing the instrument covers in a hazardous area. Personal injury or property damage may result from fire and explosion if power is applied to the instrument with the covers removed.

Instruments Mounted on Tank or Cage

⚠️ WARNING

For instruments mounted on a tank or displacer cage, release trapped pressure from the tank and lower the liquid level to a point below the connection. This precaution is necessary to avoid personal injury from contact with the process fluid.

Instruments With a Hollow Displacer or Float

⚠️ WARNING

For instruments with a hollow liquid level displacer, the displacer might retain process fluid or pressure. Personal injury and property might result from sudden release of this pressure or fluid. Contact with hazardous fluid, fire, or explosion can be caused by puncturing, heating, or repairing a displacer that is retaining process pressure or fluid. This danger may not be readily apparent when disassembling the sensor or removing the displacer. A displacer that has been penetrated by process pressure or fluid might contain:

- pressure as a result of being in a pressurized vessel
- liquid that becomes pressurized due to a change in temperature
- liquid that is flammable, hazardous or corrosive.

Handle the displacer with care. Consider the characteristics of the specific process liquid in use. Before removing the displacer, observe the appropriate warnings provided in the sensor instruction manual.
Non-Fisher (OEM) Instruments, Switches, and Accessories

Installation, Operation, and Maintenance

Refer to the original manufacturer's documentation for Installation, Operation and Maintenance safety information.
DVC6000 Digital Valve Controllers

Fisher® FIELDVUE™ DVC6000
Digital Valve Controllers

This manual applies to:

<table>
<thead>
<tr>
<th>Instrument Level</th>
<th>AC, HC, AD, PD</th>
<th>HC, AD, PD, ODV</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Type</td>
<td>03</td>
<td>03</td>
<td>07</td>
</tr>
<tr>
<td>Device Revision</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Hardware Revision</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Firmware Revision</td>
<td>2–6</td>
<td>7, 9, 10, 11</td>
<td>7, 9, 10, 11</td>
</tr>
<tr>
<td>DD Revision</td>
<td>4</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Refer to Related Documents on page 1-3 for other documents containing information related to DVC6000 digital valve controllers
Fast Key Sequence for Instrument Level HC, AD, PD, and ODV

<table>
<thead>
<tr>
<th>Function/Variable</th>
<th>Fast-Key Sequence</th>
<th>Coordinates(1)</th>
<th>Function/Variable</th>
<th>Fast-Key Sequence</th>
<th>Coordinates(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Minus B</td>
<td>3-5-3</td>
<td>4-G</td>
<td>End Point Pressure Control(3)</td>
<td>1-2-2-2-4</td>
<td>8-D</td>
</tr>
<tr>
<td>Actuator Style</td>
<td>1-2-6-4</td>
<td>3-D</td>
<td>Failure Group Enable</td>
<td>1-2-3-6-5-1</td>
<td>11-I</td>
</tr>
<tr>
<td>Alert Conditions</td>
<td>2-1</td>
<td>2-F</td>
<td>1-2-3-7-5-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alert Record Full Enable</td>
<td>1-2-3-6-2</td>
<td>10-H</td>
<td>Firmware Revision</td>
<td>3-7-6</td>
<td>2-H</td>
</tr>
<tr>
<td>Alert Record Has Entries</td>
<td>1-2-3-7-2</td>
<td>10-H</td>
<td>Flash ROM Shutdown</td>
<td>1-2-3-1-3-5</td>
<td>12-C</td>
</tr>
<tr>
<td>End Point Pressure Control(3)</td>
<td>1-2-3-6-1</td>
<td>10-H</td>
<td>Hardware Revision</td>
<td>3-7-7</td>
<td>2-H</td>
</tr>
<tr>
<td>Analog Input</td>
<td>3-1</td>
<td>2-G</td>
<td>1-2-5-1-1</td>
<td>6-F</td>
<td></td>
</tr>
<tr>
<td>Analog Input Calibration</td>
<td>1-3-2-3</td>
<td>4-E</td>
<td>HART Universal Revision</td>
<td>3-7-9</td>
<td>2-H</td>
</tr>
<tr>
<td>Analog Input Range Hi</td>
<td>1-2-5-3-1</td>
<td>6-H</td>
<td>Input Characterization</td>
<td>1-2-2-3</td>
<td>4-C</td>
</tr>
<tr>
<td>Analog Input Range Lo</td>
<td>1-2-5-3-2</td>
<td>6-H</td>
<td>Instrument Date and Time</td>
<td>1-2-4-1-2</td>
<td>8-G</td>
</tr>
<tr>
<td>Analog Input Units</td>
<td>1-2-5-2-3</td>
<td>6-G</td>
<td>1-2-5-8</td>
<td>4-G</td>
<td></td>
</tr>
<tr>
<td>Auto Calibration</td>
<td>1-3-1-1</td>
<td>4-E</td>
<td>3-7-8</td>
<td>2-H</td>
<td></td>
</tr>
<tr>
<td>Autocalibration in Progress Enable</td>
<td>1-2-4-2-2</td>
<td>8-H</td>
<td>Instrument Mode</td>
<td>Hot Key-1</td>
<td>1-A</td>
</tr>
<tr>
<td>Auxiliary Input</td>
<td>3-6-1</td>
<td>4-H</td>
<td>1-2-1-1</td>
<td>4-B</td>
<td></td>
</tr>
<tr>
<td>Auxiliary Terminal Action</td>
<td>1-2-3-3-1-2</td>
<td>12-D</td>
<td>Instrument Serial Number</td>
<td>1-2-5-1-6</td>
<td>6-G</td>
</tr>
<tr>
<td>Auxiliary Terminal Alert Enable</td>
<td>1-2-3-3-1-3</td>
<td>12-E</td>
<td>Instrument Time Invalid Enable</td>
<td>1-2-4-1-1</td>
<td>8-G</td>
</tr>
<tr>
<td>Auxiliary Terminal Alert Enable</td>
<td>1-2-3-3-1-1</td>
<td>12-E</td>
<td>Integral Dead Zone</td>
<td>1-2-4-4-4</td>
<td>8-I</td>
</tr>
<tr>
<td>Burst Command</td>
<td>1-2-1-4-3</td>
<td>6-B</td>
<td>Integral Enable (Travel Tuning)</td>
<td>1-2-2-1-1-2</td>
<td>8-A</td>
</tr>
<tr>
<td>Burst Enable</td>
<td>1-2-1-4-1</td>
<td>6-B</td>
<td>Instrument Enable (Pressure Tuning)</td>
<td>1-2-2-1-3-2</td>
<td>8-C</td>
</tr>
<tr>
<td>Calibration in Progress Enable</td>
<td>1-2-4-2-1</td>
<td>8-G</td>
<td>Integral Gain (Travel Tuning)</td>
<td>1-2-2-1-1-3</td>
<td>8-A</td>
</tr>
<tr>
<td>Clear ALL Records</td>
<td>1-2-3-6-4</td>
<td>10-H</td>
<td>Integral Gain (Pressure Tuning)</td>
<td>1-2-2-1-3-3</td>
<td>8-C</td>
</tr>
<tr>
<td>Command 3 Configured Pressure</td>
<td>1-2-1-4-5</td>
<td>6-B</td>
<td>Instrument Limit</td>
<td>1-2-4-4-3</td>
<td>8-I</td>
</tr>
<tr>
<td>Control Mode</td>
<td>1-2-1-2</td>
<td>4-B</td>
<td>Integrator Saturated Hi Enable</td>
<td>1-2-4-4-1-1</td>
<td>8-I</td>
</tr>
<tr>
<td>Critical NVM Shutdown</td>
<td>1-2-3-1-3-4</td>
<td>12-C</td>
<td>Integrator Saturated Lo Enable</td>
<td>1-2-4-4-2</td>
<td>8-I</td>
</tr>
<tr>
<td>Custom Characterization Table</td>
<td>1-2-2-4</td>
<td>4-C</td>
<td>Last AutoCalibration Status</td>
<td>1-2-5-9-1</td>
<td>6-H</td>
</tr>
<tr>
<td>Cutoff Hi</td>
<td>1-2-3-4-7-3</td>
<td>12-G</td>
<td>Last Calibration Type</td>
<td>1-2-5-9-2</td>
<td>6-H</td>
</tr>
<tr>
<td>Cutoff Lo</td>
<td>1-2-2-2-2-1</td>
<td>10-B</td>
<td>Loop Current Validation Enable(6)</td>
<td>1-2-3-3-3-3</td>
<td>9-E</td>
</tr>
<tr>
<td>Cycle Counter</td>
<td>1-2-3-5-1-2</td>
<td>12-H</td>
<td>Low Power Write Fail Enable(6)</td>
<td>1-2-3-1-3-2-2</td>
<td>12-B</td>
</tr>
<tr>
<td>Cycle Counter Alert Enable</td>
<td>1-2-3-5-1-1</td>
<td>12-G</td>
<td>Manual Calibration</td>
<td>1-3-1-2</td>
<td>4-E</td>
</tr>
<tr>
<td>Cycle Count Alert Point</td>
<td>1-2-3-5-1-3</td>
<td>12-H</td>
<td>Manufacturer (Actuator)</td>
<td>1-2-6-1</td>
<td>3-D</td>
</tr>
<tr>
<td>Date</td>
<td>1-2-5-1-1</td>
<td>6-G</td>
<td>Manufacturer (Instrument)</td>
<td>3-7-3</td>
<td>2-H</td>
</tr>
<tr>
<td>Dead Band (Cycle Count / Travel Accumulator)</td>
<td>1-2-3-5-2-1</td>
<td>12-H</td>
<td>Maximum Recorded Temperature</td>
<td>3-6-3</td>
<td>4-H</td>
</tr>
<tr>
<td>Descriptor</td>
<td>1-2-5-1-3</td>
<td>6-F</td>
<td>Maximum Supply Pressure</td>
<td>1-2-5-6</td>
<td>4-G</td>
</tr>
<tr>
<td>Device Description Information</td>
<td>3-8</td>
<td>2-G</td>
<td>Minimum Recorded Temperature</td>
<td>2-3-2</td>
<td>3-F</td>
</tr>
<tr>
<td>Device ID</td>
<td>3-7-2</td>
<td>2-H</td>
<td>Message</td>
<td>1-2-5-1-2</td>
<td>6-F</td>
</tr>
<tr>
<td>Device Revision</td>
<td>3-7-5</td>
<td>2-H</td>
<td>Model (Device)</td>
<td>3-7-4</td>
<td>2-H</td>
</tr>
<tr>
<td>Diagnostic Data Available Enable</td>
<td>1-2-4-2-4</td>
<td>8-H</td>
<td>Multi-Drop Alert Enable</td>
<td>1-2-4-3-2</td>
<td>8-H</td>
</tr>
<tr>
<td>Diagnostic in Progress Enable</td>
<td>1-2-4-2-3-3</td>
<td>8-H</td>
<td>No Free Time Shutdown</td>
<td>1-2-3-1-3-6</td>
<td>12-C</td>
</tr>
<tr>
<td>Drive Current Shutdown</td>
<td>1-2-3-1-1-1</td>
<td>8-D</td>
<td>Non-Critical NVM Alert Enable</td>
<td>1-2-3-1-3-3</td>
<td>12-C</td>
</tr>
<tr>
<td>Drive Signal Alert Enable</td>
<td>1-2-3-1-2-1</td>
<td>10-D</td>
<td>Number of Power Ups</td>
<td>2-3-4</td>
<td>3-G</td>
</tr>
<tr>
<td>Drive Signal</td>
<td>3-4</td>
<td>2-G</td>
<td>3-6-9</td>
<td>4-H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-2-3-1-2-2-2</td>
<td>10-D</td>
<td>Offline/Failed Alert Enable</td>
<td>1-2-3-1-3-1-1</td>
<td>12-B</td>
</tr>
</tbody>
</table>

NOTE: Italicized Fast-Key Sequence indicates fast-key sequence is applicable only for instrument level ODV.

1. Coordinates are to help locate the item on the menu tree on the following pages.
2. Instrument level ODV only.
3. Instrument level HC, AD, and PD only.
4. Firmware 9 and 10 only.
<table>
<thead>
<tr>
<th>Function/Variable</th>
<th>Fast-Key Sequence</th>
<th>Coordinates(1)</th>
<th>Function/Variable</th>
<th>Fast-Key Sequence</th>
<th>Coordinates(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial Stroke Test(3)</td>
<td>2-5</td>
<td>2-F</td>
<td>Travel</td>
<td>3-3</td>
<td>2-G</td>
</tr>
<tr>
<td>Partial Stroke Test Enable(4)</td>
<td>1-2-7-1</td>
<td>3-D</td>
<td>Travel</td>
<td>1-2-3-4-1</td>
<td>9-E</td>
</tr>
<tr>
<td>Partial Stroke Test Pressure Limit(3)</td>
<td>1-2-3-6-1</td>
<td>10-G</td>
<td>Travel / Pressure Select</td>
<td>1-2-2-2-1</td>
<td>6-C</td>
</tr>
<tr>
<td>Partial Stroke Test Start Point(3)</td>
<td>1-2-2-2-4-2</td>
<td>8-D</td>
<td>Travel Accumulator</td>
<td>3-6-6</td>
<td>4-H</td>
</tr>
<tr>
<td>Partial Stroke Test Variables</td>
<td>1-2-1-2</td>
<td>3-D</td>
<td>Travel Accumulator</td>
<td>1-2-3-5-3-2</td>
<td>12-H</td>
</tr>
<tr>
<td>View/Edit(5)</td>
<td></td>
<td></td>
<td>View/Edit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance Tuner(2)</td>
<td>1-1-2</td>
<td>2-B</td>
<td>Travel Accumulator Alert Enable</td>
<td>1-2-3-5-3-1</td>
<td>12-H</td>
</tr>
<tr>
<td>Polling Address</td>
<td>1-2-5-1-7</td>
<td>6-G</td>
<td>Travel Alert Dead Band</td>
<td>1-2-3-4-3</td>
<td>9-E</td>
</tr>
<tr>
<td>Pressure A</td>
<td>3-5-1</td>
<td>4-G</td>
<td>Travel Alert Hi Enable</td>
<td>1-2-3-4-6-1</td>
<td>10-F</td>
</tr>
<tr>
<td>Pressure B</td>
<td>3-5-2</td>
<td>4-G</td>
<td>Travel Alert Hi Hi Enable</td>
<td>1-2-3-4-5-1</td>
<td>12-E</td>
</tr>
<tr>
<td>Pressure Control Active Enable</td>
<td>1-2-4-3-1</td>
<td>8-H</td>
<td>Travel Alert Hi Hi Point</td>
<td>1-2-3-4-5-3</td>
<td>12-F</td>
</tr>
<tr>
<td>Pressure Deviation Alert Enable(4)</td>
<td>1-2-3-6-2</td>
<td>10-G</td>
<td>Travel Alert Hi Point</td>
<td>1-2-3-4-6-3</td>
<td>10-F</td>
</tr>
<tr>
<td>Pressure Deviation Alert Point(4)</td>
<td>1-2-3-6-3</td>
<td>10-G</td>
<td>Travel Alert Lo Enable</td>
<td>1-2-3-4-6-2</td>
<td>10-F</td>
</tr>
<tr>
<td>Pressure Deviation Time(4)</td>
<td>1-2-3-6-4</td>
<td>10-G</td>
<td>Travel Alert Lo Lo Enable</td>
<td>1-2-3-4-5-2</td>
<td>12-E</td>
</tr>
<tr>
<td>Pressure Range Hi</td>
<td>1-2-2-2-3-1</td>
<td>10-D</td>
<td>Travel Alert Lo Point</td>
<td>1-2-3-4-5-4</td>
<td>12-F</td>
</tr>
<tr>
<td>Pressure Range Lo</td>
<td>1-2-2-2-3-2</td>
<td>10-D</td>
<td>Travel Alert Lo Point</td>
<td>1-2-3-4-6-4</td>
<td>10-F</td>
</tr>
<tr>
<td>Pressure Sensor Shutdown(6)</td>
<td>1-2-3-2-3</td>
<td>12-D</td>
<td>Travel Deviation Alert Enable</td>
<td>1-2-3-4-4-1</td>
<td>10-E</td>
</tr>
<tr>
<td>Pressure Sensors—Calibration</td>
<td>1-3-2-1</td>
<td>4-E</td>
<td>Travel Deviation Alert Point</td>
<td>1-2-3-4-4-2</td>
<td>10-E</td>
</tr>
<tr>
<td>Pressure Tuning Set</td>
<td>1-2-2-1-3-1</td>
<td>8-B</td>
<td>Travel Deviation Time</td>
<td>1-2-3-4-4-3</td>
<td>10-E</td>
</tr>
<tr>
<td>Pressure Units</td>
<td>1-2-5-2-1</td>
<td>6-G</td>
<td>Travel Limit / Cutoff Hi Enable</td>
<td>1-2-3-4-7-1</td>
<td>12-F</td>
</tr>
<tr>
<td>Protection</td>
<td>Hot Key-3</td>
<td>1-A</td>
<td>Travel Limit / Cutoff Lo Enable</td>
<td>1-2-3-4-7-2</td>
<td>12-F</td>
</tr>
<tr>
<td></td>
<td>1-2-1-5</td>
<td>4-B</td>
<td></td>
<td>1-2-3-4-7-6</td>
<td>12-G</td>
</tr>
<tr>
<td>Raw Travel Input</td>
<td>3-6-7</td>
<td>4-H</td>
<td>Travel Limit Hi</td>
<td>1-2-2-2-2-4</td>
<td>10-C</td>
</tr>
<tr>
<td>Reference Voltage Shutdown(5)</td>
<td>1-2-3-1-3-7</td>
<td>12-C</td>
<td>Travel Limit Lo</td>
<td>1-2-2-2-2-5</td>
<td>10-C</td>
</tr>
<tr>
<td>Relay Adjust</td>
<td>1-3-3</td>
<td>3-E</td>
<td></td>
<td>1-2-2-2-2-5</td>
<td>10-C</td>
</tr>
<tr>
<td>Relay Type</td>
<td>1-2-5-4</td>
<td>4-F</td>
<td>Travel Sensor Adjust</td>
<td>1-2-3-4-7-7</td>
<td>12-G</td>
</tr>
<tr>
<td>Restart Control Mode</td>
<td>1-2-1-3</td>
<td>4-B</td>
<td>Travel Sensor Motion</td>
<td>1-2-2-2-2-5</td>
<td>10-C</td>
</tr>
<tr>
<td>Restore Factory Settings</td>
<td>1-3-4</td>
<td>3-E</td>
<td></td>
<td>1-2-2-2-2-5</td>
<td>10-C</td>
</tr>
<tr>
<td>Set Point Rate Close</td>
<td>1-2-2-5-2</td>
<td>5-D</td>
<td>Travel Setpoint</td>
<td>1-2-3-4-2-1</td>
<td>12-C</td>
</tr>
<tr>
<td>Set Point Rate Open</td>
<td>1-2-2-5-1</td>
<td>5-D</td>
<td></td>
<td>3-2</td>
<td>12-G</td>
</tr>
<tr>
<td>Setup Wizard</td>
<td>1-1-1</td>
<td>2-B</td>
<td>Travel Tuning Set</td>
<td>1-2-2-1-1-1</td>
<td>8-A</td>
</tr>
<tr>
<td>Stabilize/Optimize</td>
<td>Hot Key-4</td>
<td>1-A</td>
<td>Valve Group Enable</td>
<td>1-2-3-6-5-2</td>
<td>10-H</td>
</tr>
<tr>
<td></td>
<td>1-1-2(4)</td>
<td>2-B</td>
<td></td>
<td>1-2-3-6-5-2</td>
<td>10-H</td>
</tr>
<tr>
<td>Status</td>
<td>2-2</td>
<td>2-F</td>
<td>Valve Serial Number</td>
<td>1-2-5-1-5</td>
<td>6-F</td>
</tr>
<tr>
<td>Stroke Valve</td>
<td>2-4</td>
<td>2-F</td>
<td></td>
<td>1-2-5-1-5</td>
<td>6-F</td>
</tr>
<tr>
<td>Supply Pressure(5)</td>
<td>3-5-4</td>
<td>4-G</td>
<td>View Alert Records</td>
<td>1-2-3-6-3</td>
<td>10-H</td>
</tr>
<tr>
<td>Supply Pressure Lo Alert Enable(5)</td>
<td>1-2-3-3-2-2</td>
<td>12-E</td>
<td>View/Edit Feedback Connection</td>
<td>1-2-3-7-3</td>
<td>3-E</td>
</tr>
<tr>
<td>Supply Pressure Lo Alert Point(5)</td>
<td>1-2-3-3-2-1</td>
<td>12-E</td>
<td>View/Edit Lag Time</td>
<td>1-2-2-5-3</td>
<td>5-D</td>
</tr>
<tr>
<td>Temperature</td>
<td>3-6-2</td>
<td>4-H</td>
<td>View/Edit Lag Time</td>
<td>1-2-2-5-3</td>
<td>5-D</td>
</tr>
<tr>
<td>Temperature Sensor Shutdown</td>
<td>1-2-3-2-2</td>
<td>12-D</td>
<td></td>
<td>2-3</td>
<td>3-F</td>
</tr>
<tr>
<td>Temperature Units</td>
<td>1-2-5-2-2</td>
<td>6-G</td>
<td></td>
<td>3-6-8</td>
<td>4-H</td>
</tr>
<tr>
<td>Zero Power Condition</td>
<td></td>
<td></td>
<td></td>
<td>1-2-5-5</td>
<td>4-G</td>
</tr>
</tbody>
</table>

NOTE: Italicized Fast-Key Sequence indicates fast-key sequence is applicable only for instrument level ODV.
1. Coordinates are to help locate the item on the menu tree on the following pages.
2. Not available in instrument level HC.
3. Instrument level ODV only.
4. Instrument level HC only.
5. Instrument level HC, AD, and PD only.
6. Firmware 7 only.
Field Communicator Menu Tree for Instrument Level HC, AD, PD, and ODV

Notes:
1-1-1 indicates fast-key sequence to reach menu
1 This menu is available by pressing the left arrow key from the previous menu.
2 Not available in instrument level HC
3 Instrument level ODV only.
4 Instrument level HC only.
5 Instrument level HC, AD, and PD only.
6 Fast key sequence for Alert Record with instrument level ODV is 1-2-3-7.
7 This menu item reads Power Starvation Alert Enab in firmware 7 and below.
8 Only available in firmware 9, 10, and 11.
Fast Key Sequence for Instrument Level AC

<table>
<thead>
<tr>
<th>Function/Variable</th>
<th>Fast-Key Sequence</th>
<th>Coordinates(1)</th>
<th>Function/Variable</th>
<th>Fast-Key Sequence</th>
<th>Coordinates(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuator Style</td>
<td>1-1-2-2-4</td>
<td>4-C</td>
<td>Pressure Proportional Gain</td>
<td>1-1-2-3-2-2</td>
<td>6-D</td>
</tr>
<tr>
<td>Analog Input Calibration</td>
<td>1-3-1</td>
<td>3-F</td>
<td>Pressure Range Hi</td>
<td>1-2-3-4-1-2</td>
<td>5-H</td>
</tr>
<tr>
<td>Analog Input Range Hi</td>
<td>1-2-2-2</td>
<td>4-E</td>
<td>Pressure Range Lo</td>
<td>1-2-3-5-1</td>
<td>4-G</td>
</tr>
<tr>
<td>Analog Input Range Lo</td>
<td>1-2-2-3</td>
<td>4-E</td>
<td>Pressure Range Lo</td>
<td>1-2-3-5-2</td>
<td>4-G</td>
</tr>
<tr>
<td>Analog Input Units</td>
<td>1-2-2-1</td>
<td>4-E</td>
<td>Pressure Tuning Set</td>
<td>1-1-2-3-2-1</td>
<td>6-D</td>
</tr>
<tr>
<td>Auto Travel Calibration</td>
<td>1-1-2-3-4</td>
<td>4-D</td>
<td>Pressure Units</td>
<td>1-1-2-2-2</td>
<td>4-C</td>
</tr>
<tr>
<td></td>
<td>1-1-1-3</td>
<td>3-C</td>
<td></td>
<td>1-2-2-4</td>
<td>4-E</td>
</tr>
<tr>
<td>Calibration Location</td>
<td>1-3-5</td>
<td>3-G</td>
<td>Protection</td>
<td>Hot Key-2</td>
<td>1-B</td>
</tr>
<tr>
<td>Date</td>
<td>1-2-1-4</td>
<td>3-D</td>
<td></td>
<td>1-1-1-2</td>
<td>3-B</td>
</tr>
<tr>
<td>Descriptor</td>
<td>1-2-1-3</td>
<td>3-D</td>
<td>Relay Adjust</td>
<td>1-1-2-3-3</td>
<td>4-D</td>
</tr>
<tr>
<td>Device Description Revision</td>
<td>2-2</td>
<td>2-F</td>
<td></td>
<td>1-3-6</td>
<td>3-G</td>
</tr>
<tr>
<td>Device Identification</td>
<td>2-1-6</td>
<td>3-H</td>
<td>Relay Type</td>
<td>1-2-4</td>
<td>3-E</td>
</tr>
<tr>
<td>Device Revision</td>
<td>2-1-2</td>
<td>3-G</td>
<td>Restore Factory Settings</td>
<td>1-3-4</td>
<td>3-F</td>
</tr>
<tr>
<td>Feedback Connection</td>
<td>1-1-2-2-5</td>
<td>4-C</td>
<td>Setup Wizard</td>
<td>1-1-1-1</td>
<td>3-D</td>
</tr>
<tr>
<td>Firmware Revision</td>
<td>2-1-3</td>
<td>3-G</td>
<td>Travel Integral Gain</td>
<td>1-2-3-2-3</td>
<td>6-F</td>
</tr>
<tr>
<td>Hardware Revision</td>
<td>2-1-4</td>
<td>3-G</td>
<td>Travel Integral Enable</td>
<td>1-2-3-2-2</td>
<td>6-F</td>
</tr>
<tr>
<td>HART Tag</td>
<td>1-2-1-1</td>
<td>3-D</td>
<td>Travel MLFB Gain</td>
<td>1-1-2-3-1-4</td>
<td>6-C</td>
</tr>
<tr>
<td>HART Universal Revision</td>
<td>2-1-1</td>
<td>3-G</td>
<td></td>
<td>1-2-3-2-1-4</td>
<td>6-E</td>
</tr>
<tr>
<td>Input Characterization</td>
<td>1-2-3-6</td>
<td>4-F</td>
<td>Travel / Pressure Select</td>
<td>1-1-2-2-1</td>
<td>4-C</td>
</tr>
<tr>
<td>Instrument Level</td>
<td>2-1-5</td>
<td>3-H</td>
<td></td>
<td>1-2-3-1</td>
<td>4-F</td>
</tr>
<tr>
<td>Instrument Mode</td>
<td>Hot Key-1</td>
<td>1-B</td>
<td>Travel Proportional Gain</td>
<td>1-1-2-3-1-2</td>
<td>6-C</td>
</tr>
<tr>
<td>Instrument Serial Number</td>
<td>1-2-1-6</td>
<td>3-D</td>
<td>Travel Sensor Adjust</td>
<td>1-3-7</td>
<td>3-G</td>
</tr>
<tr>
<td>Integral Dead Zone</td>
<td>1-2-3-3-1</td>
<td>6-F</td>
<td>Travel Sensor Motion</td>
<td>1-1-2-2-6</td>
<td>4-C</td>
</tr>
<tr>
<td>Integral Limit</td>
<td>1-2-3-3-2</td>
<td>6-F</td>
<td>Travel Tuning Set</td>
<td>1-1-2-3-1-1</td>
<td>6-C</td>
</tr>
<tr>
<td>Manual Travel Calibration</td>
<td>1-3-3</td>
<td>3-F</td>
<td></td>
<td>1-2-3-2-1-1</td>
<td>6-E</td>
</tr>
<tr>
<td>Maximum Supply Pressure</td>
<td>1-1-2-2-3</td>
<td>4-C</td>
<td>Travel Velocity Gain</td>
<td>1-1-2-3-1-3</td>
<td>6-C</td>
</tr>
<tr>
<td>Message</td>
<td>1-2-1-2</td>
<td>3-D</td>
<td></td>
<td>1-2-3-2-1-3</td>
<td>6-E</td>
</tr>
<tr>
<td>Polling Address</td>
<td>1-2-1-7</td>
<td>3-E</td>
<td>Valve Serial Number</td>
<td>1-2-1-5</td>
<td>3-D</td>
</tr>
<tr>
<td>Pressure Integral Control Enable</td>
<td>1-2-3-4-2</td>
<td>6-G</td>
<td>Valve Style</td>
<td>1-1-2-2-7</td>
<td>4-C</td>
</tr>
<tr>
<td>Pressure Integral Gain</td>
<td>1-2-3-4-3</td>
<td>6-G</td>
<td>Zero Power Condition</td>
<td>1-1-2-2-8</td>
<td>4-C</td>
</tr>
<tr>
<td>Pressure MLFB Gain</td>
<td>1-1-2-3-2-3</td>
<td>6-D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-2-3-4-1-3</td>
<td>5-H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Coordinates are to help locate the item on the menu tree on the facing page.
Notes:

1-1-1 indicates fast-key sequence to reach menu

1-1-1 This menu is available by pressing the left arrow key from the previous menu.
THE FIELDVUE DVC6000 DIGITAL VALVE CONTROLLERS IS A CORE COMPONENT OF THE PLANTWEB™ DIGITAL PLANT ARCHITECTURE. THE DIGITAL VALVE CONTROLLER POWERS PLANTWEB BY CAPTURING AND DELIVERING VALVE DIAGNOSTIC DATA. COUPLED WITH VALVELINK™ SOFTWARE, THE DVC6000 PROVIDES USERS WITH AN ACCURATE PICTURE OF VALVE PERFORMANCE, INCLUDING ACTUAL STEM POSITION, INSTRUMENT INPUT SIGNAL AND PNEUMATIC PRESSURE TO THE ACTUATOR. USING THIS INFORMATION, THE DIGITAL VALVE CONTROLLER DIAGNOSES NOT ONLY ITSELF, BUT ALSO THE VALVE AND ACTUATOR TO WHICH IT IS MOUNTED.
Section 1 Introduction

Scope of Manual .. 1-2
Conventions Used in this Manual 1-2
Description ... 1-3
Specifications ... 1-3
Related Documents .. 1-3
Educational Services ... 1-4
Table 1-1. Instrument Level Capabilities

<table>
<thead>
<tr>
<th>CAPABILITY</th>
<th>DIAGNOSTIC LEVEL⁽¹⁾</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC</td>
</tr>
<tr>
<td>Auto Calibration</td>
<td>X</td>
</tr>
<tr>
<td>Custom Characterization</td>
<td>X</td>
</tr>
<tr>
<td>Burst Communication</td>
<td>X</td>
</tr>
<tr>
<td>Alerts</td>
<td>X</td>
</tr>
<tr>
<td>Step Response, Drive Signal Test & Dynamic Error Band</td>
<td>X</td>
</tr>
<tr>
<td>Advanced Diagnostics (Valve Signature)</td>
<td>X</td>
</tr>
<tr>
<td>Performance Tuner</td>
<td>X</td>
</tr>
<tr>
<td>Travel Control - Pressure Fallback</td>
<td>X</td>
</tr>
<tr>
<td>Performance Diagnostics</td>
<td>X</td>
</tr>
<tr>
<td>Solenoid Valve Testing</td>
<td>X</td>
</tr>
<tr>
<td>Lead/Lag Input Filter⁽²⁾</td>
<td>X</td>
</tr>
</tbody>
</table>

¹ See page 6-8 for additional diagnostic level information.
² Refer to brochure part # D351146X012/D351146X412 for information on Fisher optimized digital valves for compressor antisurge applications.

Scope of Manual

This instruction manual includes specifications, installation, operating, and maintenance information for device revision 1, firmware revision 2–6 and device revision 2, firmware 7, 9, 10, and 11 digital valve controllers, instrument level AC, HC, AD, PD, and ODV.

This instruction manual describes using the 475 Field Communicator with device description revision 8 to setup and calibrate the instrument. You can also use Fisher ValveLink software version 7.3 or higher to setup, calibrate, and diagnose the valve and instrument. For information on using ValveLink software with the instrument refer to ValveLink software help or documentation.

Do not install, operate, or maintain a DVC6000 digital valve controller without being fully trained and qualified in valve, actuator, and accessory installation, operation, and maintenance. To avoid personal injury or property damage, it is important to carefully read, understand, and follow all of the contents of this manual, including all safety cautions and warnings. If you have any questions about these instructions, contact your Emerson Process Management sales office before proceeding.

Conventions Used in this Manual

- Procedures that require the use of the 475 Field Communicator have the Field Communicator symbol in the heading.

- Procedures that are accessible with the Hot Key on the Field Communicator will also have the Hot Key symbol in the heading.

Some of the procedures also contain the sequence of numeric keys required to display the desired Field Communicator menu. For example, to access the Setup Wizard, from the Online menu, press 1 (selects Configure) followed by a second 1 (selects Basic Setup) followed by a third 1 (selects Setup Wizard). The key sequence in the procedure heading is shown as (1-1-1). The path required to accomplish various tasks, the sequence of steps through the Field Communicator menus, is also presented in textual format. Menu selections are shown in italics, e.g., Calibrate. An overview of the Field Communicator menu trees are shown at the beginning of this manual.
Introduction and Specifications

Figure 1-2. Rotary Control Valve with FIELDVUE DVC6020 Digital Valve Controller

Note

475 Field Communicator menu sequences used in this manual are for instrument level HC, AD, PD, and ODV, firmware 7 and above. Refer to the AC menu tree at the beginning of this manual for AC menu sequences. These menu sequences are also applicable to the 375 Field Communicator.

Description

DVC6000 digital valve controllers (figures 1-1 and 1-2) are communicating, microprocessor-based current-to-pneumatic instruments. In addition to the normal function of converting an input current signal to a pneumatic output pressure, the DVC6000 digital valve controller, using the HART communications protocol, gives easy access to information critical to process operation. You can gain information from the principal component of the process, the control valve itself, using the Field Communicator at the valve, or at a field junction box, or by using a personal computer or operator’s console within the control room.

Using a personal computer and ValveLink software or AMS Suite: Intelligent Device Manager, or a Field Communicator, you can perform several operations with the DVC6000 digital valve controller. You can obtain general information concerning software revision level, messages, tag, descriptor, and date. Diagnostic information is available to aid you when troubleshooting. Input and output configuration parameters can be set, and the digital valve controller can be calibrated. Refer to table 1-1 for details on the capabilities of each diagnostic tier.

Using the HART protocol, information from the field can be integrated into control systems or be received on a single loop basis.

DVC6000 digital valve controllers are designed to directly replace standard pneumatic and electro-pneumatic valve mounted positioners.

Specifications

Refer to table 1-2 for specifications. Incorrect configuration of a positioning instrument could result in the malfunction of the product, property damage or personal injury.

Specifications for DVC6000 digital valve controllers are shown in table 1-2. Specifications for the Field Communicator can be found in the product manual for the Field Communicator.

Related Documents

Other documents containing information related to DVC6000 digital valve controllers include:

- Bulletin 62.1:DVC6000—Fisher FIELDVUE DVC6000 Digital Valve Controllers (D102758X012)

- Bulletin 62.1:DVC6000(S1)—Fisher FIELDVUE DVC6000 Digital Valve Controller Dimensions (D103308X012)

- Fisher FIELDVUE DVC6000 Digital Valve Controllers Quick Start Guide (D102762X012)
DVC6000 Digital Valve Controllers

- FIELDVUE Digital Valve Controller Split Ranging – Supplement to HART Communicating Fisher FIELDVUE Digital Valve Controller Instruction Manuals (D103262X012)

- Using FIELDVUE Instruments with the Smart HART Loop Interface and Monitor (HIM) – Supplement to HART Communicating Fisher FIELDVUE Instrument Instruction Manuals (D103263X012)

- Using FIELDVUE Instruments with the Smart Wireless THUM™ Adapter and a HART Interface Module (HIM) – Supplement to HART Communicating Fisher FIELDVUE Instrument Instruction Manuals

- Audio Monitor for HART Communications – Supplement to HART Communicating Fisher FIELDVUE Instrument Instruction Manuals (D103265X012)

- HART Field Device Specification – Supplement to Fisher FIELDVUE DVC6000 Digital Valve Controller Instruction Manual (D103649X012)

- Using the HART Tri-Loop™ HART -to-Analog Signal Converter with FIELDVUE Digital Valve Controllers – Supplement to HART Communicating Fisher FIELDVUE Instrument Instruction Manuals (D103267X012)

- Hot Swap Procedure – Supplement to HART Communicating Fisher FIELDVUE DVC5000 (Obsolete Product) and DVC6000 Digital Valve Controllers Instruction Manuals (D103264X012)

- Fisher HF340 Filter Instruction Manual (D102796X012)

- ValveLink software help or documentation

- Field Communicator User’s Manual

All documents are available from your Emerson Process Management sales office. Also visit our website at www.FIELDVUE.com.

Educational Services
For information on available courses for DVC6000 digital valve controllers, as well as a variety of other products, contact:

Emerson Process Management
Educational Services, Registration
P.O. Box 190; 301 S. 1st Ave.
Marshalltown, IA 50158-2823
Phone: 800-338-8158 or Phone: 641-754-3771
FAX: 641-754-3431
e-mail: education@emerson.com
Available Configurations

DVC6010: Sliding-stem applications
DVC6020: Rotary and long-stroke sliding-stem applications [over 102 mm (4 inch) travel]
DVC6030: Quarter-turn rotary applications

Remote-Mounted Instrument

DVC6005: Base unit for 2 inch pipestand or wall mounting
DVC6015: Feedback unit for sliding-stem applications
DVC6025: Feedback unit for rotary or long-stroke sliding-stem applications
DVC6035: Feedback unit for quarter-turn rotary applications

DVC6000 digital valve controllers can be mounted on Fisher and other manufacturers rotary and sliding-stem actuators.

Input Signal

Point-to-Point:
Analog Input Signal: 4-20 mA DC, nominal
Minimum Voltage Available at instrument terminals must be 10.5 volts DC for analog control, 11 volts DC for HART communication
Minimum Control Current: 4.0 mA
Minimum Current w/o Microprocessor Restart: 3.5 mA
Maximum Voltage: 30 volts DC
Overcurrent Protection: Input circuitry limits current to prevent internal damage.
Reverse Polarity Protection: No damage occurs from reversal of loop current.

Multi-drop:
Instrument Power: 11-30 volts DC at approximately 8 mA
Reverse Polarity Protection: No damage occurs from reversal of loop current.

Output Signal

Pneumatic signal as required by the actuator, up to full supply pressure:
Minimum Span: 0.4 bar (6 psig)
Maximum Span: 9.5 bar (140 psig)
Action: Double, Single direct, and Single reverse

Supply Pressure

Recommended: 0.3 bar (5 psi) higher than maximum actuator requirements, up to maximum supply pressure

Maximum: 10 bar (145 psig) or maximum pressure rating of the actuator, whichever is lower

Medium: Air or Natural Gas

Air: Supply pressure must be clean, dry air that meets the requirements of ISA Standard 7.0.01.

Natural Gas: Natural gas must be clean, dry, oil-free, and noncorrosive. H2S content should not exceed 20 ppm.

A maximum 40 micrometer particle size in the air system is acceptable. Further filtration down to 5 micrometer particle size is recommended. Lubricant content is not to exceed 1 ppm weight (w/w) or volume (v/v) basis. Condensation in the air supply should be minimized.

Steady-State Air Consumption

Standard Relay:
At 1.4 bar (20 psig) supply pressure: Less than 0.38 normal m³/hr (14 scfh)
At 5.5 bar (80 psig) supply pressure: Less than 1.3 normal m³/hr (49 scfh)

Low Bleed Relay:
At 1.4 bar (20 psig) supply pressure: Average value 0.056 normal m³/hr (2.1 scfh)
At 5.5 bar (80 psig) supply pressure: Average value 0.184 normal m³/hr (6.9 scfh)

Maximum Output Capacity

At 1.4 bar (20 psig) supply pressure: 10.0 normal m³/hr (375 scfh)
At 5.5 bar (80 psig) supply pressure: 29.5 normal m³/hr (1100 scfh)

Independent Linearity

±0.50% of output span

Electromagnetic Compatibility

Meets EN 61326-1 (First Edition)
Immunity—Industrial locations per Table 2 of the EN 61326-1 standard. Performance is shown in Table 1-3 below.
Emissions—Class A
ISM equipment rating: Group 1, Class A

Lightning and Surge Protection—The degree of immunity to lightning is specified as Surge immunity in Table 1-3. For additional surge protection commercially available transient protection devices can be used.
Table 1-2. Specifications (continued)

Vibration Testing Method
Tested per ANSI/ISA-S75.13.01 Section 5.3.5. A resonant frequency search is performed on all three axes. The instrument is subjected to the ISA specified 1/2 hour endurance test at each major resonance, plus an additional two million cycles.

Input Impedance
The input impedance of the DVC6000 active electronic circuit is not purely resistive. For comparison to resistive load specifications, an equivalent impedance of 550 ohms may be used. This value corresponds to 11V @ 20 mA.

Operating Ambient Temperature Limits
-40 to 85°C (-40 to 185°F) for most approved valve-mounted instruments
-60 to 125°C (-76 to 257°F) for remote-mounted feedback unit.
-52 to 85°C (-62 to 185°F) for valve-mounted instruments utilizing the Extreme Temperature option (fluorosilicone elastomers)

Humidity Limits
0 to 100% condensing relative humidity with minimal zero or span shifts

Electrical Classification
Hazardous Area:
CSA—Intrinsically Safe, Explosion-proof, Division 2, Dust Ignition-proof
FM—Intrinsically Safe, Explosion-proof, Non-incendive, Dust Ignition-proof
ATEX—Intrinsically Safe, Flameproof, Type n
IECEx—Intrinsically Safe, Flameproof, Type n

Refer to tables 1-4, 1-5, 1-6, and 1-7, Hazardous Areas Classifications and Special Instructions for “Safe Use” and Installation in Hazardous Locations in section 2, and Appendix B.

Pollution Degree 2, Overvoltage Category III per ANSI/ISA-82.02.01 (IEC 61010-1 Mod).

Electrical Housing:
CSA—Type 4X, IP66
FM—Type 4X, IP66
ATEX—IP66
IECEx—IP66

Other Classifications/Certifications
Gas Certified, Single Seal Device— CSA, FM, ATEX, and IECEx
FSETAN— Federal Service of Technological, Ecological and Nuclear Inspectorate (Russia)
GOST-R— Russian GOST-R
INMETRO— National Institute of Metrology, Quality, and Technology (Brazil)
KGS— Korea Gas Safety Corporation (South Korea)
KISCO— Korea Industrial Safety Corporation (South Korea)
NEPSI— National Supervision and Inspection Centre for Explosion Protection and Safety of Instrumentation (China)
PESO CCOE— Petroleum and Explosives Safety Organisation – Chief Controller of Explosives (India)
TIIS— Technology Institution of Industrial Safety (Japan)

Contact your Emerson Process Management sales office for classification/certification specific information

IEC 61010 Compliance Requirements
(Valve-Mounted Instruments only)

Power Source: The loop current must be derived from a Separated Extra-Low Voltage (SELV) power source.

Environmental Conditions: Installation Category I

Connections
Supply Pressure: 1/4 NPT internal and integral pad for mounting 67CFR regulator
Output Pressure: 1/4 NPT internal
Tubing: 3/8-inch, recommended
Vent: 3/8 NPT internal
Electrical: 1/2 NPT internal conduit connection, M20 adapter optional

-continued-
Introduction and Specifications

Table 1-2. Specifications (continued)

<table>
<thead>
<tr>
<th>Stem/Shaft Travel</th>
<th>Linear Actuators with rated travel between 6.35 mm (0.25 inch) and 606 mm (23.375 inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rotary Actuators with rated travel between 50 degrees and 180 degrees</td>
</tr>
<tr>
<td>Mounting (7)</td>
<td>Designed for direct actuator mounting or remote pipestand or wall mounting. Mounting the instrument vertically, with the vent at the bottom of the assembly, or horizontally, with the vent pointing down, is recommended to allow drainage of moisture that may be introduced via the instrument air supply.</td>
</tr>
</tbody>
</table>

Weight

Valve-Mounted Instruments

Aluminum: 3.5 kg (7.7 lbs)
Stainless Steel: 7.7 kg (17 lbs)

Remote-Mounted Instruments

DVC6005 Base Unit	4.1 kg (9 lbs)
DVC6015 Feedback Unit	1.3 kg (2.9 lbs)
DVC6025 Feedback Unit	1.4 kg (3.1 lbs)
DVC6035 Feedback Unit	0.9 kg (2.0 lbs)

Construction Materials

Housing, module base and terminal box: A03600 low copper aluminum alloy
Cover: Thermoplastic polyester
Elastomers: Nitrile (standard)

Options

- Supply and output pressure gauges or tire valves
- Integral mounted filter regulator
- Stainless steel housing, module base and terminal box
- Low bleed relay
- Inline 10 micrometer air filter
- Safety Instrumented System (SIS) Solutions
- Safety Related Nuclear Applications
- Natural Gas Certified, Single Seal Device
- Feedback Assembly PTFE Sleeve
- Protective Kit for aluminum units in saltwater or particulate environments

Declarations of SEP

Fisher Controls International LLC declares this product to be in compliance with Article 3 paragraph 3 of the Pressure Equipment Directive (PED) 97 / 23 / EC. It was designed and manufactured in accordance with Sound Engineering Practice (SEP) and cannot bear the CE marking related to PED compliance.

However, the product may bear the CE marking to indicate compliance with other applicable European Community Directives.

NOTE: Specialized instrument terms are defined in ISA Standard 51.1 - Process Instrument Terminology.
1. 3-conductor shielded cable, 22 AWG minimum wire size, is required for connection between base unit and feedback unit. Pneumatic tubing between base unit output connection and actuator has been tested to 91 meters (300 feet). At 15 meters (50 feet) there was no performance degradation. At 91 meters there was minimal pneumatic lag.
2. The pressure/temperature limits in this document and any applicable code or standard should not be exceeded.
3. Values at 1.4 bar (20 psig) based on a single-acting direct relay; values at 5.5 bar (80 psig) based on double-acting relay.
4. Normal m³/hour - Normal cubic meters per hour at 0°C and 1.01325 bar, absolute. Scfh - Standard cubic feet per hour at 60°F and 14.7 psia
5. Typical Value. Not applicable for travels less than 19 mm (0.75 inch) or for shaft rotation less than 60 degrees. Also, not applicable to DVC6020 digital valve controllers in long-stroke applications.
6. Temperature limits vary based on hazardous area approval.
7. Do not use the DVC6010S or DVC6020S in high vibration service where the mounting bracket uses standoffs (spacers) to mount to the actuator. Due to NAMUR mounting limitations, do not use the DVC6030S in high vibration service.

Table 1-3. EMC Summary Results—Immunity

<table>
<thead>
<tr>
<th>Port</th>
<th>Phenomenon</th>
<th>Basic Standard</th>
<th>Test Level</th>
<th>Performance Criteria(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Point-to-Point Mode</td>
<td>Multi-drop Mode</td>
</tr>
<tr>
<td>Enclosure</td>
<td>Electrostatic discharge (ESD)</td>
<td>IEC 61000-4-2</td>
<td>4 kV contact 8 kV air</td>
<td>A(2) A</td>
</tr>
<tr>
<td></td>
<td>Radiated EM field</td>
<td>IEC 61000-4-3</td>
<td>80 to 1000 MHz @ 10V/m with 1 kHz AM at 80% 1400 to 2000 MHz @ 3V/m with 1 kHz AM at 80% 2000 to 2700 MHz @ 1 V/m with 1 kHz AM at 80%</td>
<td>A A</td>
</tr>
<tr>
<td></td>
<td>Rated power frequency magnetic field</td>
<td>IEC 61000-4-8</td>
<td>30 A/m at 50/60 Hz</td>
<td>A A</td>
</tr>
<tr>
<td>I/O signal/control</td>
<td>Burst</td>
<td>IEC 61000-4-4</td>
<td>1 kV</td>
<td>A(2) A</td>
</tr>
<tr>
<td></td>
<td>Surge</td>
<td>IEC 61000-4-5</td>
<td>1 kV (line to ground only, each)</td>
<td>B B</td>
</tr>
<tr>
<td></td>
<td>Conducted RF</td>
<td>IEC 61000-4-6</td>
<td>150 kHz to 80 MHz at 3 Vrms</td>
<td>A A</td>
</tr>
</tbody>
</table>

Performance Criteria:
1. A = No degradation during testing. B = Temporary degradation during testing, but is self-recovering.
2. Excluding auxiliary switch function, which meets Performance Criteria B.
<table>
<thead>
<tr>
<th>Certification Body</th>
<th>Type</th>
<th>Certification Obtained</th>
<th>Entity Rating</th>
<th>Temperature Code</th>
<th>Enclosure Rating</th>
</tr>
</thead>
</table>
| CSA DVC6005 | DVC60x0 DVC60x0S (x = 1,2,3) | Ex ia Intrinsically Safe
Class I,II,III Division 1 GP A,B,C,D,E,F,G per drawing GE42818
Natural Gas Approved | Vmax = 30 VDC
Imax = 226 mA
Ci = 5 nF
Li = 0.55 mH
Pi = 1.4 W | T5(Tamb ≤ 80°C)
T6(Tamb ≤ 75°C) | Type 4X, IP66 Single Seal Device |
| | | Explosion-proof
Class I Division 1 GP B,C,D
Natural Gas Approved | | T5(Tamb ≤ 80°C)
T6(Tamb ≤ 75°C) | Type 4X, IP66 Single Seal Device |
| | | Class I Division 2 GP A,B,C,D
Class II Division 1 GP E,F,G
Class II Division 2 GP F,G
Class III
Natural Gas Approved | | T5(Tamb ≤ 80°C)
T6(Tamb ≤ 75°C) | Type 4X, IP66 Single Seal Device |
| | | Ex ia Intrinsically Safe
Class I,II,III Division 1 GP A,B,C,D,E,F,G per drawing GE42818
Natural Gas Approved | Vmax = 30 VDC
Imax = 226 mA
Ci = 5 nF
Li = 0.55 mH
Pi = 1.4 W | Voc = 30 VDC
Isc = 12 mA
Ca = 66 nF
La = 246 mH
P0 = 86 mW | T5(Tamb ≤ 80°C)
T6(Tamb ≤ 75°C) | Type 4X, IP66 Single Seal Device |
| | | Explosion-proof
Class I Division 1 GP B,C,D
Natural Gas Approved | | T5(Tamb ≤ 80°C)
T6(Tamb ≤ 75°C) | Type 4X, IP66 Single Seal Device |
| | | Class I Division 2 GP A,B,C,D
Class II Division 1 GP E,F,G
Class II Division 2 GP F,G
Class III
Natural Gas Approved | | T5(Tamb ≤ 80°C)
T6(Tamb ≤ 75°C) | Type 4X, IP66 Single Seal Device |
| | | Ex ia Intrinsically Safe
Class I,II,III Division 1 GP A,B,C,D,E,F,G per drawing GE42818
Natural Gas Approved | Vmax = 30 VDC
Imax = 100 mA
Ci = 0 uF
Li = 0 mH
Pmax = 160 mW | T4(Tamb ≤ 125°C)
T5(Tamb ≤ 95°C)
T6(Tamb ≤ 80°C) | Type 4X, IP66 |
| | | Explosion-proof
Class I Division 1 GP B,C,D
Natural Gas Approved | | T4(Tamb ≤ 125°C)
T5(Tamb ≤ 95°C)
T6(Tamb ≤ 80°C) | Type 4X, IP66 |
| | | Class I Division 2 GP A,B,C,D
Class II Division 1 GP E,F,G
Class II Division 2 GP F,G
Class III | | T4(Tamb ≤ 125°C)
T5(Tamb ≤ 95°C)
T6(Tamb ≤ 80°C) | Type 4X, IP66 |
<table>
<thead>
<tr>
<th>Certification Body</th>
<th>Type</th>
<th>Certification Obtained</th>
<th>Entity Rating</th>
<th>Temperature Code</th>
<th>Enclosure Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM DVC60x0</td>
<td>IS Intrinsic Safe</td>
<td>Class I, II, III Division 1 GP A, B, C, D, E, F, G per drawing GE42819</td>
<td>Natural Gas Approved</td>
<td>Vmax = 30 VDC Imax = 226 mA Ci = 5 nF Li = 0.55 mH Pi = 1.4 W</td>
<td>T5(Tamb ≤ 80°C) T6(Tamb ≤ 75°C)</td>
</tr>
<tr>
<td>FM DVC60x0S</td>
<td>(x = 1, 2, 3)</td>
<td>XP Explosion-proof</td>
<td>Class I Division 1 GP B, C, D NI Non-incendive</td>
<td>Class I Division 2 GP A, B, C, D DIP Dust Ignition-proof</td>
<td>Class II, III Division 1 GP E, F, G S Suitable for Use</td>
</tr>
<tr>
<td>FM DVC6005</td>
<td>IS Intrinsic Safe</td>
<td>Class I, II, III Division 1 GP A, B, C, D, E, F, G per drawing GE42819</td>
<td>Natural Gas Approved</td>
<td>Vmax = 30 VDC Imax = 226 mA Ci = 5 nF Li = 0.55 mH Pi = 1.4 W</td>
<td>Voc = 9.6 VDC Isc = 3.5 mA Ca = 3.6 μF La = 100 mH Po = 8.4 mW</td>
</tr>
<tr>
<td>FM DVC60x5 (x = 1, 2, 3)</td>
<td>IS Intrinsic Safe</td>
<td>Class I, II, III Division 1 GP A, B, C, D, E, F, G per drawing GE42819</td>
<td>Natural Gas Approved</td>
<td>Vmax = 30 VDC Imax = 100 mA Ci = 0 μF Li = 0 mH Pi = 160 mW</td>
<td>T4(Tamb ≤ 125°C) T5(Tamb ≤ 95°C) T6(Tamb ≤ 80°C)</td>
</tr>
<tr>
<td>FM DVC60x5S</td>
<td>(x = 1, 2, 3)</td>
<td>XP Explosion-proof</td>
<td>Class I Division 1 GP A, B, C, D NI Non-incendive</td>
<td>Class I Division 2 GP A, B, C, D DIP Dust Ignition-proof</td>
<td>Class II, III Division 1 GP E, F, G S Suitable for Use</td>
</tr>
</tbody>
</table>
Table 1-6. Hazardous Area Classifications—ATEX

<table>
<thead>
<tr>
<th>Certificate</th>
<th>Type</th>
<th>Certification Obtained</th>
<th>Entity Rating</th>
<th>Temperature Code</th>
<th>Enclosure Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVC6005</td>
<td>I 1 G & D Intrinsically Safe Gas Ex ia IIC T5/T6 Ga Dust Ex ia IIE IIB T85°C (Ta ≤ +76°C), T89°C (Ta ≤ +80°C) Da Per drawing GE60771 Natural Gas Approved</td>
<td>Ui = 30 VDC Li = 226 mA Ci = 5 nF Li = 0.55 mH Pi = 1.4 W</td>
<td>T5(Tamb ≤ 80°C) T6(Tamb ≤ 75°C)</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td>DVC6005</td>
<td>I 2 G Flameproof Gas Ex d IIC T5/T6 Gb Natural Gas Approved</td>
<td>– –</td>
<td>T5(Tamb ≤ 85°C) T6(Tamb ≤ 80°C)</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td>DVC6005</td>
<td>I 3 G Type n Gas Ex nC IIC T5/T6 Gc</td>
<td>– –</td>
<td>T5(Tamb ≤ 80°C) T6(Tamb ≤ 75°C)</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td>DVC605x</td>
<td>I 1 G & D Intrinsically Safe Gas Ex ia IIC T5/T6 Ga Dust Ex ia IIIC T85°C (Ta ≤ +76°C), T89°C (Ta ≤ +80°C) Da Per drawing GE60771 Natural Gas Approved</td>
<td>Ui = 30 VDC Li = 226 mA Ci = 5 nF Li = 0.55 mH Pi = 1.4 W</td>
<td>Uo = 9.6 VDC Io = 3.5 mA Co = 3.6 uF Lo = 100 mH Po = 8.4 mW</td>
<td>T5(Tamb ≤ 80°C) T6(Tamb ≤ 75°C)</td>
<td>IP66 Single Seal Device</td>
</tr>
<tr>
<td>DVC605x</td>
<td>I 2 G Flameproof Gas Ex d IIC T5/T6 Gb Natural Gas Approved</td>
<td>– –</td>
<td>T5(Tamb ≤ 85°C) T6(Tamb ≤ 80°C)</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td>DVC605x</td>
<td>I 3 G Type n Gas Ex nC IIC T5/T6 Gc</td>
<td>– –</td>
<td>T5(Tamb ≤ 80°C) T6(Tamb ≤ 75°C)</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td>DVC605x</td>
<td>I 1 G & D Intrinsically Safe Gas Ex ia IIC T4/T5/T6 Ga Dust Ex ia IIIC T85°C (Tamb ≤ +64°C) T100°C (Tamb ≤ +79°C), T135°C (Tamb ≤ +114°C) T146°C (Tamb ≤ +125°C) Da Per drawing GE60771</td>
<td>Ui = 30 VDC Li = 100 mA Ci = 0 uF Li = 0 mH Pi = 160 mW</td>
<td>T4(Tamb ≤ 125°C) T5(Tamb ≤ 95°C) T6(Tamb ≤ 80°C)</td>
<td>IP66</td>
<td></td>
</tr>
<tr>
<td>DVC605x</td>
<td>I 2 G Flameproof Gas Ex d IIC T4/T5/T6 Gb</td>
<td>– –</td>
<td>T4(Tamb ≤ 125°C) T5(Tamb ≤ 95°C) T6(Tamb ≤ 80°C)</td>
<td>IP66</td>
<td></td>
</tr>
<tr>
<td>DVC605x</td>
<td>I 3 G Type n Gas Ex nA IIC T4/T5/T6 Gc</td>
<td>– –</td>
<td>T4(Tamb ≤ 125°C) T5(Tamb ≤ 95°C) T6(Tamb ≤ 80°C)</td>
<td>IP66</td>
<td></td>
</tr>
</tbody>
</table>
Table 1-7. Hazardous Area Classifications—IECEx

<table>
<thead>
<tr>
<th>Certificate</th>
<th>Type</th>
<th>Certification Obtained</th>
<th>Entity Rating</th>
<th>Temperature Code</th>
<th>Enclosure Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVC60x0</td>
<td></td>
<td>Intrinsically Safe</td>
<td>Ui = 30 VDC</td>
<td>T5(Tamb ≤ 80°C)</td>
<td>IP66 Single Seal Device</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gas</td>
<td>li = 226 mA</td>
<td>T6(Tamb ≤ 75°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ex ia IIC T5/T6 per drawing GE42990</td>
<td>Ci = 5 nF</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Natural Gas Approved</td>
<td>Li = 0.55 mH</td>
<td>T5(Tamb ≤ 80°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pi = 1.4 W</td>
<td>T6(Tamb ≤ 75°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flameproof</td>
<td></td>
<td>T5(Tamb ≤ 80°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gas</td>
<td></td>
<td>T6(Tamb ≤ 75°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ex d IIC T5/T6</td>
<td></td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Natural Gas Approved</td>
<td></td>
<td>T5(Tamb ≤ 80°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T6(Tamb ≤ 75°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type n</td>
<td></td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gas</td>
<td></td>
<td>T5(Tamb ≤ 80°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ex nC IIC T5/T6</td>
<td></td>
<td>T6(Tamb ≤ 75°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Natural Gas Approved</td>
<td></td>
<td>T5(Tamb ≤ 80°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T6(Tamb ≤ 75°C)</td>
<td></td>
</tr>
<tr>
<td>DVC6005</td>
<td></td>
<td>Intrinsically Safe</td>
<td>Ui = 30 VDC</td>
<td>T5(Tamb ≤ 80°C)</td>
<td>IP66 Single Seal Device</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gas</td>
<td>li = 226 mA</td>
<td>T6(Tamb ≤ 75°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ex ia IIC T5/T6 per drawing GE42990</td>
<td>Ci = 5 nF</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Natural Gas Approved</td>
<td>Li = 0.55 mH</td>
<td>T5(Tamb ≤ 80°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pi = 1.4 W</td>
<td>T6(Tamb ≤ 75°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flameproof</td>
<td>Uo = 9.6 VDC</td>
<td>T5(Tamb ≤ 80°C)</td>
<td>IP66 Single Seal Device</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gas</td>
<td>Io = 3.5 mA</td>
<td>T6(Tamb ≤ 75°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ex d IIC T5/T6</td>
<td>Ca = 3.6 uF</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Natural Gas Approved</td>
<td>Li = 0.55 mH</td>
<td>T5(Tamb ≤ 80°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pi = 1.4 W</td>
<td>T6(Tamb ≤ 75°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type n</td>
<td></td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gas</td>
<td></td>
<td>T5(Tamb ≤ 80°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ex nC IIC T5/T6</td>
<td></td>
<td>T6(Tamb ≤ 75°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Natural Gas Approved</td>
<td></td>
<td>T5(Tamb ≤ 80°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T6(Tamb ≤ 75°C)</td>
<td></td>
</tr>
<tr>
<td>DVC60x5</td>
<td></td>
<td>Intrinsically Safe</td>
<td>Ui = 30 VDC</td>
<td>T4(Tamb ≤ 125°C)</td>
<td>IP66 Single Seal Device</td>
</tr>
<tr>
<td>(x = 1,2,3)</td>
<td></td>
<td>Gas</td>
<td>li = 100 mA</td>
<td>T5(Tamb ≤ 95°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ex ia IIC T4/T5/T6 per drawing GE42990</td>
<td>Ci = 0 uF</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Natural Gas Approved</td>
<td>Li = 0 mH</td>
<td>T6(Tamb ≤ 80°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pi = 160 mW</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flameproof</td>
<td>T4(Tamb ≤ 125°C)</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gas</td>
<td>T5(Tamb ≤ 95°C)</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ex d IIC T4/T5/T6</td>
<td>T6(Tamb ≤ 80°C)</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type n</td>
<td>T4(Tamb ≤ 125°C)</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gas</td>
<td>T5(Tamb ≤ 95°C)</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ex nA IIC T4/T5/T6</td>
<td>T6(Tamb ≤ 80°C)</td>
<td>IP66 Single Seal Device</td>
<td></td>
</tr>
</tbody>
</table>
Section 2 Installation

Hazardous Area Classifications and Special Instructions for “Safe Use” and Installations in Hazardous Areas

CSA ... 2-4
FM ... 2-4
ATEX .. 2-4
IECEEx .. 2-5

Mounting Guidelines

DVC6010 on Sliding-Stem Actuators (up to 4 inches travel) 2-6
DVC6020 on Long-Stroke Sliding-Stem Actuators (4 to 24 inches travel) and Rotary Actuators 2-8
DVC6030 on Quarter-Turn Actuators .. 2-10
DVC6005 Base Unit ... 2-13
Wall Mounting ... 2-13
Pipestand Mounting ... 2-13
DVC6015 on Sliding-Stem Actuators (up to 4 inches travel) 2-13
DVC6025 on Long-Stroke Sliding-Stem Actuators (4 to 24 inches travel) and Rotary Actuators 2-15
DVC6035 on Quarter-Turn Actuators .. 2-16

67CFR Filter Regulator

Integral-Mounted Regulator .. 2-18
Yoke-Mounted Regulator .. 2-18
Casing-Mounted Regulator .. 2-18

Pneumatic Connections

Supply Connections .. 2-19
Output Connections .. 2-21
Single-Acting Actuators .. 2-21
Double-Acting Actuators ... 2-21
Special Construction to Support Solenoid Testing 2-22
Vent ... 2-22

Electrical Connections

4-20 mA Loop Connections .. 2-24
Remote Travel Sensor Connections 2-25
Test Connections .. 2-29
Communication Connections .. 2-29

Wiring Practices
Control System Requirements .. 2-30
HART Filter ... 2-30
Voltage Available ... 2-31
Compliance Voltage ... 2-32
Maximum Cable Capacitance .. 2-33

Installation in Conjunction with a Rosemount
333 HART Tri-Loop HART-to-Analog
Signal Converter .. 2-33
Installation

The DVC6000 can be used with either air or natural gas as the supply medium. If using natural gas as the pneumatic supply medium, natural gas will be used in the pneumatic output connections of the DVC6000 to any connected equipment. In normal operation the unit will vent the supply medium into the surrounding atmosphere unless it is remotely vented. When using natural gas as the supply medium, in a non-hazardous location in a confined area, remote venting of the unit is required. Failure to do so could result in personal injury, property damage, and area re-classification. For hazardous locations remote venting of the unit may be required, depending upon the area classification, and as specified by the requirements of local, regional, and federal codes, rules and regulations. Failure to do so when necessary could result in personal injury, property damage, and area re-classification.

WARNING

Avoid personal injury or property damage from sudden release of process pressure or bursting of parts. Before proceeding with any installation procedures:

- Always wear protective clothing, gloves, and eyewear.
- Personal injury or property damage may result from fire or explosion if natural gas is used as the supply medium and appropriate preventive measures are not taken. Preventive measures may include, but are not limited to, one or more of the following: Remote venting of the unit, re-evaluating the hazardous area classification, ensuring adequate ventilation, and the removal of any ignition sources. For information on remote venting of this controller, refer to page 2-22.
- If installing this into an existing application, also refer to the WARNING at the beginning of the Maintenance section of this instruction manual.
- Check with your process or safety engineer for any additional measures that must be taken to protect against process media.

WARNING

To avoid static discharge from the plastic cover when flammable gases or dust are present, do not rub or clean the cover with solvents. To do so could result in a spark that may cause the flammable gases or dust to explode, resulting in personal injury or property damage. Clean with a mild detergent and water only.

WARNING

This unit vents the supply medium into the surrounding atmosphere. When installing this unit in a non-hazardous (non-classified) location in a confined area, with natural gas as the supply medium, you must remotely vent this unit to a safe location. Failure to do so could result in personal injury or property damage from fire or explosion, and area re-classification.

When installing this unit in a hazardous (classified) location remote venting of the unit may be required, depending upon the area classification, and as specified by the requirements of local, regional, and federal codes, rules and regulations. Failure to do so when necessary could result in personal injury or property damage from fire or explosion, and area re-classification.

Vent line piping should comply with local and regional codes and should be as short as possible with adequate inside diameter and few bends to reduce case pressure buildup.

In addition to remote venting of the unit, ensure that all caps and covers are correctly installed. Failure to do so could result in personal injury or property damage from fire or explosion, and area re-classification.
Hazardous Area Classifications and Special Instructions for “Safe Use” and Installations in Hazardous Locations

Certain nameplates may carry more than one approval, and each approval may have unique installation/wiring requirements and/or conditions of safe use. These special instructions for “safe use” are in addition to, and may override, the standard installation procedures. Special instructions are listed by approval.

Note

This information supplements the nameplate markings affixed to the product. Always refer to the nameplate itself to identify the appropriate certification. Contact your Emerson Process Management sales office for approval/certification information not listed here. Approval information is for both aluminum and stainless steel constructions.

WARNING

Failure to follow these conditions of “safe use” could result in personal injury or property damage from fire or explosion, or area re-classification.

CSA

Intrinsically Safe, Explosion-proof, Division 2, Dust Ignition-proof

No special conditions for safe use. Refer to table 1-4 for approval information, figures B-1 and B-3 for CSA loop schematics, and figures B-2 and B-5 for typical CSA nameplates.

FM

Special Conditions of Safe Use

Intrinsically Safe, Explosion-proof, Non-incendive, Dust Ignition-proof

1. When product is used with natural gas as the pneumatic medium, the maximum working pressure of the natural gas supply shall be limited to 145 psi.

2. When product is used with natural gas as the pneumatic medium the product shall not be permitted in a Class I, Division 2, Group A, B, C, D location without the proper venting installation as per the manufacturer’s instruction manual.

3. The apparatus enclosure contains aluminum and is considered to constitute a potential risk of ignition by impact or friction. Care must be taken into account during installation and use to prevent impact or friction.

4. Part of the enclosure is constructed from plastic. To prevent the risk of electrostatic sparking the plastic surface should only be cleaned with a damp cloth. Refer to table 1-5 for approval information, figures B-6 and B-7 for FM loop schematics, and figures B-2 and B-9 for typical FM nameplates.

ATEX

Special Conditions for Safe Use

Intrinsically Safe

1. This apparatus can only be connected to an intrinsically safe certified equipment and this combination must be compatible as regards the intrinsically safe rules.

2. The electrical parameters of this equipment must not exceed any following values:
 \[U_{o} \leq 30 \text{ V} \; ; \; I_{o} \leq 226 \text{ mA} \; ; \; P_{o} \leq 1.4 \text{ W} \]

3. Operating ambient temperature: \([-52^\circ\text{C} to +80^\circ\text{C}\]

4. For the model with aluminum body: the apparatus must not be submitted to frictions or mechanical impacts.

6. Install per drawing GE60771. Refer to table 1-6 for additional approval information, figure B-10, B-12, and B-13 for ATEX loop schematics and figure B-11 for typical ATEX Intrinsic Safety nameplates.
Flameproof

Operating ambient temperature: \(-52^\circ C \text{ or } -40^\circ C \text{ to } + 85^\circ C\)

Refer to table 1-6 for additional approval information, and figure B-14 for typical ATEX Flameproof nameplates.

Type n

Operating ambient temperature: \(-52^\circ C \text{ or } -40^\circ C \text{ to } + 80^\circ C\)

Refer to table 1-6 for additional approval information, and figure B-15 for typical ATEX Type n nameplates.

IECEx

Conditions of Certification

Intrinsically Safe, Type n, Flameproof

Ex ia / Ex nC / Ex nA / Ex d

1. Warning: Electrostatic charge hazard. Do not rub or clean with solvents. To do so could result in an explosion.

Ex nC / Ex nA, Ex d

2. Do not open while energized.

Refer to table 1-7 for additional approval information, figures B-16 and B-17 for IECEx loop schematics, and figures B-19 and B-20 for typical IECEx nameplates.
Mounting Guidelines

DVC6010 on Sliding-Stem Actuators Up to 102 mm (4 Inches) of Travel

If ordered as part of a control valve assembly, the factory mounts the digital valve controller on the actuator, makes pneumatic connections to the actuator, sets up, and calibrates the instrument. If you purchased the digital valve controller separately, you will need a mounting kit to mount the digital valve controller on the actuator. See the instructions that come with the mounting kit for detailed information on mounting the digital valve controller to a specific actuator model.

The DVC6010 digital valve controller mounts on sliding-stem actuators with up to 102 mm (4 inch) travel. Figure 2-1 shows a typical mounting on an actuator with up to 51 mm (2 inch) travel. Figure 2-2 shows a typical mounting on actuators with 51 to 102 mm (2 to 4 inch) travel. For actuators with greater than 102 mm (4 inch) travel, see the guidelines for mounting a DVC6020 digital valve controller.

Note

Do not use the stainless steel DVC6010S in high vibration service where the mounting bracket uses standoffs (spacers) to mount to the actuator.

Refer to the following guidelines when mounting on sliding-stem actuators with up to 4 inches of travel. Where a key number is referenced, refer to figure 8-2.

1. Isolate the control valve from the process line pressure and release pressure from both sides of the valve body. Shut off all pressure lines to the actuator, releasing all pressure from the actuator. Use lock-out procedures to be sure that the above measures stay in effect while you work on the equipment.

2. Attach the connector arm to the valve stem connector.
3. Attach the mounting bracket to the digital valve controller housing.

4. If valve travel exceeds 2 inches, a feedback arm extension is attached to the existing 2-inch feedback arm. Remove the existing bias spring (key 78) from the 2-inch feedback arm (key 79). Attach the feedback arm extension to the feedback arm (key 79) as shown in figure 2-2.

5. Mount the digital valve controller on the actuator as described in the mounting kit instructions.

6. Set the position of the feedback arm (key 79) on the digital valve controller to the no air position by inserting the alignment pin (key 46) through the hole on the feedback arm as follows:

 - **For air-to-open actuators** (i.e., the actuator stem retracts into the actuator casing or cylinder as air pressure to the casing or lower cylinder increases), insert the alignment pin into the hole marked “A”. For this style actuator, the feedback arm rotates counterclockwise, from A to B, as air pressure to the casing or lower cylinder increases.

 - **For air-to-close actuators** (i.e., the actuator stem extends from the actuator casing or cylinder as air pressure to the casing or upper cylinder increases), insert the alignment pin into the hole marked “B”. For this style actuator, the feedback arm rotates clockwise, from B to A, as air pressure to the casing or upper cylinder increases.

Figure 2-2. FIELDVUE DVC6010 Digital Valve Controller Mounted on Sliding-Stem Actuator with 2 to 4 Inches Travel

Figure 2-3. Locating Adjustment Arm Pin in Feedback Arm
Note
When performing the following steps, ensure there is enough clearance between the adjustment arm and the feedback arm to prevent interference with the bias spring.

7. Apply anti-seize (key 64) to the pin of the adjustment arm. As shown in figure 2-3, place the pin into the slot of the feedback arm or feedback arm extension so that the bias spring loads the pin against the side of the arm with the valve travel markings.

8. Install the external lock washer on the adjustment arm. Position the adjustment arm in the slot of the connector arm and loosely install the flanged hex nut.

9. Slide the adjustment arm pin in the slot of the connector arm until the pin is in line with the desired valve travel marking. Tighten the flanged hex nut.

10. Remove the alignment pin (key 46) and store it in the module base next to the I/P assembly.

11. After calibrating the instrument, attach the shield with two machine screws.

DVC6020 on Long-Stroke (4 to 24 Inch Travel) Sliding-Stem Actuators and Rotary Actuators
If ordered as part of a control valve assembly, the factory mounts the digital valve controller on the actuator, makes pneumatic connections to the actuator, sets up, and calibrates the instrument. If you purchased the digital valve controller separately, you will need a mounting kit to mount the digital valve controller on the actuator. See the instructions that come with the mounting kit for detailed information on mounting the digital valve controller to a specific actuator model.

Note
Do not use the stainless steel DVC6020S in high vibration service where the mounting bracket uses standoffs (spacers) to mount to the actuator.

DVC6020 digital valve controllers use a cam (designed for linear response) and roller as the feedback mechanism. Figure 2-4 shows an example of mounting on sliding-stem actuators with travels from 4 inches to 24 inches. Some long-stroke applications will require an actuator with a tapped lower yoke boss. Figures 2-5 and 2-6 show the DVC6020 mounted on rotary actuators.

As shown in figure 2-5, two feedback arms are available for the digital valve controller. Most long-stroke sliding-stem and rotary actuator installations use the long feedback arm [62 mm (2.45 inches) from roller to pivot point]. Installations on Fisher 1051 size 33 and 1052 size 20 and 33 actuators use the short feedback arm [54 mm (2.13 inches) from roller to pivot point]. Make sure the correct feedback arm is installed on the digital valve controller before beginning the mounting procedure.

Refer to figures 2-4, 2-5, and 2-6 for parts locations. Also, where a key number is referenced, refer to figure 8-3. Refer to the following guidelines when mounting on sliding-stem actuators with 4 to 24 inches of travel or on rotary actuators:

1. Isolate the control valve from the process line pressure and release pressure from both sides of the valve body. Shut off all pressure lines to the pneumatic actuator, releasing all pressure from the actuator. Use lock-out procedures to be sure that the above measures stay in effect while working on the equipment.

2. If a cam is not already installed on the actuator, install the cam as described in the instructions included with the mounting kit. For sliding-stem actuators, the cam is installed on the stem connector.

3. If a mounting plate is required, fasten the mounting plate to the actuator.

4. For applications that require remote venting, a pipe-away bracket kit is available. Follow the instructions included with the kit to replace the existing mounting bracket on the digital valve controller with the pipe-away bracket and to transfer the feedback parts from the existing mounting bracket to the pipe-away bracket.
Figure 2-4. FIELDVUE DVC6020 Digital Valve Controller Mounted on Long-Stroke Sliding-Stem Actuator

Figure 2-5. FIELDVUE DVC6020 Digital Valve Controller Mounted on Rotary Actuator
DVC6000 Digital Valve Controllers

Figure 2-6. FIELDVUE DVC6020 Digital Valve Controller with Long Feedback Arm and Follower Arm Extension Mounted on a Rotary Actuator

5. Larger size actuators may require a follower arm extension, as shown in figure 2-6. If required, the follower arm extension is included in the mounting kit. Follow the instructions included with the mounting kit to install the follower arm extension.

6. Apply anti-seize (key 64) to the arm assembly pin as shown in figure 2-7.

7. Mount the DVC6020 on the actuator as follows:

 - If required, a mounting adaptor is included in the mounting kit. Attach the adaptor to the actuator as shown in figure 2-5. Then attach the digital valve controller assembly to the adaptor. The roller on the digital valve controller feedback arm will contact the actuator cam as it is being attached.

 - If no mounting adaptor is required, attach the digital valve controller assembly to the actuator or mounting plate. The roller on the digital valve controller feedback arm will contact the actuator cam as it is being attached.

8. For long-stroke sliding-stem actuators, after the mounting is complete, check to be sure the roller aligns with the position mark on the cam (see figure 2-4). If necessary, reposition the cam to attain alignment.

Figure 2-7. Locating Adjustment Arm Pin in Feedback Arm of a FIELDVUE DVC6020 Digital Valve Controller

DVC6030 on Quarter-Turn Actuators

If ordered as part of a control valve assembly, the factory mounts the digital valve controller on the actuator, makes pneumatic connections to the actuator, sets up, and calibrates the instrument. If you purchased the digital valve controller separately, you will need a mounting kit to mount the digital valve controller on the actuator. See the instructions that come with the mounting kit for detailed information on mounting the digital valve controller to a specific actuator model.

Figure 2-8 shows the DVC6030 digital valve controller mounted on a quarter-turn actuator. Refer to figure 2-8 for parts locations. Refer to the following guidelines when mounting on quarter-turn actuators:

Note

Due to NAMUR mounting limitations, do not use the stainless steel DVC6030S in high vibration service.

1. Isolate the control valve from the process line pressure and release pressure from both sides of the valve body. Shut off all pressure lines to the pneumatic actuator, releasing all pressure from the actuator. Use lock-out procedures to be sure that the above measures stay in effect while working on the equipment.
2. If necessary, remove the existing hub from the actuator shaft.
3. If a positioner plate is required, attach the positioner plate to the actuator as described in the mounting kit instructions.
4. If required, attach the spacer to the actuator shaft.

Refer to figures 2-9 and 2-10. The travel indicator assembly can have a starting position of 7:30 or 10:30. Determine the desired starting position then proceed with the next step. Considering the top of the digital valve controller as the 12 o’clock position, in the next step attach the travel indicator, so that the pin is positioned as follows:

- If increasing pressure from the digital valve controller output A rotates the potentiometer shaft clockwise (as viewed from the back of the instrument), mount the travel indicator assembly such that the arrow is in the 10:30 position, as shown in figure 2-9.

- If increasing pressure from the digital valve controller output A rotates the potentiometer shaft counterclockwise (as viewed from the back of the instrument), mount the travel indicator assembly such that the arrow is in the 7:30 position, as shown in figure 2-10.

5. Attach the travel indicator, to the shaft connector or spacer as described in the mounting kit instructions.

6. Attach the mounting bracket to the digital valve controller.

7. Position the digital valve controller so that the pin on the travel indicator engages the slot in the feedback arm and that the bias spring loads the pin as shown in figure 2-11. Attach the digital valve controller to the actuator or positioner plate.

8. If a travel indicator scale is included in the mounting kit, attach the scale as described in the mounting kit instructions.

Note

ValveLink software and the Field Communicator use the convention of clockwise (figure 2-9) and counterclockwise (figure 2-10) when viewing the potentiometer shaft from the back of the FIELDVUE instrument.
NOTE: DVC6030 TRAVEL COUNTS (CLOCKWISE) = 3400 ± 200

Figure 2-9. Explanation of FIELDVUE DVC6030 Travel Indicator Starting Position and Movement, if **Clockwise** Orientation is Selected for “Travel Sensor Motion” in ValveLink Software or the Field Communicator

NOTE: DVC6030 TRAVEL COUNTS (COUNTERCLOCKWISE) = 600 ± 200

Figure 2-10. Explanation of FIELDVUE DVC6030 Travel Indicator Starting Position and Movement if **Counterclockwise** Orientation is Selected for “Travel Sensor Motion” in ValveLink Software or the Field Communicator
DVC6005 Base Unit

For remote-mounted digital valve controllers, the DVC6005 base unit ships separately from the control valve and does not include tubing, fittings or wiring. See the instructions that come with the mounting kit for detailed information on mounting the base unit to a specific actuator model.

For remote-mounted instruments, mount the DVC6005 base unit on a 50.8 mm (2-inch) pipestand or wall. The included bracket is used for either mounting method.

Wall Mounting

Refer to figures 2-12 and 2-13. Drill two holes in the wall using the dimensions shown in figure 2-12. Attach the mounting bracket to the base unit using four spacers and 25.4 mm (1-inch) 1/4-20 hex head screws. Attach the base unit to the wall using suitable screws or bolts.

Pipestand Mounting

Refer to figure 2-13. Position a standoff on the back of the base unit. Using two 101.6 mm (4-inch) 1/4-20 hex head screws loosely attach the base unit to the pipestand with the mounting bracket. Position the second standoff, then using the remaining 101.6 mm (4-inch) hex head screws, securely fasten the base unit to the pipe stand.

DVC6015 on Sliding-Stem Actuators Up to 102 mm (4 Inches) of Travel

If ordered as part of a control valve assembly, the factory mounts the remote feedback unit on the actuator, makes pneumatic connections to the actuator, sets up, and calibrates the instrument. If you purchased the remote feedback unit, you will need a mounting kit to mount the remote feedback unit on the actuator. See the instructions that come with the mounting kit for detailed information on mounting the remote feedback unit to a specific actuator model.

Note

Refer to the DVC6005 Base Unit mounting instructions for off-actuator mounting instructions.

The DVC6015 remote feedback unit mounts on sliding-stem actuators with up to 102 mm (4-inch) travel. Figure 2-1 shows a typical mounting on an actuator with up to 51 mm (2 inch) travel. Figure 2-2 shows a typical mounting on actuators with 51 to 102 mm (2 to 4 inch) travel. For actuators with greater than 102 mm (4 inch) travel, see the guidelines for mounting a DVC6025 remote feedback unit.
Note

While the housing differs on the DVC6015 and the DVC6010, feedback parts are the same.

Refer to the following guidelines when mounting on sliding-stem actuators with up to 4 inches of travel. Where a key number is referenced, figure 8-7.

1. Isolate the control valve from the process line pressure and release pressure from both sides of the valve body. Shut off all pressure lines to the actuator, releasing all pressure from the actuator. Use lock-out procedures to be sure that the above measures stay in effect while you work on the equipment.

2. Attach the connector arm to the valve stem connector.

3. Attach the mounting bracket to the remote feedback unit housing.

4. If valve travel exceeds 2 inches, a feedback arm extension is attached to the existing 2-inch feedback arm. Remove the existing bias spring (key 78) from the 2-inch feedback arm (key 79). Attach the feedback arm extension to the feedback arm (key 79) as shown in figure 2-2.

5. Mount the remote feedback unit on the actuator as described in the mounting kit instructions.

6. Set the position of the feedback arm (key 79) on the remote feedback unit to the no air position by inserting the alignment pin (key 46) through the hole on the feedback arm as follows:

- For air-to-open actuators (i.e., the actuator stem retracts into the actuator casing or cylinder as air pressure to the casing or lower cylinder increases), insert the alignment pin into the hole marked “A”. For this style actuator, the feedback arm rotates counterclockwise, from A to B, as air pressure to the casing or lower cylinder increases.

- For air-to-close actuators (i.e., the actuator stem extends from the actuator casing or cylinder as air pressure to the casing or upper cylinder increases), insert the alignment pin into the hole marked “B”. For this style actuator, the feedback arm rotates clockwise, from B to A, as air pressure to the casing or upper cylinder increases.

7. Apply lubricant to the pin of the adjustment arm. As shown in figure 2-3, place the pin into the slot of the feedback arm or feedback arm extension so that the bias spring loads the pin against the side of the arm with the valve travel markings.

Figure 2-13. FIELDVUE DVC6005 Base Unit Mounting

Note

When performing the following steps, ensure there is enough clearance between the adjustment arm and the feedback arm to prevent interference with the bias spring.
8. Install the external lock washer on the adjustment arm. Position the adjustment arm in the slot of the connector arm and loosely install the flanged hex nut.

9. Slide the adjustment arm pin in the slot of the connector arm until the pin is in line with the desired valve travel marking. Tighten the flanged hex nut.

10. Remove the alignment pin (key 46) and store it in the module base next to the I/P assembly.

11. After calibrating the instrument, attach the shield with two machine screws.

DVC6025 on Long-Stroke (4 to 24 Inch Travel) Sliding-Stem Actuators and Rotary Actuators

If ordered as part of a control valve assembly, the factory mounts the remote feedback unit on the actuator, makes pneumatic connections to the actuator, sets up, and calibrates the instrument. If you purchased the remote feedback unit separately, you will need a mounting kit to mount the remote feedback unit on the actuator. See the instructions that come with the mounting kit for detailed information on mounting the remote feedback unit to a specific actuator model.

Note

Refer to the DVC6005 Base Unit mounting instructions on page 2-13 for off-actuator mounting instructions.

DVC6025 remote feedback units use a cam and roller as the feedback mechanism. Figure 2-4 shows an example of mounting on sliding-stem actuators with travels from 4 inches to 24 inches. Some long-stroke applications will require an actuator with a tapped lower yoke boss. Figures 2-5 and 2-6 show examples of mounting on rotary actuators.

Note

While the housing differs on the DVC6025 and the DVC6020, feedback parts are the same.

As shown in figure 2-5, two feedback arms are available for the remote feedback unit. Most long-stroke sliding-stem and rotary actuator installations use the long feedback arm [62 mm (2.45 inches) from roller to pivot point]. Installations on 1051 size 33 and 1052 size 20 and 33 actuators use the short feedback arm [54 mm (2.13 inches) from roller to pivot point]. Make sure the correct feedback arm is installed on the remote feedback unit before beginning the mounting procedure.

Refer to figures 2-4, 2-5, and 2-6 for parts locations. Refer to the following guidelines when mounting on sliding-stem actuators with 4 to 24 inches of travel or on rotary actuators:

1. Isolate the control valve from the process line pressure and release pressure from both sides of the valve body. Shut off all pressure lines to the pneumatic actuator, releasing all pressure from the actuator. Use lock-out procedures to be sure that the above measures stay in effect while working on the equipment.

2. If a cam is not already installed on the actuator, install the cam as described in the instructions included with the mounting kit. For sliding-stem actuators, the cam is installed on the stem connector.

3. If a mounting plate is required, fasten the mounting plate to the actuator.

4. For applications that require remote venting, a pipe-away bracket kit is available. Follow the instructions included with the kit to replace the existing mounting bracket on the remote feedback unit with the pipe-away bracket and to transfer the feedback parts from the existing mounting bracket to the pipe-away bracket.

5. Larger size actuators may require a follower arm extension, as shown in figure 2-6. If required, the follower arm extension is included in the mounting kit. Follow the instructions included with the mounting kit to install the follower arm extension.

6. Apply anti-seize (key 64) to the arm assembly pin as shown in figure 2-7.

7. Mount the DVC6025 on the actuator as follows:
 - If required, a mounting adaptor is included in the mounting kit. Attach the adaptor to the actuator as shown in figure 2-5. Then attach the remote feedback unit assembly to the adaptor. The roller on the remote feedback unit feedback arm will contact the actuator cam as it is being attached.
 - If no mounting adaptor is required, attach the remote feedback unit assembly to the actuator or mounting plate. The roller on the remote feedback unit feedback arm will contact the actuator cam as it is being attached.

8. For long-stroke sliding-stem actuators, after the mounting is complete, check to be sure the roller aligns with the position mark on the cam (see...
DVC6000 Digital Valve Controllers

figure 2-4). If necessary, reposition the cam to attain alignment.

DVC6035 on Quarter-Turn Actuators
If ordered as part of a control valve assembly, the factory mounts the remote feedback unit on the actuator, makes pneumatic connections to the actuator, sets up, and calibrates the instrument. If you purchased the remote feedback unit separately, you will need a mounting kit to mount the remote feedback unit on the actuator. See the instructions that come with the mounting kit for detailed information on mounting the remote feedback unit to a specific actuator model.

Note
Refer to the DVC6005 Base Unit mounting instructions on page 2-13 for off-actuator mounting instructions.

Figure 2-8 shows an example of mounting on a quarter-turn actuator. Refer to figure 2-8 for parts locations. Refer to the following guidelines when mounting on quarter-turn actuators:

Note
While the housing differs on the DVC6035 and the DVC6030, feedback parts are the same.

1. Isolate the control valve from the process line pressure and release pressure from both sides of the valve body. Shut off all pressure lines to the pneumatic actuator, releasing all pressure from the actuator. Use lock-out procedures to be sure that the above measures stay in effect while working on the equipment.

2. If necessary, remove the existing hub from the actuator shaft.

3. If a positioner plate is required, attach the positioner plate to the actuator as described in the mounting kit instructions.

4. If required, attach the spacer to the actuator shaft.

Refer to figure 2-14. The travel indicator assembly can have a starting position of 7:30 or 10:30. Determine the desired starting position then proceed with the next step. Considering the top of the remote travel sensor as the 12 o’clock position, in the next step attach the travel indicator, so that the pin is positioned as follows:

- **If increasing pressure from the base unit output A rotates the remote feedback units potentiometer shaft counterclockwise (as viewed from the back of the instrument)**, mount the travel indicator assembly such that the arrow is in the 7:30 position, as shown in figures 2-10 and 2-14.

- **If increasing pressure from the base unit output A rotates the remote feedback units potentiometer shaft clockwise (as viewed from the back of the instrument)**, mount the travel indicator assembly such that the arrow is in the 10:30 position, as shown in figures 2-9 and 2-14.
Note

ValveLink software and the Field Communicator use the convention of clockwise (figure 2-9) and counterclockwise (figure 2-10) when viewing the potentiometer shaft from the back of the FIELDVUE instrument.

5. Attach the travel indicator to the shaft connector or spacer as described in the mounting kit instructions.
6. Attach the mounting bracket to the remote feedback unit.
7. Position the remote feedback unit so that the pin on the travel indicator engages the slot in the feedback arm and that the bias spring loads the pin as shown in figure 2-11. Attach the remote feedback unit to the actuator or positioner plate.
8. If a travel indicator scale is included in the mounting kit, attach the scale as described in the mounting kit instructions.
DVC6000 Digital Valve Controllers

67CFR Filter Regulator
A 67CFR filter regulator, when used with DVC6000 digital valve controllers, can be mounted three ways.

Integral-Mounted Regulator
Refer to figure 2-15. Lubricate an O-ring and insert it in the recess around the SUPPLY connection on the digital valve controller. Attach the 67CFR filter regulator to the side of the digital valve controller. Thread a 1/4-inch socket-head pipe plug into the unused outlet on the filter regulator. This is the standard method of mounting the filter regulator.

Yoke-Mounted Regulator
Mount the filter regulator with 2 cap screws to the pre-drilled and tapped holes in the actuator yoke.

Thread a 1/4-inch socket-head pipe plug into the unused outlet on the filter regulator. The O-ring is not required.

Casing-Mounted Regulator
Use the separate 67CFR filter regulator casing mounting bracket provided with the filter regulator. Attach the mounting bracket to the 67CFR and then attach this assembly to the actuator casing. Thread a 1/4-inch socket-head pipe plug into the unused outlet on the filter regulator. The O-ring is not required.

Pressure Connections

Refer to the Installation WARNING at the beginning of this section.

Pressure connections are shown in figure 2-16. All pressure connections on the digital valve controller are 1/4 NPT internal connections. Use at least 10 mm (3/8-inch) tubing for all pneumatic connections. If remote venting is required, refer to the vent subsection.
Supply Connections

WARNING

To avoid personal injury and property damage resulting from bursting of parts, do not exceed maximum supply pressure.

Personal injury or property damage may result from fire or explosion if natural gas is used as the supply medium and appropriate preventive measures are not taken. Preventive measures may include, but are not limited to, one or more of the following: Remote venting of the unit, re-evaluating the hazardous area classification, ensuring adequate ventilation, and the removal of any ignition sources. For information on remote venting of this controller, refer to page 2-22.

Severe personal injury or property damage may occur from an uncontrolled process if the instrument supply medium is not clean, dry, oil-free, and noncorrosive. While use and regular maintenance of a filter that removes particles larger than 40 micrometers in diameter will suffice in most applications, check with an Emerson Process Management field office and industry instrument air quality standards for use with corrosive air or if you are unsure about the amount of air filtration or filter maintenance.

WARNING

When using natural gas as the supply medium, or for explosion proof applications, the following warnings also apply:

- Remove electrical power before removing the housing cap. Personal injury or property damage from fire or explosion may result if power is not disconnected before removing the cap.
• Remove electrical power before disconnecting any of the pneumatic connections.

• When disconnecting any of the pneumatic connections or any pressure retaining part, natural gas will seep from the unit and any connected equipment into the surrounding atmosphere. Personal injury or property damage may result from fire or explosion if natural gas is used as the supply medium and appropriate preventive measures are not taken. Preventive measures may include, but are not limited to, one or more of the following: Remote venting of the unit, re-evaluating the hazardous area classification, ensuring adequate ventilation, and the removal of any ignition sources. For information on remote venting of this controller, refer to page 2-22.

• Ensure that the covers is correctly installed before putting this unit back into service. Failure to do so could result in personal injury or property damage from fire or explosion.

The DVC6000 can be used with air or natural gas as the supply medium. If using natural gas as the pneumatic supply medium, natural gas will be used in the pneumatic output connections of the DVC6000 to any connected equipment. In normal operation the unit will vent the supply medium into the surrounding atmosphere unless it is remotely vented.

Natural Gas Certified, Single Seal instruments can be identified by the natural gas approval label shown in figure 2-17. The Natural Gas Certified, Single Seal device option simplifies conduit sealing requirements. Read and follow all local, regional, and federal wiring requirements for natural gas installations. Contact your Emerson Process Management sales office for information on obtaining a Natural Gas Certified, Single Seal DVC6000 digital valve controller.

Supply pressure must be clean, dry air that meets the requirements of ISA Standard 7.0.01. Alternatively, natural gas must be clean, dry, oil-free, and noncorrosive. H2S content should not exceed 20 ppm.

A maximum 40 micrometer particle size in the air system is acceptable. Further filtration down to 5 micrometer particle size is recommended. Lubricant content is not to exceed 1 ppm weight (w/w) or volume (v/v) basis. Condensation in the air supply should be minimized.

A 67CFR filter regulator with standard 5 micrometer filter, or equivalent, may be used to filter and regulate supply medium. A filter regulator can be integrally mounted onto the side of the digital valve controller, casing mounted separate from the digital valve controller, or mounted on the actuator mounting boss. Supply and output pressure gauges may be supplied on the digital valve controller. The output pressure gauges can be used as an aid for calibration.

Connect the nearest suitable supply source to the 1/4 NPT IN connection on the filter regulator (if furnished) or to the 1/4 NPT SUPPLY connection on the digital valve controller housing (if 67CFR filter regulator is not attached).
Output Connections
A factory mounted digital valve controller has its output piped to the pneumatic input connection on the actuator. If mounting the digital valve controller in the field, or installing the remote-mounted DVC6005 base unit, connect the 1/4 NPT digital valve controller output connections to the pneumatic actuator input connections.

Single-Acting Actuators
When using a single-acting direct digital valve controller (relay A or C) on a single-acting actuator connect OUTPUT A to the actuator pneumatic input.

When using a single-acting reverse digital valve controller (relay B) on a single-acting actuator connect OUTPUT B to the actuator diaphragm casing.

Double-Acting Actuators
DVC6000 digital valve controllers on double-acting actuators always use relay A. With no input current, OUTPUT A is at 0 pressure and OUTPUT B is at full supply pressure when the relay is properly adjusted.

To have the actuator stem extend from the cylinder with increasing input signal, connect OUTPUT A to the upper actuator cylinder connection. Connect OUTPUT B to the lower cylinder connection. Figure 2-18 shows the digital valve controller connected to a double-acting piston actuator.

To have the actuator stem retract into the cylinder with increasing input signal, connect OUTPUT A to the lower actuator cylinder connection. Connect OUTPUT B to the upper cylinder connection.
Special Construction to Support Solenoid Valve Testing

In single-acting actuator applications with a solenoid valve installed, the DVC6000 can be configured to test the operation of the solenoid valve. This is accomplished by connecting the “unused” output port from the DVC6000 to the pneumatic line between the solenoid valve and the actuator, as shown in figure 2-19. When single-acting, direct relay C is installed, the “unused” output port is port B. When single-acting, reverse relay B is used, the unused port is port A.

Note

Solenoid valve testing is only available for instrument level PD and ODV.

Note

This application is called “special application” in the Setup Wizard relay selection.

This configuration is not possible with a double-acting actuator or when using relay A in single-acting mode.

Vent

WARNING

Personal injury or property damage can occur from cover failure due to overpressure. Ensure that the housing vent opening is open and free of debris to prevent pressure buildup under the cover.
WARNING

This unit vents the supply medium into the surrounding atmosphere. When installing this unit in a non-hazardous (non-classified) location in a confined area, with natural gas as the supply medium, you must remotely vent this unit to a safe location. Failure to do so could result in personal injury or property damage from fire or explosion, and area re-classification.

When installing this unit in a hazardous (classified) location, remote venting of the unit may be required, depending upon the area classification, and as specified by the requirements of local, regional, and federal codes, rules and regulations. Failure to do so when necessary could result in personal injury or property damage from fire or explosion, and area re-classification.

Vent line piping should comply with local and regional codes and should be as short as possible with adequate inside diameter and few bends to reduce case pressure buildup.

In addition to remote venting of the unit, ensure that all caps and covers are correctly installed. Failure to do so could result in personal injury or property damage from fire or explosion, and area re-classification.

The relay output constantly bleeds supply medium into the area under the cover. The vent opening at the back of the housing should be left open to prevent pressure buildup under the cover. If a remote vent is required, the vent line must be as short as possible with a minimum number of bends and elbows.

To connect a remote vent to DVC6010 and DVC6030 digital valve controllers and DVC6005 base unit—remove the plastic vent (key 52, figures 8-2 and 8-5). The vent connection is 3/8 NPT internal. At a minimum, 12.7 mm (1/2-inch) tubing should be used when installing a remote vent to prevent excessive pressure from building up under the cover.

Electrical Connections

WARNING

To avoid personal injury resulting from electrical shock, do not exceed the maximum input voltage specified in table 1-2 of this instruction manual, or on the product nameplate. If the input voltage specified differs, do not exceed the lowest specified maximum input voltage.

Select wiring and/or cable glands that are rated for the environment of use (such as hazardous area, ingress protection and temperature). Failure to use properly rated wiring and/or cable glands can result in personal injury or property damage from fire or explosion.

Wiring connections must be in accordance with local, regional, and national codes for any given hazardous area approval. Failure to follow the local, regional, and national codes could result in personal injury or property damage from fire or explosion.

The valve may move in an unexpected direction when power is applied to the DVC6000 digital valve controller. To avoid personal injury and property damage caused by moving parts, keep hands, tools, and other objects away from the valve/actuator assembly when applying power to the instrument.
WARNING

To avoid personal injury or property damage caused by fire or explosion, remove power to the instrument before removing the terminal box cover in an area which contains a potentially explosive atmosphere or has been classified as hazardous.

4-20 mA Loop Connections

The digital valve controller is normally powered by a control system output card. The use of shielded cable will ensure proper operation in electrically noisy environments.

WARNING

To avoid personal injury or property damage from the sudden release of process pressure, be sure the valve is not controlling the process. The valve may move when the source is applied.

Wire the digital valve controller as follows: (unless indicated otherwise, refer to figures 8-2 through 8-4 for identification of parts).

1. Remove the terminal box cap (key 4) from the terminal box (key 3).

2. Bring the field wiring into the terminal box. When applicable, install conduit using local and national electrical codes which apply to the application.

3. Refer to figure 2-20. Connect the control system output card positive wire “current output” to the LOOP + screw terminal in the terminal box. Connect the control system output card negative (or return) wire to the LOOP − screw terminal.

4. As shown in figure 2-20, two ground terminals are available for connecting a safety ground, earth ground, or drain wire. These ground terminals are electrically identical. Make connections to these terminals following national and local codes and plant standards.

5. Replace and hand tighten the terminal box cap. When the loop is ready for startup, apply power to the control system output card.
Remote Travel Sensor Connections

The DVC6005 base unit is designed to receive travel information via a remote sensor. The remote can be any of the following:

- Emerson Process Management supplied DVC6015, DVC6025 or DVC6035 feedback unit,
- An under-traveled 10 kOhm potentiometer used in conjunction with onboard 30 kOhm resistor, or
- A potentiometer used in conjunction with two fixed resistors (potentiometer travel is the same as actuator travel).

WARNING

Personal injury or property damage, caused by wiring failure, can result if the feedback wiring connecting the base unit with the remote feedback unit shares a conduit with any other power or signal wiring.

Do not place feedback wiring in the same conduit as other power or signal wiring.

Note

3-conductor shielded cable, 22 AWG minimum wire size, is required for connection between base unit and feedback unit. Pneumatic tubing between base unit output connection and actuator has been tested to 15 meters (50 feet) maximum without performance degradation.

Using the DVC6015, DVC6025 & DVC6035 Feedback Unit as a Remote Travel Sensor

1. On the feedback unit, remove the housing cap.
2. On the base unit, remove the feedback connections terminal box cap (see figure 2-16).
3. If necessary, install conduit between the feedback unit and the base unit following applicable local and national electrical codes. Route the 3-conductor shielded cable between the two units (refer to figure 2-21).
4. Connect one wire of the 3-conductor shielded cable between terminal 1 on the feedback unit and terminal 1 on the base unit.
5. Connect the second wire of the 3-conductor shielded cable between terminal 2 on the feedback unit and terminal 2 on the base unit.
6. Connect the third wire of the 3-conductor shielded cable between terminal 3 on the feedback unit and terminal 3 on the base unit.
7. Connect the cable shield or drain wire to the ground screw in the feedback connections terminal box of the base unit.
8. Replace and hand-tighten all covers.

Note

Do not connect the shield or drain wire to any terminal on the feedback unit, to the earth ground, or any other alternative ground.

Using an External 10 kOhm External Potentiometer as a Remote Travel Sensor

Note

Potentiometer travel must be between 1.3 and 1.6 times greater than the actuator travel. For example: if an actuator has a travel of 9 inches, then a linear potentiometer must be selected with a rated travel between 11.7 and 14.4 inches. The resistive element must be tapered from 0 kOhm to 10 kOhm over rated travel of the potentiometer. The actuator will only use 63 to 76 % of the potentiometer rated travel.
The base unit (DVC6005) was designed to work with a 40 kOhm potentiometer for travel feedback. However, there are linear potentiometers that are readily available with a rated resistance of 10 kOhm. Therefore, the feedback connections terminal box of the DVC6005 contains an additional 30 kOhm fixed resistor that may be added to the circuit. This brings the total resistance up to the required 40 kOhm.

1. Mount the external 10 kOhm potentiometer to the actuator such that the mid-travel position of the potentiometer (5 kOhm) corresponds to the mid-travel position of the actuator. This will leave an equal amount of unused resistive element on both ends of the travel, which is required by the digital valve controller to function properly.

2. On the base unit, remove the feedback connections terminal box cap (see figure 2-16).

3. If necessary, install conduit between the potentiometer and the base unit following applicable local and national electrical codes. Route the 3-conductor shielded cable between the two units (refer to figure 2-22).

Note

The digital valve controller must be configured using the SStem/Roller selection on the menu of the appropriate setup device.
4. Connect one wire of the 3-conductor shielded cable between the terminal labeled “30kΩ” on the base unit and one end lead of the potentiometer.

5. Connect the second wire of the 3-conductor shielded cable between the middle lead (wiper) of the 10 kΩm potentiometer to Terminal 2 on the base unit.

6. Connect the third wire of the 3-conductor shielded cable between Terminal 3 on the base unit and the other end-lead of the 10 kΩm potentiometer.

7. Connect the cable shield or drain wire to the ground screw in the feedback connections terminal box of the base unit. Do not connect the shield or drain wire to the external potentiometer.

8. Replace and tighten the base unit cover.

Using a Potentiometer with Two Fixed Resistors as a Remote Travel Sensor

Perform the following procedure if a potentiometer is used with the same, or slightly longer travel than the actuator’s travel.

![Diagram](image)

Figure 2-23. Terminal Details for Connecting a FIELDVUE DVC6005 Base Unit and a Three-Resistor Series

- The maximum resistance of the potentiometer ($R_{pot(max)}$) must be between 3.9 kΩm and 10 kΩm.
- The resistance of R_1 is 4.25 times greater than $R_{pot(max)}$.
- The resistance of R_2 is 4 times less than $R_{pot(max)}$.

WARNING

To avoid personal injury or property damage from an uncontrolled process ensure that the R_1 resistor is properly insulated before installing it in the terminal box.

1. On the base unit, remove the feedback connections terminal box cap (see figure 2-16).
2. If necessary, install conduit between the two-resistor series and the base unit following applicable local and national electrical codes. Route the 3-conductor shielded cable between the two units (refer to figure 2-23).
3. Install the fixed resistor (R_1) across the unlabeled bottom Terminal and Terminal #1. The bottom terminal does not have a screw. The screw on the 30 kΩm terminal can be used. R_1 must be properly insulated when installed in the terminal box to prevent personal injury or property damage.
4. Connect one wire of the 3-conductor shielded cable between the unlabeled bottom Terminal on the base unit and an end-lead of the external potentiometer (R_{pot}).
5. Connect the second wire of the 3-conductor shielded cable between the middle lead (wiper) of the external potentiometer (R_{pot}) and Terminal 2 on the base unit.
6. Connect the third wire of the 3-conductor shielded cable between between a lead on fixed resistor (R2) and terminal #3 of the base unit.

7. Connect the available end-lead on the potentiometer (Rpot) with the available lead on fixed resistor (R2).

8. Connect the cable shield or drain wire to the ground screw in the feedback connections terminal box of the base unit. Do not connect the shield or drain wire to the two-resistor series.

9. Replace and tighten the base unit cover.

Example: Using a linear potentiometer rated at 400 Ohms/inch on an actuator with 16” of travel.

- \(R_{\text{pot(max)}} = 400 \text{ Ohms/in} \times 16” = 6.4 \text{ kOhm} \)
- \(R_1 = 6.4 \text{ kOhm} \times 4.25 = 27.2 \text{ kOhm} \)
- \(R_2 = 6.4 \text{ kOhm} / 4 = 1.6 \text{ kOhm} \)
Test Connections

⚠️ WARNING

Personal injury or property damage caused by fire or explosion may occur if this connection is attempted in a potentially explosive atmosphere, or in an area that has been classified as hazardous. Confirm that area classification and atmosphere conditions permit the safe removal of the terminal box cap before proceeding.

Test connections inside the terminal box can be used to measure loop current across a 1 ohm resistor.
1. Remove the terminal box cap.
2. Adjust the test meter to measure a range of 0.001 to 0.1 volts.
3. Connect the positive lead of the test meter to the TEST + connection and the negative lead to the TEST − connection inside the terminal box.
4. Measure Loop current as:

 Voltage (on test meter) × 1000 = milliamps

 example:
 Test meter Voltage X 1000 = Loop Milliamps
 0.004 X1000 = 4.0 milliamperes
 0.020 X 1000 = 20.0 milliamperes
5. Remove test leads and replace the terminal box cover.

Communication Connections

⚠️ WARNING

Personal injury or property damage caused by fire or explosion may occur if this connection is attempted in a potentially explosive atmosphere or in an area that has been classified as hazardous. Confirm that area classification and atmosphere conditions permit the safe removal of the terminal box cap before proceeding.

A HART communicating device, such as a 475 Field Communicator or a personal computer running ValveLink software communicating through a HART modem, interfaces with the DVC6000 digital valve controller from any wiring termination point in the 4-20 mA loop. If you choose to connect the HART communicating device directly to the instrument, attach the device to the LOOP + and LOOP − terminals or to the TALK + and TALK − connections inside the terminal box to provide local communications with the instrument.
Wiring Practices

Control System Requirements
There are several parameters that should be checked to ensure the control system is compatible with the DVC6000 digital valve controller.

HART Filter
Depending on the control system you are using, a HART filter may be needed to allow HART communication. The HART filter is a passive device that is inserted in field wiring from the HART loop. The filter is normally installed near the field wiring terminals of the control system I/O (see figure 2-24). Its purpose is to effectively isolate the control system output from modulated HART communication signals and raise the impedance of the control system to allow HART communication. For more information on the description and use of the HART filter, refer to the separate HART filter instruction manual.

Contact your Emerson Process Management sales office if assistance is needed to determine if your system requires a filter.

Note
A HART filter is typically NOT required for any of the Emerson Process Management control systems, including PROVOX™, RS3™, and DeltaV™ systems.
The voltage available at the instrument is not the voltage measured at the instrument terminals. The voltage measured at the instrument is limited by the instrument and is typically less than the voltage available.

As shown in figure 2-25, the voltage available at the instrument depends upon:

- the control system compliance voltage
- if a filter, wireless THUM adapter, or intrinsic safety barrier is used, and
- the wire type and length.

The control system compliance voltage is the maximum voltage at the control system output terminals at which the control system can produce maximum loop current.

The voltage available at the instrument may be calculated from the following equation:

\[
\text{Voltage Available} = [\text{Control System Compliance Voltage (at maximum current)}] - [\text{filter voltage drop (if a HART filter is used)}] - [\text{total cable resistance} \times \text{maximum current}] - [\text{barrier resistance} \times \text{maximum current}].
\]

The calculated voltage available should be greater than or equal to 11 volts DC.

Table 2-1 lists the resistance of some typical cables.

The following example shows how to calculate the voltage available for a Honeywell™ TDC2000 control system with a HF340 HART filter, and 1000 feet of Belden™ 9501 cable:

\[
\text{Voltage available} = [18.5 \text{ volts (at 21.05 mA)}] - [2.3 \text{ volts}] - [48 \text{ ohms} \times 0.02105 \text{ amps}]
\]

\[
\text{Voltage available} = [18.5] - [2.3] - [1.01] = 15.19 \text{ volts}
\]
Table 2-1. Cable Characteristics

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Capacitance(1) pF/Ft</th>
<th>Capacitance(1) pF/m</th>
<th>Resistance(2) Ohms/ft</th>
<th>Resistance(2) Ohms/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS5308/1, 0.5 sq mm</td>
<td>61.0</td>
<td>200</td>
<td>0.022</td>
<td>0.074</td>
</tr>
<tr>
<td>BS5308/1, 1.0 sq mm</td>
<td>61.0</td>
<td>200</td>
<td>0.012</td>
<td>0.037</td>
</tr>
<tr>
<td>BS5308/1, 1.5 sq mm</td>
<td>61.0</td>
<td>200</td>
<td>0.008</td>
<td>0.025</td>
</tr>
<tr>
<td>BS5308/2, 0.5 sq mm</td>
<td>121.9</td>
<td>400</td>
<td>0.022</td>
<td>0.074</td>
</tr>
<tr>
<td>BS5308/2, 0.75 sq mm</td>
<td>121.9</td>
<td>400</td>
<td>0.016</td>
<td>0.053</td>
</tr>
<tr>
<td>BS5308/2, 1.5 sq mm</td>
<td>121.9</td>
<td>400</td>
<td>0.008</td>
<td>0.025</td>
</tr>
<tr>
<td>BELDEN 8303, 22 awg</td>
<td>63.0</td>
<td>206.7</td>
<td>0.030</td>
<td>0.098</td>
</tr>
<tr>
<td>BELDEN 8441, 22 awg</td>
<td>83.2</td>
<td>273</td>
<td>0.030</td>
<td>0.098</td>
</tr>
<tr>
<td>BELDEN 8767, 22 awg</td>
<td>76.8</td>
<td>252</td>
<td>0.030</td>
<td>0.098</td>
</tr>
<tr>
<td>BELDEN 8777, 22 awg</td>
<td>54.9</td>
<td>180</td>
<td>0.030</td>
<td>0.098</td>
</tr>
<tr>
<td>BELDEN 9501, 24 awg</td>
<td>50.0</td>
<td>164</td>
<td>0.048</td>
<td>0.157</td>
</tr>
<tr>
<td>BELDEN 9680, 24 awg</td>
<td>27.5</td>
<td>90.2</td>
<td>0.048</td>
<td>0.157</td>
</tr>
<tr>
<td>BELDEN 9729, 24 awg</td>
<td>22.1</td>
<td>72.5</td>
<td>0.048</td>
<td>0.157</td>
</tr>
<tr>
<td>BELDEN 9773, 18 awg</td>
<td>54.9</td>
<td>180</td>
<td>0.012</td>
<td>0.042</td>
</tr>
<tr>
<td>BELDEN 9829, 24 awg</td>
<td>27.1</td>
<td>88.9</td>
<td>0.048</td>
<td>0.157</td>
</tr>
<tr>
<td>BELDEN 9873, 20 awg</td>
<td>54.9</td>
<td>180</td>
<td>0.020</td>
<td>0.069</td>
</tr>
</tbody>
</table>

1. The capacitance values represent capacitance from one conductor to all other conductors and shield. This is the appropriate value to use in the cable length calculations.
2. The resistance values include both wires of the twisted pair.

Compliance Voltage

If the compliance voltage of the control system is not known, perform the following compliance voltage test.

1. Disconnect the field wiring from the control system and connect equipment as shown in figure 2-26 to the control system terminals.
2. Set the control system to provide maximum output current.
3. Increase the resistance of the 1 kΩ potentiometer, shown in figure 2-26, until the current observed on the milliammeter begins to drop quickly.
4. Record the voltage shown on the voltmeter. This is the control system compliance voltage.

For specific parameter information relating to your control system, contact your Emerson Process Management sales office.
Maximum Cable Capacitance

The maximum cable length for HART communication is limited by the characteristic capacitance of the cable. Maximum length due to capacitance can be calculated using the following formulas:

\[
\text{Length(ft)} = \frac{160,000 - C_{\text{master}}(\text{pF})}{C_{\text{cable}}(\text{pF/ft})}
\]

\[
\text{Length(m)} = \frac{160,000 - C_{\text{master}}(\text{pF})}{C_{\text{cable}}(\text{pF/m})}
\]

where:
- 160,000 = a constant derived for FIELDVUE instruments to ensure that the HART network RC time constant will be no greater than 65 μs (per the HART specification).
- \(C_{\text{master}} = \) the capacitance of the control system or HART filter
- \(C_{\text{cable}} = \) the capacitance of the cable used (see table 2-1)

The following example shows how to calculate the cable length for a Foxboro I/A control system (1988), with a \(C_{\text{master}}\) of 50,000 pF and a Belden 9501 cable with characteristic capacitance of 50pF/ft.

\[
\text{Length(ft)} = \frac{160,000 - 50,000\text{pF}}{50\text{pF/ft}}
\]

Length = 2200 ft.

The HART communication cable length is limited by the cable characteristic capacitance. To increase cable length, select a wire with lower capacitance per foot. Contact your Emerson Process Management sales office for specific information relating to your control system.

Installation in Conjunction with a Rosemount™ 333 HART Tri-Loop HART-to-Analog Signal Converter

Use the DVC6000 digital valve controller in operation with a Rosemount 333 HART Tri-Loop HART-to-Analog Signal Converter to acquire an independent 4-20 mA analog output signal for the analog input, travel target, pressure, or travel. The HART Tri-Loop accepts any three of these digital signals and converts them into three separate 4-20 mA analog channels.

Refer to figure 2-27 for basic installation information. Refer to the 333 HART Tri-Loop HART-to-Analog Signal Converter Product Manual for complete installation information.

Commissioning the Digital Valve Controller for use with the HART Tri-Loop Signal Converter

To prepare the digital valve controller for use with a 333 HART Tri-Loop, you must configure the digital valve controller to burst mode, and select Burst Command 3. In burst mode, the digital valve controller provides digital information to the HART Tri-Loop.
HART-to-Analog Signal Converter. The HART Tri-Loop converts the digital information to a 4 to 20 mA analog signal. Each burst message contains the latest value of the primary (analog input), secondary (travel target), tertiary (configured output pressure), and quaternary (travel) variables.

To commission a DVC6000 digital valve controller for use with a HART Tri-Loop, perform the following procedures.

Note
Instrument level AC does not support HART Command 3 or Burst Mode communications.

Set the Burst Operation *(1-2-1-4)*

1. From the Online menu, select *Configure, Detailed Setup, Mode and Protection, and Burst Mode.*
2. Select *Change Burst Enable.* Select *Enable* then press ENTER and SEND.
3. Select *Change Burst Command.* Select the desired command (HART Univ Command 3).
4. Select *Cmd 3 Configured Pressure.* Select the pressure you want the HART Tri-Loop to use as the tertiary variable.

Command 3 provides the following variables:

- **Primary variable**—analog input in % or ma,
- **Secondary variable**—travel target in % of ranged travel,
- **Tertiary variable**—supply or output pressure in psig, bar, kPa, or kg/cm². Select *Cmd 3 Press* from the *Burst* menu to select if the output A, output B, differential (A−B), or supply pressure is sent.
- **Quaternary variable**—travel in % of ranged travel.
Section 3 Basic Setup

Instrument Mode .. 3-2
Configuration Protection .. 3-2
Guided Setup ... 3-2
 Setup Wizard ... 3-2
 Using the Performance Tuner ... 3-4
 Stabilizing/Optimizing Valve Response 3-4
DVC6000 Digital Valve Controllers

Instrument Mode

To setup and calibrate the instrument, the instrument mode must be Out Of Service.

To view the instrument mode, press the Hot Key and select Instrument Mode. If the mode is not Out Of Service, select Out Of Service from the Instrument Mode menu and press ENTER.

Configuration Protection

To setup and calibrate the instrument, the protection must be set to None with the Field Communicator. If the protection is not None, changing the protection requires placing a jumper across the Auxiliary terminals in the terminal box.

To remove protection:
1. Connect a 4-20 mA source to the instrument.
2. Connect the Field Communicator to the instrument and turn it on.
3. Press the Hot key on the Field Communicator and select Protection.
4. From the Protection menu, select None. When prompted by the Field Communicator, temporarily attach the jumper to the AUX + and AUX − terminals in the instrument terminal box.

Basic Setup (1-1)

WARNING

Changes to the instrument setup may cause changes in the output pressure or valve travel. Depending on the application, these changes may upset process control, which may result in personal injury or property damage.

Note

To setup and calibrate the instrument, the protection must be None and the Instrument Mode must be Out Of Service. See Configuration Protection and Instrument Mode at the beginning of this section for information on removing instrument protection and changing the instrument mode.

If you are operating in burst mode, we recommend that you disable burst before continuing with calibration. Once calibration is complete, burst mode may then be turned back on.

When the DVC6000 digital valve controller is ordered as part of a control valve assembly, the factory mounts the digital valve controller and sets up the instrument as specified on the order. When mounting to a valve in the field, the instrument needs to be setup to match the instrument to the valve and actuator.

Before beginning Basic Setup, be sure the instrument is correctly mounted as described in the Installation section.

Setup Wizard (1-1-1)

To have the Field Communicator automatically setup the instrument using specified actuator information, from the Online Menu select Configure, Guided Setup, and Setup Wizard. Follow the prompts on the Field Communicator display to setup the instrument. Table 4-5 provides the actuator information required to setup and calibrate the instrument.

1. Select travel or pressure control. Travel control is the typical mode of operation.
2. Enter the pressure units: psi, bar, kPa, or kg/cm².
Basic Setup

Table 3-1. Factory Default Settings

<table>
<thead>
<tr>
<th>Setup Parameter</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Input Units</td>
<td>mA</td>
</tr>
<tr>
<td>Analog In Range High</td>
<td>20.0 mA</td>
</tr>
<tr>
<td>Analog In Range Low</td>
<td>4.0 mA</td>
</tr>
<tr>
<td>Control Mode</td>
<td>Analog</td>
</tr>
<tr>
<td>Restart Control Mode</td>
<td>Resume Last</td>
</tr>
<tr>
<td>Self-Test Shutdown</td>
<td>All Failures Disabled</td>
</tr>
<tr>
<td>Setpoint Filter Time</td>
<td>0 secs</td>
</tr>
<tr>
<td>Input Characterization</td>
<td>Linear</td>
</tr>
<tr>
<td>Travel Limit High</td>
<td>125%</td>
</tr>
<tr>
<td>Travel Limit Low</td>
<td>-25%</td>
</tr>
<tr>
<td>Travel Cutoff High</td>
<td>99.5%</td>
</tr>
<tr>
<td>Travel Cutoff Low</td>
<td>0.5%</td>
</tr>
<tr>
<td>Set Point Rate Open(1)</td>
<td>0 %/secs</td>
</tr>
<tr>
<td>Set Point Rate Close(2)</td>
<td>0 %/secs</td>
</tr>
<tr>
<td>Polling Address</td>
<td>0</td>
</tr>
<tr>
<td>Auxiliary Terminal Action</td>
<td>Auxiliary Input Alert</td>
</tr>
<tr>
<td>Cmd 3 Configured Pressure</td>
<td>differential output pressure</td>
</tr>
<tr>
<td>For double-acting actuators</td>
<td>actuator pressure</td>
</tr>
<tr>
<td>For single-acting actuators</td>
<td>actuator pressure</td>
</tr>
</tbody>
</table>

1. In firmware 2 thru 6 this parameter is labeled Minimum Opening Time. In firmware 10 and below this parameter should be set to zero.
2. In firmware 2 thru 6 this parameter is labeled Minimum Closing Time. In firmware 10 and below this parameter should be set to zero.

3. Enter the maximum instrument supply pressure. After entering the maximum instrument supply pressure, the Setup Wizard prompts you for actuator information.

4. Enter the manufacturer of the actuator on which the instrument is mounted. If the actuator manufacturer is not listed, select Other.

5. Enter the actuator model or type. If the actuator model is not listed, select Other.

6. Enter the actuator size.

7. Select whether the valve is open or closed under the zero power condition.

![WARNING]

WARNING

In the next step, if you answer YES to the prompt for permission to move the valve when the Field Communicator is determining the travel sensor motion, the instrument will move the valve through its full travel range. To avoid personal injury and property damage caused by the release of pressure or process fluid, provide some temporary means of control for the process.

8. Specify if a volume booster or quick release valve is present.

9. Specify if factory defaults should be used for basic setup. If you select YES for factory default, the Field Communicator sets the setup parameters to the values listed in table 3-1. If you select NO for the factory defaults, the setup parameters listed in the table remain at their previous settings.

Typically the Setup Wizard determines the required setup information based upon the actuator manufacturer and model specified. However, if you enter other for the actuator manufacturer or the actuator model, then you will be prompted for setup parameters such as:

- Actuator style (spring & diaphragm, piston double-acting without spring, piston single-acting with spring, piston double-acting with spring).
- Valve style (rotary or sliding stem).
- On Loss of Instrument Signal (valve opens or closes), see Zero Power Condition in the Detailed Setup section.
- Feedback connection (rotary-all, stem-roller, or stem-standard), see Feedback Connection in the Detailed Setup section.
- Travel Sensor motion (increasing air pressure causes the travel sensor shaft to rotate clockwise or counterclockwise). The Field Communicator will ask if it can move the valve to determine travel sensor motion. If you answer yes, the instrument may stroke the valve the full travel span to determine travel sensor rotation. If you answer No, then you will have to specify the rotation for increasing air pressure: clockwise or counterclockwise. (see Travel Sensor Motion in the Detailed Setup section).
- Volume booster (indicate if volume booster or quick release is present)
- Tuning set (see Tuning Set in the Detailed Setup section).

After completing the setup information, travel is automatically calibrated. Follow the prompts on the Field Communicator display. The calibration procedure uses the valve and actuator stops as the 0% and 100% calibration points. For additional information, refer to Auto Calibrate Travel on page 5-2 of the Calibration section.

When travel calibration is complete, you are asked if you wish to adjust the relay (double-acting only). Select yes to adjust the relay. For additional information, refer to Relay Adjustment on page 5-10 of the Calibration section.

Note

Relay Adjustment is only available for the double-acting relay (Relay A).
If after completing the Setup Wizard the valve seems slightly unstable or unresponsive, you can improve operation by selecting either Performance Tuner or Stabilize/Optimize from the Guided Setup menu. For additional information on using the Performance Tuner, refer to Using the Performance Tuner in this section. For additional information on stabilizing or optimizing valve response, refer to Stabilize/Optimize at the end of this section.

Using the Performance Tuner (1-1-2)

Note
Performance Tuner is not available for instrument level AC or HC.

WARNING
During performance tuning the valve may move, causing process fluid or pressure to be released. To avoid personal injury and property damage caused by the release of process fluid or pressure, isolate the valve from the process and equalize pressure on both sides of the valve or bleed off the process fluid.

The Performance Tuner is used to optimize digital valve controller tuning. It can be used with digital valve controllers mounted on most sliding-stem and rotary actuators, including Fisher and other manufacturers’ products. Moreover, because the Performance Tuner can detect internal instabilities before they become apparent in the travel response, it can generally optimize tuning more effectively than manual tuning. Typically, the Performance Tuner takes 3 to 5 minutes to tune an instrument, although tuning instruments mounted on larger actuators may take longer.

Access Performance Tuner by selecting Performance Tuner from the Guided Setup menu. Follow the prompts on the Field Communicator display to optimize digital valve controller tuning.

Stabilizing/Optimizing Valve Response

Note
Stabilize/Optimize is only available through the Guided Setup menu for instrument level HC.

WARNING
During Stabilize/Optimize the valve may move, causing process fluid or pressure to be released. To avoid personal injury and property damage caused by the release of process fluid or pressure, isolate the valve from the process and equalize pressure on both sides of the valve or bleed off the process fluid.

If after completing setup and calibration the valve seems slightly unstable or unresponsive, you can improve operation by pressing the Hot Key and selecting Stabilize/Optimize, or select Stabilize/Optimize from the Guided Setup menu.

Stabilize/Optimize permits you to adjust valve response by changing the digital valve controller tuning.

If the valve is unstable, select Decrease Response to stabilize valve operation. This selects the next lower tuning set (e.g., F to E). If the valve response is sluggish, select Increase Response to make the valve more responsive. This selects the next higher tuning set (e.g., F to G).

If after selecting Decrease Response or Increase Response the valve travel overshoot is excessive select Decrease Damping to select a damping value that allows more overshoot. Select Increase Damping to select a damping value that will decrease the overshoot. When finished, select done.
Section 4 Detailed Setup

Menu and Quick Key Sequence Tables

Detailed Setup ... 4-2
 Mode and Protection 4-2
 Mode .. 4-2
 Protection ... 4-3
 Response Control .. 4-4
 Tuning .. 4-4
 Travel Tuning 4-4
 Pressure Tuning 4-7
 Travel/Pressure Control 4-9
 Travel/Pressure Select 4-9
 Cutoffs and Limits 4-9
 Pressure Control 4-9
 End Point Pressure Control 4-9
 Input Characterization 4-10
 Custom Characterization Table 4-11
 Dynamic Response 4-11
 Alert Setup .. 4-12
 Electronics Alerts 4-12
 Sensor Alerts 4-13
 Environment Alerts 4-13
 Travel Alerts 4-13
 Travel History Alerts 4-15
 SIS Alerts .. 4-15
 Alert Record .. 4-16
 Status .. 4-16
 Instrument ... 4-17
 Valve and Actuator 4-18
 SIS/Partial Stroke 4-19
Detailed Setup (1-2)

Note
Detailed Setup is not available for instrument level AC.

The Detailed Setup selection from the Configure menu allows you to configure the digital valve controller to your application. Table 4-1 lists the default settings for a standard factory configuration. You can adjust actuator response, set the various modes, alerts, ranges, travel cutoffs and limits. You can also restart the instrument and set the protection.

Mode and Protection (1-2-1)

Mode

- Instrument Mode—You can change the instrument mode by selecting Mode and Protection, Instrument Mode from the Detailed Setup menu, or press the Hot Key and select Instrument Mode.

Instrument Mode allows you to either take the instrument Out Of Service or place it In Service. Taking the instrument Out Of Service allows you to perform instrument calibration and also allows you to change setup variables that affect control, provided the calibration/configuration protection is properly set. See Setting Protection.

Note
Some changes that require the instrument to be taken Out Of Service will not take effect until the instrument is placed back In Service or the instrument is restarted.

Table 4-1. Factory Default Detailed Setup Parameters

<table>
<thead>
<tr>
<th>Setup Parameter</th>
<th>Default Setting(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Mode</td>
<td>Analog</td>
</tr>
<tr>
<td>Restart Control Mode</td>
<td>Resume Last</td>
</tr>
<tr>
<td>Zero Power Condition</td>
<td>Valve Open</td>
</tr>
<tr>
<td>Analog In Range Low</td>
<td>4 mA</td>
</tr>
<tr>
<td>Analog In Range High</td>
<td>20 mA</td>
</tr>
<tr>
<td>Analog Input Units</td>
<td>mA</td>
</tr>
<tr>
<td>Feedback Connection</td>
<td>Rotary – All</td>
</tr>
<tr>
<td>Travel Sensor Motion</td>
<td>Clockwise</td>
</tr>
<tr>
<td>Auxiliary Terminal Action</td>
<td>Disabled</td>
</tr>
<tr>
<td>Maximum Supply Pressure</td>
<td>20</td>
</tr>
<tr>
<td>Pressure Units</td>
<td>PSI</td>
</tr>
<tr>
<td>Temperature Units</td>
<td>F</td>
</tr>
<tr>
<td>Poling Address</td>
<td>0</td>
</tr>
<tr>
<td>Burst Mode Enable</td>
<td>No</td>
</tr>
<tr>
<td>Burst Command</td>
<td>3</td>
</tr>
<tr>
<td>Cmd 3 Configured Pressure</td>
<td>A–B</td>
</tr>
<tr>
<td>Tuning Set</td>
<td>F</td>
</tr>
<tr>
<td>Input Characteristic</td>
<td>Linear</td>
</tr>
<tr>
<td>Travel Limit High</td>
<td>125%</td>
</tr>
<tr>
<td>Travel Limit Low</td>
<td>–25%</td>
</tr>
<tr>
<td>Travel/Pressure Cutoff High</td>
<td>99.46%</td>
</tr>
<tr>
<td>Travel/Pressure Cutoff Low</td>
<td>0.50%</td>
</tr>
<tr>
<td>Set Point Rate Open</td>
<td>0%/sec</td>
</tr>
<tr>
<td>Set Point Rate Close</td>
<td>0%/sec</td>
</tr>
<tr>
<td>Set Point Filter Lag Time</td>
<td>0 sec</td>
</tr>
<tr>
<td>Integrator Enable</td>
<td>Yes</td>
</tr>
<tr>
<td>Integral Gain</td>
<td>9.4 repeats/minute</td>
</tr>
<tr>
<td>Integral Dead Zone</td>
<td>0.26%</td>
</tr>
<tr>
<td>Cycle Counter Alert Enable</td>
<td>No</td>
</tr>
<tr>
<td>Cycle Counter Alert Deadband</td>
<td>1%</td>
</tr>
<tr>
<td>Cycle Counter Alert Point</td>
<td>1000000</td>
</tr>
<tr>
<td>Travel Accumulator Alert Enable</td>
<td>No</td>
</tr>
<tr>
<td>Travel Accumulator Deadband</td>
<td>1%</td>
</tr>
<tr>
<td>Travel Accumulator Alert Point</td>
<td>1000000</td>
</tr>
<tr>
<td>Travel Deviation Alert Enable</td>
<td>Yes</td>
</tr>
<tr>
<td>Travel Deviation Alert Point</td>
<td>5%</td>
</tr>
<tr>
<td>Travel Deviation Time</td>
<td>9.99 sec</td>
</tr>
<tr>
<td>Pressure Deviation Alert Enable</td>
<td>Yes</td>
</tr>
<tr>
<td>Pressure Deviation Alert Point</td>
<td>5 psi</td>
</tr>
<tr>
<td>Pressure Deviation Alert Time</td>
<td>9.99 sec</td>
</tr>
<tr>
<td>Drive Signal Alert Enable</td>
<td>Yes</td>
</tr>
<tr>
<td>Supply Pressure Alert Enable</td>
<td>Yes</td>
</tr>
<tr>
<td>Supply Pressure Alert Point</td>
<td>19 psi</td>
</tr>
<tr>
<td>Travel Alert Lo Enable</td>
<td>No</td>
</tr>
<tr>
<td>Travel Alert Hi Enable</td>
<td>No</td>
</tr>
<tr>
<td>Hi Point</td>
<td>125%</td>
</tr>
<tr>
<td>Travel Alert Lo Lo Enable</td>
<td>No</td>
</tr>
<tr>
<td>Lo Lo Point</td>
<td>–25%</td>
</tr>
<tr>
<td>Travel Alert Hi Hi Enable</td>
<td>No</td>
</tr>
<tr>
<td>Hi Hi Point</td>
<td>125%</td>
</tr>
<tr>
<td>Deadband</td>
<td>5%</td>
</tr>
<tr>
<td>Shutdown Activated</td>
<td>Yes</td>
</tr>
<tr>
<td>Low Power Write Fail Enable</td>
<td>No</td>
</tr>
<tr>
<td>Non-Critical NVM Alert Enable</td>
<td>No</td>
</tr>
</tbody>
</table>

(1) continued on next page
Table 4-1. Factory Default Detailed Setup Parameters (continued)

<table>
<thead>
<tr>
<th>Setup Parameter</th>
<th>Default Setting(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument Time Invalid Enable</td>
<td>No</td>
</tr>
<tr>
<td>Calibration in Progress Enable</td>
<td>No</td>
</tr>
<tr>
<td>Autocal in Progress Enable</td>
<td>No</td>
</tr>
<tr>
<td>Diagnostics in Progress Enable</td>
<td>No</td>
</tr>
<tr>
<td>Diagnostics Data Available Enable</td>
<td>Yes</td>
</tr>
<tr>
<td>Integrator Saturated Hi Enable</td>
<td>Yes</td>
</tr>
<tr>
<td>Integrator Saturated Lo Enable</td>
<td>Yes</td>
</tr>
<tr>
<td>Pressure Control Active Enable</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-Drop Alert Enable</td>
<td>No</td>
</tr>
<tr>
<td>Valve Alerts Enable</td>
<td>Yes</td>
</tr>
<tr>
<td>Failure Alerts Enable</td>
<td>Yes</td>
</tr>
<tr>
<td>Miscellaneous Alerts Enable</td>
<td>No</td>
</tr>
<tr>
<td>Alert Record Has Entries Enable</td>
<td>Yes</td>
</tr>
<tr>
<td>Alert Record Full Enable</td>
<td>No</td>
</tr>
</tbody>
</table>

1. The settings listed are for standard factory configuration. DVC6000 instruments can also be ordered with custom configuration settings. For the default custom settings, refer to the order requisition.
2. If the instrument is shipped mounted on an actuator, these values depend upon the actuator on which the instrument is mounted.
3. In firmware 2 thru 6 this parameter is labeled Minimum Opening Time. In firmware 10 and below this parameter should be set to zero (0).
4. In firmware 2 thru 6 this parameter is labeled Minimum Closing Time. In firmware 10 and below this parameter should be set to zero (0).
5. Only available in firmware 7 and above. In firmware 7, 9, and 10 this parameter should be set to zero (0).

- **Control Mode**—You can change the control mode by selecting *Control Mode* from the *Mode and Protection* menu, or press the Hot Key and select *Control Mode*.

Control Mode lets you define where the instrument reads its set point. Follow the prompts on the Field Communicator display to choose one of the following control modes: Analog or Digital.

Choose Analog if the instrument is to receive its set point over the 4-20 mA loop. Normally the instrument control mode is Analog.

Choose Digital if the instrument is to receive its set point digitally, via the HART communications link.

A third mode, Test, is also displayed. Normally the instrument should not be in the Test mode. The Field Communicator automatically switches to this mode whenever it needs to stroke the valve during calibration or stroke valve, for example. However, if you abort from a procedure where the instrument is in the Test mode, it may remain in this mode. To take the instrument out of the Test mode, select *Control Mode* then select either Analog or Digital.

- **Restart Control Mode**—Lets you choose which operating mode you want the instrument to be in after a restart. Access by selecting *Restart Control Mode* from the *Mode and Protection* menu. Follow the prompts on the Field Communicator display to define the restart control mode as Resume Last, Analog, or Digital.

- **Burst Mode**—Enabling burst mode provides continuous communication from the digital valve controller. Burst mode applies only to the transmission of burst mode data (analog input, travel target, pressure, and travel) and does not affect the way other data is accessed.

Access to information in the instrument is normally obtained through the poll/response of HART communication. The Field Communicator or the control system may request any of the information that is normally available, even while the instrument is in burst mode. Between each burst mode transmission sent by the instrument, a short pause allows the Field Communicator or control system to initiate a request. The instrument receives the request, processes the response message, and then continues “bursting” the burst mode data.

To enable burst mode, select *Burst Mode*, and *Burst Enable* from the *Mode and Protection* menu.

- **Burst Enable**—Yes or no. Burst mode must be enabled before you can change the burst mode command.

- **Change Burst Enable**—Turns Burst Mode on and off. Actual values are Burst Enable = Disabled(Polled), Enabled.

- **Change Burst Command**—There are four burst mode commands. Command 3 is recommended for use with the 333 HART Tri-Loop HART-to-analog signal converter. The other three are not used at this time.

- **Cmd 3 Configured Pressure**—Command 3 provides the following variables:

 - **Primary variable**—analog input in % or ma,
 - **Secondary variable**—travel target in % of ranged travel,
 - **Tertiary variable**—supply or output pressure in psig, bar, kPa, or kg/cm². Select *Cmd 3 Configured Pressure* from the *Burst* menu to select if the output A, output B, differential (A−B), or supply pressure is sent.
 - **Quaternary variable**—travel in % of ranged travel.

- **Protection**—Some setup parameters may require changing the protection with the Field Communicator. To remove protection (change protection to *None*) requires placing a jumper across the Auxiliary terminals in the terminal box in order to change protection.
Note

If the Auxiliary Terminal Action is configured for Auto Travel Calibration, be sure the jumper remains across the auxiliary terminals until the Field Communicator prompts you to remove it. Removing the jumper too soon will cause the instrument to begin auto travel calibration.

WARNING

If the jumper is removed too soon, and auto travel calibration begins, the valve will move full stroke. To avoid personal injury and property damage caused by the release of pressure or process fluid, provide some temporary means of control for the process.

Two levels of protection are available:

- **Config & Calib**—Both setup and calibration are protected. Prohibits changing calibration and protected setup parameters.

- **None**—Neither setup nor calibration is protected. Allows changing calibration and setup parameters.

Table 4-3 lists configurable parameters in the instrument and the requirements for modifying these parameters, in terms of instrument mode and protection.

To change an instrument’s protection, press the Hot key on the Field Communicator and select Protection or from the Online menu, select Configure, Detailed Setup, Mode and Protection, and Protection. Select the desired level of protection. Follow the prompts on the Field Communicator display to set the protection level. If necessary, temporarily attach the jumper to the AUX + and AUX – terminals in the instrument terminal box when prompted by the Field Communicator.

Response Control (1-2-2)

Select Configure, Detailed Setup, and Response Control. Follow the prompts on the Field Communicator display to configure the following response control parameters: Tuning, Travel/Pressure Control, Input Characterization, Custom Characterization Table, and Dynamic Response.

Tuning

Travel Tuning (1-2-2-1-1)

WARNING

Changes to the tuning set may cause the valve/actuator assembly to stroke. To avoid personal injury and property damage caused by moving parts, keep hands, tools, and other objects away from the valve/actuator assembly.

Travel Tuning Set— There are eleven tuning sets to choose from. Each tuning set provides a preselected value for the digital valve controller gain settings. Tuning set C provides the slowest response and M provides the fastest response. Table 4-2 lists the proportional gain, velocity gain and minor loop feedback gain values for preselected tuning sets.

<table>
<thead>
<tr>
<th>Tuning Set</th>
<th>Proportional Gain</th>
<th>Velocity Gain</th>
<th>Minor Loop Feedback Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4.4</td>
<td>3.0</td>
<td>35</td>
</tr>
<tr>
<td>D</td>
<td>4.8</td>
<td>3.0</td>
<td>35</td>
</tr>
<tr>
<td>E</td>
<td>5.5</td>
<td>3.0</td>
<td>35</td>
</tr>
<tr>
<td>F</td>
<td>6.2</td>
<td>3.1</td>
<td>35</td>
</tr>
<tr>
<td>G</td>
<td>7.2</td>
<td>3.6</td>
<td>34</td>
</tr>
<tr>
<td>H</td>
<td>8.4</td>
<td>4.2</td>
<td>31</td>
</tr>
<tr>
<td>I</td>
<td>9.7</td>
<td>4.8</td>
<td>27</td>
</tr>
<tr>
<td>J</td>
<td>11.3</td>
<td>5.6</td>
<td>23</td>
</tr>
<tr>
<td>K</td>
<td>13.1</td>
<td>6.0</td>
<td>18</td>
</tr>
<tr>
<td>L</td>
<td>15.5</td>
<td>6.0</td>
<td>12</td>
</tr>
<tr>
<td>M</td>
<td>18.0</td>
<td>6.0</td>
<td>12</td>
</tr>
<tr>
<td>X (Expert)</td>
<td>User Adjusted</td>
<td>User Adjusted</td>
<td>User Adjusted</td>
</tr>
</tbody>
</table>
Table 4-3. Conditions for Modifying FIELDVUE DVC6000 Digital Valve Controller Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>In Service/ Config Protected</th>
<th>In Service/ Config Unprotected</th>
<th>Out of Service/ Config Protected</th>
<th>Out of Service/ Config Unprotected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restart Ctrl Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burst Mode Enable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burst Mode Command</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART Tag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descriptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve Serial Num</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inst Serial Num</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polling Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Supply Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actuator Style</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback Connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel Sensor Motion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve Style</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Ctrl Signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog In Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Range High</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Range Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuning Set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop Gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocity Gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLFB Gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Char</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define Custom Char</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Pt Filter Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Limit High</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Limit Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Cutoff High</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Cutoff Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Point Rate Open²(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Point Rate Close²(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Hi/Lo Enab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl HH/LL Enab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Alert Hi Pt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Alert Lo Pt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Alert HH/Hi Pt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Alert LoLo Pt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Airt DB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Dev Airt Enab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Dev Airt Pt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Dev Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycl Cnt Airt Enab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycl Count Airt Pt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycl Count DB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycl Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Acum Airt Enab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Acum Airt Pt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Acum DB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvl Acum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aux Terminal Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aux In Airt Enab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aux In Airt State</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive Airt Enab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Press Airt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---Continued---

--- indicates parameter may be modified for instrument mode and protection shown.
Table 4-3. Conditions for Modifying FIELDVUE DVC6000 Digital Valve Controller Parameters (Continued)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>In Service/Config Protected</th>
<th>In Service/Config Unprotected</th>
<th>Out of Service/Config Protected</th>
<th>Out of Service/Config Unprotected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash ROM Fail</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>No Free Time</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ref Voltage Fail</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Drive Current Fail</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical NVM Fail</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Temp Sensor Fail</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Press Sensor Fail</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tvl Sensor Fail</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

| | | | - | - |

- - - indicates parameter may be modified for instrument mode and protection shown.

1. In firmware 2 thru 6 this parameter is labeled Minimum Opening Time.
2. In firmware 2 thru 6 this parameter is labeled Minimum Closing Time.

Table 4-5 provides tuning set selection guidelines for Fisher, Baumann, and Gulde actuators. These tuning sets are only recommended starting points. After you finish setting up and calibrating the instrument, you may have to select either a higher or lower tuning set to get the desired response. You can use the Performance Tuner to optimize tuning.

- **Integral Enable**—Yes or No. Enable the integral setting to improve static performance by correcting for error that exists between the travel target and actual travel. Travel Integral Control is enabled by default.

- **Integral Gain**—Travel Integral Gain is the ratio of the change in output to the change in input, based on the control action in which the output is proportional to the time integral of the input.

- **Stabilize/Optimize**—Stabilize/Optimize permits you to adjust valve response by changing the digital valve controller tuning.

If the valve is unstable, select *Decrease Response* to stabilize valve operation. This selects the next lower tuning set (e.g., F to E). If the valve response is sluggish, select *Increase Response* to make the valve more responsive. This selects the next higher tuning set (e.g., F to G).

If after selecting *Decrease Response* or *Increase Response* the valve travel overshoot is excessive, select *Decrease Damping* to select a damping value that allows more overshoot. Select *Increase Damping* to select a damping value that will decrease the overshoot. When finished, select *done*.

Note

When selecting a tuning set for a DVC6015, DVC6025 or DVC6035 remote mount unit, it may be necessary to reduce the tuning set, due to the effects of the long tubing between the digital valve controller and the actuator.

In addition, you can select User Adjusted or Expert, which allows you to modify tuning of the digital valve controller. With User Adjusted, you specify the proportional gain; an algorithm in the Field Communicator calculates the velocity gain and minor loop feedback gain. With Expert you can specify the proportional gain, velocity gain, and minor loop feedback gain.

Note

Use Expert tuning only if standard tuning has not achieved the desired results.

Stabilize/Optimize or Performance Tuner may be used to achieve the desired results more rapidly than Expert tuning.
Performance Tuner

The Performance Tuner is used to optimize digital valve controller tuning. It can be used with digital valve controllers mounted on most sliding-stem and rotary actuators, including Fisher and other manufacturers’ products. Moreover, because the performance tuner can detect internal instabilities before they become apparent in the travel response, it can generally optimize tuning more effectively than manual tuning. Typically, the performance tuner takes 3 to 5 minutes to tune an instrument, although tuning instruments mounted on larger actuators may take longer.

Integral Settings (1-2-2-1-2)

- **Integral Dead Zone**—A window around the Primary Setpoint in which integral action is disabled. This feature is used to eliminate friction induced limit cycles around the Primary Setpoint when the integrator is active. The Dead Zone is configurable from 0% to 2%, corresponding to a symmetric window from 0% to +/-2% around the Primary Setpoint. Default value is 0.25%.

- **Integral Limit**—Provides an upper limit to the integrator output. The high limit is configurable from 0 to 100% of the I/P drive signal.

Pressure Tuning (1-2-2-1-3)

<table>
<thead>
<tr>
<th>Tuning Set</th>
<th>Pressure Proportional Gain</th>
<th>Pressure Integrator Gain</th>
<th>Pressure Minor Loop Feedback Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.5</td>
<td>0.3</td>
<td>35</td>
</tr>
<tr>
<td>C</td>
<td>2.2</td>
<td>0.1</td>
<td>35</td>
</tr>
<tr>
<td>D</td>
<td>2.4</td>
<td>0.1</td>
<td>35</td>
</tr>
<tr>
<td>E</td>
<td>2.8</td>
<td>0.1</td>
<td>35</td>
</tr>
<tr>
<td>F</td>
<td>3.1</td>
<td>0.1</td>
<td>35</td>
</tr>
<tr>
<td>G</td>
<td>3.6</td>
<td>0.1</td>
<td>34</td>
</tr>
<tr>
<td>H</td>
<td>4.2</td>
<td>0.1</td>
<td>31</td>
</tr>
<tr>
<td>I</td>
<td>4.5</td>
<td>0.1</td>
<td>27</td>
</tr>
<tr>
<td>J</td>
<td>5.6</td>
<td>0.1</td>
<td>23</td>
</tr>
<tr>
<td>K</td>
<td>6.0</td>
<td>0.1</td>
<td>18</td>
</tr>
<tr>
<td>L</td>
<td>7.8</td>
<td>0.1</td>
<td>12</td>
</tr>
<tr>
<td>M</td>
<td>9.0</td>
<td>0.1</td>
<td>12</td>
</tr>
<tr>
<td>X (Expert)</td>
<td>User Adjusted</td>
<td>User Adjusted</td>
<td>User Adjusted</td>
</tr>
</tbody>
</table>

Tuning set B is appropriate for controlling a pneumatic positioner. Table 4-4 lists the proportional gain, pressure integrator gain and minor loop feedback gain values for preselected tuning sets.

In addition, you can specify Expert tuning and individually set the pressure proportional gain, pressure integrator gain, and pressure minor loop feedback gain. Individually setting or changing any tuning parameter will automatically change the tuning set to X (expert).

Note

When selecting a tuning set for a DVC6015, DVC6025 or DVC6035 remote mount unit, it may be necessary to reduce the tuning set, due to the effects of the long tubing between the digital valve controller and the actuator.

Note

Use Expert tuning only if standard tuning has not achieved the desired results.

Stabilize/Optimize and performance tuner may be used to achieve the desired results more rapidly than Expert tuning.
Table 4-5. Actuator Information for Initial Setup

<table>
<thead>
<tr>
<th>Actuator Manufacturer</th>
<th>Actuator Model</th>
<th>Actuator Size</th>
<th>Actuator Style</th>
<th>Starting Tuning Set</th>
<th>Feedback Connection</th>
<th>Travel Sensor Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>585C & 585CR</td>
<td>25</td>
<td>50</td>
<td>Piston Dbl w/ or w/o Spring. See actuator instruction manual and nameplate.</td>
<td>E I J L M</td>
<td>SSStem-Standard for travels up to 4 inches. SSStem-Roller for longer travels</td>
<td>Depends upon pneumatic connections. See description for Travel Sensor Motion</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>68, 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100, 130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>657</td>
<td>30</td>
<td>34, 40</td>
<td>Spring & Diaphragm</td>
<td>H K L M</td>
<td>SSStem-Standard</td>
<td>Clockwise</td>
</tr>
<tr>
<td></td>
<td>45, 50</td>
<td>46, 60, 70, 76, & 80-100</td>
<td></td>
<td></td>
<td></td>
<td>Counterclockwise</td>
</tr>
<tr>
<td>667</td>
<td>30</td>
<td>34, 40</td>
<td>Spring & Diaphragm</td>
<td>H K L M</td>
<td>SSStem-Standard</td>
<td>Counterclockwise</td>
</tr>
<tr>
<td></td>
<td>45, 50</td>
<td>46, 60, 70, 76, & 80-100</td>
<td></td>
<td></td>
<td></td>
<td>Clockwise</td>
</tr>
<tr>
<td>1051 & 1052</td>
<td>20, 30</td>
<td>33</td>
<td>Spring & Diaphragm</td>
<td>H I K M</td>
<td>Rotary</td>
<td>Clockwise</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td>Counterclockwise</td>
</tr>
<tr>
<td></td>
<td>60, 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1061</td>
<td>30</td>
<td>40</td>
<td>Piston Dbl w/o Spring</td>
<td>J K L M</td>
<td>Rotary</td>
<td>Depends upon pneumatic connections. See description for Travel Sensor Motion</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>68, 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100, 130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1066SR</td>
<td>20</td>
<td>27, 75</td>
<td>Piston Sgl w/Spring</td>
<td>G L</td>
<td>Rotary</td>
<td>Depends upon mounting style, see actuator instruction manual and table 4-6</td>
</tr>
<tr>
<td>2052</td>
<td>1</td>
<td>2</td>
<td>Spring & Diaphragm</td>
<td>H J M</td>
<td>Rotary</td>
<td>Clockwise</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counterclockwise</td>
</tr>
<tr>
<td>3024C</td>
<td>30, 30E</td>
<td>34, 34E, 40, 40E</td>
<td>Spring & Diaphragm</td>
<td>E H K</td>
<td>SSStem-Standard</td>
<td>For P₀ operating mode (air opens), Clockwise For P₀ operating mode (air closes), Counterclockwise</td>
</tr>
<tr>
<td></td>
<td>45, 45E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GX</td>
<td>225</td>
<td></td>
<td>Spring & Diaphragm</td>
<td>X¹ (1)</td>
<td>SSStem-Standard</td>
<td>Air to Open</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Close</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baumann</td>
<td>Air to Extend</td>
<td>16</td>
<td>Spring & Diaphragm</td>
<td>C E H</td>
<td>SSStem-Standard</td>
<td>Clockwise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td>Counterclockwise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>570</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air to Retract</td>
<td>10</td>
<td>Spring & Diaphragm</td>
<td>E H J</td>
<td>Rotary</td>
<td>Specify</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. X = Expert Tuning. Proportional Gain = 4.2; Velocity Gain = 3.0; Minor Loop Feedback Gain = 18.0

Table 4-6. Travel Sensor Motion Selections for the FIELDVUE DVC6030 on a Fisher 1066SR Actuator

<table>
<thead>
<tr>
<th>Mounting Style</th>
<th>Travel Sensor Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relay A or C</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>A</td>
<td>Clockwise</td>
</tr>
<tr>
<td>B</td>
<td>Counterclockwise</td>
</tr>
<tr>
<td>C</td>
<td>Counterclockwise</td>
</tr>
<tr>
<td>D</td>
<td>Clockwise</td>
</tr>
</tbody>
</table>

- **Integral Enable**—Yes or No. Enable the pressure integral setting to improve static performance by correcting for error that exists between the pressure target and actual pressure. Pressure Integral Control is disabled by default.
- **Integral Gain**—Pressure Integral Gain (also called reset) is the gain factor applied to the time integral of the error signal between desired and actual pressure. Changing this parameter will also change the tuning set to Expert.
Detailed Setup

Travel/Pressure Control (1-2-2-2)

- **Travel/Pressure Select**—Determines if the instrument is set up for position or pressure control. Select Travel, Pressure, Travel with Pressure Fallback/Auto recovery or Travel with Pressure Fallback/Manual Recovery. If the travel sensor fails, and Travel with Pressure Fallback/Auto Recovery is selected, it will return to travel control when the travel sensor starts working again. Travel with Pressure Fallback/Manual recovery will stay in pressure control until Travel Pressure Select is changed to Travel or Travel with Pressure Fallback/Auto recovery. It is not necessary to enable the Travel Sensor Alert for Pressure Fallback to occur.

Cutoffs and Limits (1-2-2-2-2)

- **Cutoff Hi**

Travel Cutoff High defines the high cutoff point for the travel in percent (%) of ranged input current. Above this cutoff, the travel target is set to 123.0% of the ranged input current. When a Travel Cutoff High is set, the Travel Limit High is deactivated, since only one of these parameters can be active. Travel Cutoff Hi is deactivated by setting it to 125.0%.

Pressure Cutoff Hi defines the high cutoff point for the pressure in percent (%) of pre-characterized setpoint. Above this cutoff, the pressure target is set to 123.0%. A Pressure Cutoff Hi of 99.5% is recommended to ensure valve goes fully open. Pressure Cutoff Hi is deactivated by setting it to 125%.

- **Cutoff Lo**

Travel Cutoff Low defines the low cutoff point for the travel set point. Travel Cutoff Low can be used to ensure proper seat load is applied to the valve. When below the travel cutoff low, the output is set to zero or to full supply pressure, depending upon the zero power condition. A Travel Cutoff Low of 0.5% is recommended to help ensure maximum shutoff seat loading. When a Travel Cutoff Low is set, the Travel Limit Low is deactivated, since only one of these parameters can be active. Travel Cutoff Low is deactivated by setting it to −25%.

Pressure Cutoff Lo defines the low cutoff point for the pressure in percent (%) of pre-characterized setpoint. Below this cutoff, the pressure target is set to −23%. A Pressure Cutoff Lo of 0.5% is recommended to help ensure maximum shutoff seat loading. Pressure Cutoff Lo is deactivated by setting it to −25.0%

- **Change Cutoffs**—Allows you to set hi and lo cutoffs. When a cutoff is set the corresponding travel or pressure limit will be disabled.

- **Travel Limit Hi**—Defines the high limit for the travel in percent (%) of ranged travel. It is the maximum allowable travel (in percent of ranged travel) for the valve. During operation, the travel target will not exceed this limit. When a Travel Limit High is set, the Travel Cutoff High is deactivated, since only one of these parameters can be active. Travel Limit High is deactivated by setting it to 125.0%

- **Travel Limit Lo**—Travel Limit Low defines the low limit for the travel in percent (%) of ranged travel. It is the minimum allowable travel (in percent of ranged travel) for the valve. During operation, the travel target will not exceed this limit. When a Travel Limit Low is set, the Travel Cutoff Low is deactivated, since only one of these parameters can be active. Travel Limit Low is deactivated by setting it to −25.0%.

- **Change Travel Limits**—Allows you to set hi and lo travel limits. Setting a travel limit will eliminate the corresponding Tvl/Press Cutoff.

Pressure Control (1-2-2-2-3)

- **Pressure Range Hi**—The high end of output pressure range. Enter the pressure that corresponds with 100% valve travel when Zero Power Condition is closed, or 0% valve travel when Zero Power Condition is open. This pressure must be greater than the Pressure Range Lo.

- **Pressure Range Lo**—The low end of the output pressure range. Enter the pressure that corresponds to 0% valve travel when Zero Power Condition is closed, or 100% valve travel when Zero Power Condition is open. This pressure must be less than the Pressure Range Hi.

End Point Pressure Control (1-2-2-2-5)

Note

End Point Pressure Control is only available for instrument level ODV.

- **End Pt Control Enab**—Select Yes or No. End Point Pressure Control allows the digital valve controller to pull back from saturation of the pneumatic output after reaching the travel extreme. Rather than having the instrument provide full supply pressure (saturation) continuously at the travel extreme, the digital valve controller switches to an End Point Pressure Control where the output pressure (pressure controller set point) to the actuator is maintained at a certain value. This value is configured through the
Upper Operating Pressure feature. Because the digital valve controller is constantly in control and not allowed to reach a dormant or saturated state, it is constantly testing its own pneumatic system. If there is an output pressure deviation, for example, the instrument will issue an alert. To ensure there is an alert when an output pressure deviation occurs, setup the alert as described under Pressure Deviation Alert.

- **PST Start Pt**—Defines the travel stop the valve needs to be at before a partial stroke test can be initiated. Also defines the travel stop for end point pressure control. Setting this value to Not Configured will disable partial stroke tests and end point pressure control.

- **EPPC Setup Point**—Used in conjunction with End Point Pressure Control, Pressure Set Point allows the user to select a pressure to be delivered by the instrument at the travel extreme. For a fail-closed valve, this pressure must be sufficient to maintain the fully open position. For a fail-open valve, this pressure (which is automatically set to supply pressure) must be sufficient to fully close the valve and maintain its rated shutoff classification. For double-acting spring return actuators, this is the differential pressure required to either maintain the fully open or fully closed position, depending on the valve and actuator configuration. For a double-acting actuator without springs with a fail-close valve, this is 95% of the supply pressure. If the valve is fail-open, the upper operating pressure for all actuator is set to the supply pressure.

- **EPPC Saturation Time**—Pressure Saturation Time is the amount of time the digital valve controller stays in hard cutoff before switching to pressure control. Default is 45 seconds.

Input Characterization (1-2-2-3)

Input Characterization defines the relationship between the travel target and ranged set point. Ranged set point is the input to the characterization function. If the zero power condition equals closed, then a set point of 0% corresponds to a ranged input of 0%. If the zero power condition equals open, a set point of 0% corresponds to a ranged input of 100%. Travel target is the output from the characterization function.

To select an input characterization, select Input Characterization from the Response Control menu. You can select from the three fixed input characteristics shown in figure 4-1 or you can select a custom characteristic. Figure 4-1 shows the relationship between the travel target and ranged set point for the fixed input characteristics, assuming the Zero Power Condition is configured as closed.
You can specify 21 points on a custom characteristic curve. Each point defines a travel target, in % of ranged travel, for a corresponding set point, in % of ranged set point. Set point values range from −6.25% to 106.25%. Before modification, the custom characteristic is linear.

Custom Characterization Table (1-2-2-4)

Select Custom Characterization Table from the Response Control menu and follow the prompts to define a custom input character.

With input characterization you can modify the overall characteristic of the valve and instrument combination. Selecting an equal percentage, quick opening, or custom (other than the default of linear) input characteristic modifies the overall valve and instrument characteristic. However, if you select the linear input characteristic, the overall valve and instrument characteristic is the characteristic of the valve, which is determined by the valve trim (i.e., the plug or cage).

Dynamic Response (1-2-2-5)

- **SP Rate Open** (Minimum Opening Time in firmware 2–6)—Maximum rate (% of valve travel per second) at which the digital valve controller will move to the open position regardless of the rate of input current change. A value of 0 will deactivate this feature and allow the valve to stroke open as fast as possible. In firmware 10 and below this parameter should be set to 0.

- **SP Rate Close** (Minimum Closing Time in firmware 2–6)—Maximum rate (% of valve travel per second) at which the digital valve controller will move to the close position regardless of the rate of input current change. A value of 0 will deactivate this feature and allow the valve to stroke close as fast as possible. In firmware 10 and below this parameter should be set to 0.

Set Point Filter Time (Lag Time)—Slows the response of the digital valve controller. A value ranging from 0.2 to 10.0 can be used for noisy or fast processes to improve closed loop process control. Entering a value of 0.0 will deactivate the lag filter. In Firmware 7, 9, and 10 this parameter should be set to 0.

Lead/Lag Set Point Filter—ODV devices have access to a lead-lag input filter that can be used to improve a valve’s dynamic response. The lead-lag input filter is part of the set point processing routine that reshapes the input signal before it becomes travel set point. Lead-lag filters are characterized by lead and lag time constants.

When the valve is in its active control region (off the seat), the lead-lag filter improves small amplitude response by momentarily overdriving the travel set point. This is useful when the actuator is large and equipped with accessories. As a result, any volume boosters that are present will be activated. The longer the lag time, the more pronounced the overdrive. Since the lead-lag input filter is used to enhance the dynamic response of a control valve, filter parameters should be set after the tuning parameters have been established.

When the valve is at its seat, the lead-lag filter also has a boost function that sets the initial conditions of the filter artificially low so that small amplitude signal changes appear to be large signal changes to the filter. The boost function introduces a large spike that momentarily overdrives the instrument and activates any external volume boosters that may be present. The lead-lag boost function is normally disabled except for those cases where the valve must respond to small command signals off the seat. By setting the lead/lag ratio in the opening and closing directions to 1.0, the boost function can be enabled without introducing lead-lag dynamics in the active control region. See table 4-7 for typical lead-lag filter settings.
Table 4-7. Typical Lead/Lag Filter Settings for Instrument Level ODV

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Typical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lag Time</td>
<td>First order time constant. A value of 0.0 will disable the lead-lag filter.</td>
<td>0.2 sec</td>
</tr>
<tr>
<td>Opening Lead/Lag Ratio</td>
<td>Initial response to the filter in the opening direction.</td>
<td>2.0</td>
</tr>
<tr>
<td>Closing Lead/Lag Ratio</td>
<td>Initial response to the filter in the closing direction.</td>
<td>2.0</td>
</tr>
<tr>
<td>Lead-Lag Boost</td>
<td>Initial conditions of the lead-lag filter when the lower travel cutoff is active.</td>
<td>Off</td>
</tr>
</tbody>
</table>

Alert Setup (1-2-3)

The following menus are available for configuring Alerts. Items on the menus may be changed with the instrument In Service. Protection does not need to be removed (no need to set to None). Alerts are not processed when a Diagnostic is in progress. Select Configure, Detailed Setup, and Alerts. Follow the prompts on the Field Communicator display to configure the following Alerts: Electronic Alerts, Sensor Alerts, Environment Alerts, Travel Alerts, Travel History Alerts, SIS Alerts (instrument level ODV only), and Alert Record.

Note

The Alerts section covers alerts and shutdowns. An alert, if enabled, can provide information on operation and performance issues. A shutdown, if enabled, and upon the occurrence of the associated failure alert, will cause the instrument air output to go to the Zero Power Condition as per figure 4-6. It will remain latched in that condition until power to the instrument is cycled and the failure alert has cleared. While in shutdown condition the instrument will remain powered up and able to communicate via HART.

Electronics Alerts (1-2-3-1)

- **Drive Current Shutdown**—When enabled, the instrument shuts down whenever the drive current does not read as expected.

Drive Signal Alert (1-2-3-1-2)

Drive Signal Alert checks the drive signal and calibrated travel. If one of the following conditions exists for more than 20 seconds, the Drive Signal Alert is set.

For the case where Zero Power Condition is defined as closed:

- Drive Signal < 10% and Calibrated Travel > 3%
- Drive Signal > 90% and Calibrated Travel < 97%

For the case where Zero Power Condition is defined as open:

- Drive Signal < 10% and Calibrated Travel < 97%
- Drive Signal > 90% and Calibrated Travel > 3%

- **Drive Signal Alert Enable**—Yes or No. Activates checking of the relationship between the Drive Signal and the calibrated travel.

- **Drive Signal**—Shows the value of the instrument drive signal in % (percent) of maximum drive.

Processor Impaired Alerts (1-2-3-1-3)

- **Offline/Failed Alert Enable**—If enabled, set when the device is in a failed state and not controlling the input.

- **Power Starvation Alert Enable**—When enabled, an alert is generated whenever power starvation is detected. Firmware 2–7.

- **Low Power Write Fail Enable**—When enabled, an alert is generated if a write to the instrument is attempted and fails when the loop current is less than 3.5 mA. Firmware 9, 10 and 11.

- **Non-Critical NVM Alert Enable**—When enabled, an alert is generated whenever there is a failure associated with non-critical NVM (non-volatile memory).

- **Critical NVM Shutdown**—When enabled, the instrument shuts down whenever there is a failure associated with critical NVM (non-volatile memory).

- **Flash ROM Shutdown**—When enabled, the instrument shuts down whenever there is a failure associated with flash ROM (read only memory).

- **No Free Time Shutdown**—When enabled, the instrument shuts down whenever there is a failure associated with No Free Time.

- **Reference Voltage Shutdown**—When enabled, the instrument shuts down whenever there is a failure associated with the internal voltage reference.
Sensor Alerts (1-2-3-2)

- **Travel Sensor Shutdown**—When enabled, the instrument shuts down whenever there is a failure associated with the travel sensor.

- **Temp Sensor Shutdown**—When enabled, the instrument shuts down whenever there is a failure associated with the temperature sensor.

- **Pressure Sensor Shutdown**—When enabled, the instrument shuts down whenever there is a failure associated with the pressure sensor.

Environment Alerts (1-2-3-3)

Auxiliary Terminal Alerts (1-2-3-3-1)

- **Auxiliary Terminal Alert Enable**—Yes or No. Activates checking the status of the auxiliary input when the Auxiliary Terminal Mode is Auxiliary Input Alert. When enabled, the Auxiliary Input Alert is set when the auxiliary input terminals are either open or closed, depending upon the selection for the Auxiliary Input Alert State. Factory default is No.

- **Auxiliary Input**—The auxiliary input is a contact or discrete input, which may be open or closed.

- **Auxiliary Terminal Action**—Disabled, Alert on Open Contact, Alert on Close Contact, or Auto Travel Calibration. Selecting Alert on Open or Close Contact activates checking the status of the auxiliary input contacts. Selecting Auto Travel Calibration permits starting an automatic travel calibration procedure by placing a jumper across the auxiliary input terminals for 3 to 5 seconds.

Supply Press Lo Alert (1-2-3-3-2)

Note

The Supply Pressure Lo alert is not available in instrument level HC.

- **Supply Pressure Lo Alert Enable**—When enabled, the instrument sends an alert when the supply pressure falls below the supply pressure alert point. Factory default is Yes.

- **Supply**—Supply Pressure displays the instrument supply pressure in kPa, bar, psi, or kg/cm².

- **Supply Pressure Lo Alert Point**—When the supply pressure falls below the supply pressure alert point, the supply pressure alert is active. To disable the supply pressure alert, set Supply Pressure Alert Point to zero.

- **Loop Current Validation Enable**—When enabled, the instrument shuts down whenever there is a failure associated with the measured loop current being out-of-range. Firmware 9, 10, and 11.

Travel Alerts (1-2-3-4)

- **Travel**—Displays the actual position of the valve in percent (%) of calibrated travel.

- **Setpoint**—The input to the characterization function.

- **Travel Alt DB**—Travel Alert Deadband is the travel, in percent (%) of ranged travel, required to clear a travel alert, once it has been set. The deadband applies to both Travel Alert Hi/Lo and Travel Alert Hi/Hi Lo Lo. See figure 4-2.

Travel Deviation Alert (1-2-3-4-4)

If the difference between the travel target and the actual target exceeds the Travel Deviation Alert Point for more than the Travel Deviation Time, the Travel Deviation Alert is set. It remains set until the difference between the travel target and the actual travel is less than the Travel Deviation Alert Point minus the Travel Alert Deadband.

- **Travel Deviation Alert Enable**—Select Yes or No. When enabled, checks the difference between the travel target and the actual travel. Factory default is Yes.

- **Travel Deviation Alert Point**—The alert point for the difference, expressed in percent (%), between the travel target and the actual travel. When the difference exceeds the alert point for more than the Travel Deviation Time, the Travel Deviation Alert is set.

- **Travel Deviation Time**—The time, in seconds, that the travel deviation must exceed the Travel Deviation Alert Point before the alert is set.

Travel Limit Alerts (1-2-3-4-5)

Travel Alert Hi Hi is set if the ranged travel rises above the alert high point. Once the alert is set, the ranged travel must fall below the alert high high point by the Travel Alert Deadband before the alert is cleared. See figure 4-2.

Travel Alert Lo Lo is set if the ranged travel falls below the alert low low point. Once the alert is set, the ranged travel must rise above the alert low low point by the Travel Alert Deadband before the alert is cleared.
• **Travel Alert Hi Hi Enable**—Yes or No. Activates checking of the ranged travel against the Travel Alert Hi Hi points. Factory default is No.

• **Travel Alert Lo Lo Enable**—Yes or No. Activates checking of the ranged travel against the Travel Alert Lo Lo points. Factory default is No.

• **Travel Alert Hi Hi Point**—The value of the travel, in percent (%) of ranged travel, which, when exceeded, sets the Travel Alert Hi Hi alert.

• **Travel Alert Lo Lo Point**—The value of the travel, in percent (%) of ranged travel, which, when exceeded, sets the Travel Alert Lo Lo alert.

Travel Limit Hi/Lo Alerts (1-2-3-4-6)

Travel Alert Hi is set if the ranged travel rises above the alert high point. Once the alert is set, the ranged travel must fall below the alert high point by the Travel Alert Deadband before the alert is cleared. See figure 4-2.

Travel Alert Lo is set if the ranged travel falls below the alert low point. Once the alert is set, the ranged travel must rise above the alert low point by the Travel Alert Deadband before the alert is cleared.

• **Travel Alert Hi Enable**—Yes or No. Activates checking of the ranged travel against the Travel Alert High Point. Factory default is No.

• **Travel Alert Lo Enable**—Yes or No. Activates checking of the ranged travel against the Travel Alert Lo Point. Factory default is No.

• **Travel Alert Hi Point**—The value of the travel, in percent (%) of ranged travel, which, when exceeded, sets the Travel Alert High alert.

• **Travel Alert Lo Point**—The value of the travel, in percent (%) of ranged travel, which, when exceeded, sets the Travel Alert Low alert.

Travel Limit/Cutoff Alerts (1-2-3-4-7)

• **Travel Limit/Cutoff Hi Enable**—Yes or No. Activates the Travel Limit / Cutoff Hi alert.

• **Travel Limit/Cutoff Lo Alert Enable**—Yes or No. Activates the Travel Limit/Cutoff Lo alert.

• **Cutoff Hi**

Travel Cutoff Hi defines the high cutoff point for the travel in percent(%) of pre-characterized set point. Above this cutoff, the travel target is set to 123.0% of the ranged travel. Travel Cutoff Hi is deactivated by setting it to 125.0%.

Pressure Cutoff Hi defines the high cutoff point for the pressure in percent (%) of pre-characterized set point. Above this cutoff, the pressure target is set to 123.0%. A Pressure Cutoff Hi of 99.5% is recommended to ensure valve goes fully open. Pressure Cutoff Hi is deactivated by setting it to 125%

• **Cutoff Lo**

Travel Cutoff Lo defines the low cutoff point for the travel in percent(%) of pre-characterized set point. Below this cutoff, the travel target is set to −23%. A Travel Cutoff Lo of 0.5% is recommended to help ensure maximum shutoff seat loading. Travel Cutoff Lo is deactivated by setting it to −25.0%

Pressure Cutoff Lo defines the low cutoff point for the pressure in percent (%) of pre-characterized set point. Below this cutoff, the pressure target is set to −23%. A Pressure Cutoff Lo of 0.5% is recommended to help ensure maximum shutoff seat loading. Pressure Cutoff Lo is deactivated by setting it to −25.0%

• **Change Cutoffs**—Allows you to set Cutoff Hi and Cutoff Lo. When a cutoff is set the corresponding travel or pressure limit is disabled.

• **Travel Limit Hi**—Defines the high limit for the travel in percent (%) of ranged travel. It is the maximum allowable travel (in percent of ranged travel) for the valve. During operation, the travel target will not exceed this limit. When a Travel Limit High is set, the Travel Cutoff High is deactivated, since only one of these parameters can be active. Travel Limit High is deactivated by setting it to 125.0%.

• **Travel Limit Lo**—Defines the low limit for the travel in percent (%) of ranged travel. It is the minimum allowable travel (in percent of ranged travel) for the valve. During operation, the travel target will not exceed this limit. When a Travel Limit Low is set,
the Travel Cutoff Low is deactivated, since only one of these parameters can be active. Travel Limit Low is deactivated by setting it to −25.0%.

- **Change Travel Limits**—Allows you to set hi and lo travel limits. Setting a travel limit will eliminate the corresponding Tvl/Press Cutoff.

Travel History Alerts (1-2-3-5)

Cycle Counter (1-2-3-5-1)

- **Cycle Counter Alert Enable**—Yes or No. Activates checking of the difference between the Cycle Counter and the Cycle Counter Alert point. The Cycle Counter Alert is set when the value exceeds the Cycle Counter Alert point. It is cleared after you reset the Cycle Counter to a value less than the alert point. Factory default is No.

- **Cycle Counter**—Records the number of times the travel changes direction. The change in direction must occur after the deadband has been exceeded before it can be counted as a cycle. See figure 4-4. You can reset the Cycle Counter by configuring it as zero.

- **Cycle Counter Alert Point**—The value of the Cycle Counter, in cycles, which, when exceeded, sets the Cycle Counter Alert.

Cycle Count/Travel Accumulator Deadband (1-2-3-5-2)

- **Deadband**

Cycle Counter Deadband is the area around the travel reference point, in percent (%) of ranged travel, that was established at the last increment of the Cycle Counter. This area must be exceeded before a change in travel direction can be counted as a cycle. See figure 4-4.

Travel Accumulator Deadband is the area around the travel reference point, in percent (%) of ranged travel, that was established at the last increment of the accumulator. This area must be exceeded before a change in travel can be accumulated. See figure 4-3.

Travel Accumulator (1-2-3-5-3)

- **Travel Accumulator Alert Enable**—Yes or No. Activates checking of the difference between the Travel Accumulator value and the Travel Accumulator Alert Point. The Travel Accumulator Alert is set when the Travel Accumulator value exceeds the Travel Accumulator Alert Point. It is cleared after you reset the Travel Accumulator to a value less than the alert point. Factory default is No.

- **Travel Accumulator**—Records the total change in travel, in percent (%) of ranged travel, since the accumulator was last cleared. The value of the Travel Accumulator increments when the magnitude of the change exceeds the Travel Accumulator Deadband. See figure 4-3. You can reset the Travel Accumulator by configuring it to zero.

- **Travel Accumulator Alert Point**—The value of the Travel Accumulator, in percent (%) of ranged travel, which, when exceeded, sets the Travel Accumulator Alert.

SIS Alerts (1-2-3-6)

Note

SIS Alerts are only available for instrument level ODV.
- PST Pressure Limit—Defines the output pressure that will cause the partial stroke test to stop. For actuators that vent from the test starting point, the pressure limit will be a minimum value. For actuators that fill from the test starting point, the pressure limit will be a maximum value.

- Pressure Deviation Alert Enable—Select Yes or No. This alert notifies a monitoring system when a deviation in the actuator pressure has occurred. This is used when the instrument is controlling via pressure (Pressure Control Mode is enabled) to the actuator (rather than valve position) to prevent saturation of the pneumatic output. When enabled, this alert checks the difference between the target pressure and the actual pressure. If the difference exceeds the Pressure Deviation Alert Point for more than the pressure deviation time, the Pressure Deviation Alert is set. It remains set until the difference between the target pressure and the actual pressure is less than the Pressure Deviation Alert Point. The pressure deviation alert point and deviation alert time are configurable and can be disabled altogether. Factory default is Yes.

- Pressure Deviation Alert Point—The alert point for the difference between the pressure target and the actual pressure. When the difference exceeds the alert point for more than the Pressure Deviation Time, the Pressure Deviation Alert is set. After completion of the Setup Wizard or Auto Travel calibration a default value of 2 psi is set. This will generate an alert when the actuator pressure is not within ±2 psi of the target pressure.

- Pressure Deviation Time—The time, in seconds, that the pressure deviation must exceed the Pressure Deviation Alert Point before the alert is set. The Pressure Deviation Time is set to 30 seconds by default.

Alert Record
(1-2-3-6) HC, AD, and PD
(1-2-3-7) ODV

To be recorded, an alert must both be enabled for reporting, and the group in which it resides must be enabled for recording. Table 4-8 lists the alerts included in each of the groups. When any alert from an enabled group becomes active, active alerts in all enabled groups are stored.

- Alert Record Has Entries Enable—Yes or No. When enabled indicates when an alert has been recorded. Factory default is Yes.

- Alert Record Full Enable—Yes or No. When enabled indicates when the Alert Record is full. Factory default is No.

Table 4-8. Alerts Included in Alert Groups for Alert Record

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Alerts Include in Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Alerts</td>
<td>Travel Lo Alert</td>
</tr>
<tr>
<td></td>
<td>Travel Hi Alert</td>
</tr>
<tr>
<td></td>
<td>Travel Lo Lo Alert</td>
</tr>
<tr>
<td></td>
<td>Travel Hi Hi Alert</td>
</tr>
<tr>
<td></td>
<td>Travel Deviation Alert</td>
</tr>
<tr>
<td></td>
<td>Drive Signal Alert</td>
</tr>
<tr>
<td>Failure Alerts</td>
<td>Flash ROM Fail</td>
</tr>
<tr>
<td></td>
<td>No Free Time</td>
</tr>
<tr>
<td></td>
<td>Reference Voltage Fail</td>
</tr>
<tr>
<td></td>
<td>Drive Current Fail</td>
</tr>
<tr>
<td></td>
<td>Critical NVM Fail</td>
</tr>
<tr>
<td></td>
<td>Temperature Sensor Fail</td>
</tr>
<tr>
<td></td>
<td>Pressure Sensor Fail</td>
</tr>
<tr>
<td></td>
<td>Travel Sensor Fail</td>
</tr>
<tr>
<td>Miscellaneous Alerts</td>
<td>Auxiliary input</td>
</tr>
</tbody>
</table>

- View Alert Records—Displays all recorded alerts and the date and time the alerts were recorded.

- Clear ALL Records—Clears the alert record. To clear the alert record, all alerts in enabled groups must be inactive.

Alert Groups
(1-2-3-6-5) HC, AD, and PD
(1-2-3-7-5) ODV

- Failure Group Enable—Permits enabling the Failure Alert group. Factory default is Yes. Table 4-8 lists the alerts included in each of the groups.

- Valve Group Enable—Permits enabling the Valve Alert group. Factory default is Yes. Table 4-8 lists the alerts included in each of the groups.

- Miscellaneous Group Enable—Permits enabling the Miscellaneous Alert group. Factory default is No. Table 4-8 lists the alerts included in each of the groups.

Status (1-2-4)
Select Configure, Detailed Setup, and Status. Follow the prompts on the Field Communicator display to configure the following parameters: Instrument Time, Calibration and Diagnostics, Operational, and Integrator Saturation.

Instrument Time (1-2-4-1)

- Inst Time Invalid Enable—Yes or No. When enabled indicates if the Instrument Time Invalid alert is active. Factory default is Yes.

- Instrument Date and Time—Permits setting the instrument clock. When alerts are stored in the alert record, the record includes the time and date. The instrument clock uses a 24-hour format.
Calibration and Diagnostics (1-2-4-2)

- **Calibration in Progress Enable**—Yes or No. When enabled indicates that calibration is in progress. Factory default is No.

- **AutoCal in Progress Enable**—Yes or No. When enabled indicates that auto calibration is in progress. Factory default is No.

- **Diagnostic in Progress Enable**—Yes or No. When enabled indicates that a diagnostic test is in progress. Factory default is No.

- **Diagnostic Data Avail Enable**—Yes or No. When enabled indicates when there is diagnostic data available. Factory default is Yes.

Operational (1-2-4-3)

- **Pressure Control Active Enable**—Yes or No. When enabled indicates when Pressure Control is active. Factory default is Yes.

- **Multi-Drop Enable**—Yes or No. When enabled indicates the digital valve controller is operating in a multi-drop loop. Factory default is No.

Integrator Saturation (1-2-4-4)

- **Integrator Sat Hi Enable**—Yes or No. When enabled indicates when the Integrator Saturated High alert is active. Factory default is Yes.

- **Integrator Sat Lo Enable**—Yes or No. When enabled indicates when the Integrator Saturated Lo alert is active. Factory default is Yes.

- **Integral Limit**—Provides an upper limit to the integrator output. The high limit is configurable from 0 to 100% of the I/P drive signal.

- **Integral Dead Zone**—A window around the Primary Setpoint in which integral action is disabled. This feature is used to eliminate friction induced limit cycles around the Primary Setpoint when the integrator is active. The Dead Zone is configurable from 0% to 2%, corresponding to a symmetric window from 0% to +/-2% around the Primary Setpoint. Default value is 0.25%.

Instrument (1-2-5)

Select **Configure, Detailed Setup, and Instrument**. Follow the prompts on the Field Communicator display to configure the following Instrument parameters: General, Units, Analog Input Range, Relay Type, Zero Power Condition, Maximum Supply Pressure, Auxiliary Terminal Action, Instrument Date and Time, and Calib Status and Type.

General (1-2-5-1)

- **HART Tag**—Enter an up to 8 character HART tag for the instrument. The HART tag is the easiest way to distinguish between instruments in a multi-instrument environment. Use the HART tag to label instruments electronically according to the requirements of your application. The tag you assign is automatically displayed when the Field Communicator establishes contact with the digital valve controller at power-up.

- **Message**—Enter any message with up to 32 characters. Message provides the most specific user-defined means for identifying individual instruments in multi-instrument environments.

- **Descriptor**—Enter a descriptor for the application with up to 16 characters. The descriptor provides a longer user-defined electronic label to assist with more specific instrument identification than is available with the HART tag.

- **Date**—Enter a date with the format MM/DD/YY. Date is a user-defined variable that provides a place to save the date of the last revision of configuration or calibration information.

- **Valve Serial Number**—Enter the serial number for the valve in the application, up to 12 characters.

- **Instrument Serial Number**—Enter the serial number on the instrument nameplate, up to 12 characters.

- **Polling Address**—If the digital valve controller is used in point-to-point operation, the Polling Address is 0. When several devices are connected in the same loop, such as for split ranging, each device must be assigned a unique polling address. The Polling Address is set to a value between 0 and 15. To change the polling address the instrument must be Out Of Service.

For the Field Communicator to be able to communicate with a device whose polling address is not 0, it must be configured to automatically search for all or specific connected devices.

Units (1-2-5-2)

- **Pressure Units**—Defines the output and supply pressure units in either psi, bar, kPa, or kg/cm².

- **Temperature Units**—Degrees Fahrenheit or Celsius. The temperature measured is from a sensor mounted on the digital valve controller’s printed wiring board.
DVC6000 Digital Valve Controllers

The shape of these lines depends on the input characteristics linear characteristic shown.

Analog In Units—Permits defining the Analog Input Units in mA or percent of 4–20 mA range.

Analog Input Range (1-2-5-3)

- **Input Range Hi**—Permits setting the Input Range High value. Input Range High should correspond to Travel Range High, if the Zero Power Condition is configured as closed. If the Zero Power Condition is configured as open, Input Range High corresponds to Travel Range Low. See figure 4-5.

- **Input Range Lo**—Permits setting the Input Range Low value. Input Range Low should correspond to Travel Range Low, if the Zero Power Condition is configured as closed. If the Zero Power Condition is configured as open, Input Range Low corresponds to Travel Range High. See figure 4-5.

- **Relay Type**—There are three categories of relays that result in combinations from which to select.
 - Relay Type: The relay type is printed on the label affixed to the relay body.
 - A = double-acting or single-acting
 - B = single-acting, reverse
 - C = single-acting, direct
 - Special App: This is used in single-acting applications where the “unused” output port is configured to read the pressure downstream of a solenoid valve. See page 2-22 for additional information.

- **Lo Bleed**: The label affixed to the relay body indicates whether it is a low bleed version.

- **Zero Power Condition** (Zero Control Signal in firmware 2–6)—The position of the valve (open or closed) when the electrical power to the instrument is removed. Zero Power Condition (ZPC) is determined by relay and actuator action, as shown in figure 4-6.

- **Maximum Supply Pressure**—Enter the maximum supply pressure in psi, bar, kPa, or kg/cm², depending on what was selected for pressure units.

- **Auxiliary Terminal Action**—Disabled, Alert on Open Contact, Alert on Close Contact, or Auto Travel Calibration. Selecting Alert on Open or Close Contact activates checking the status of the auxiliary input contacts. Selecting Auto Travel Calibration permits starting an automatic travel calibration procedure by placing a jumper across the auxiliary input terminals for 3 to 5 seconds.

- **Instrument Date and Time**—Permits setting the instrument clock. When alerts are stored in the alert record, the record includes the time and date. The instrument clock uses a 24-hour format.

Calib Status and Type (1-2-5-9)

- Last AutoCal Status—Indicates the status of the last instrument calibration.

- Last Calibration Type—Indicates the type of the last instrument calibration.

Valve and Actuator (1-2-6)

Select Configure, Detailed Setup, and Valve and Actuator. Follow the prompts on the Field Communicator display to configure the following instrument parameters: Manufacturer, Valve Serial Number, Valve Style, Actuator Style, Travel Sensor Motion, and View/Edit Feedback Connection.

- **Manufacturer**—Enter the manufacturer of the actuator on which the instrument is mounted. If the actuator manufacturer is not listed, select Other.

- **Valve Serial Number**—Enter the serial number for the valve in the application with up to 12 characters.
Detailed Setup

A
B

- **Valve Style**—Enter the valve style, rotary or sliding-stem

- **Actuator Style**—Enter the actuator style, spring and diaphragm, piston double-acting without spring, piston single-acting with spring, or piston double-acting with spring.

- **Travel Sensor Motion**—Select Clockwise, or Counterclockwise. Travel Sensor Motion establishes the proper travel sensor rotation. Determine the rotation by viewing the end of the travel sensor shaft from the perspective of the actuator.

For instruments with Relay A and C: If increasing air pressure at output A causes the shaft to turn clockwise, enter Clockwise. If it causes the shaft to turn counterclockwise, enter Counterclockwise.

For instruments with Relay B: If increasing air pressure at output B causes the shaft to turn counterclockwise, enter Clockwise. If it causes the shaft to turn clockwise, enter Counterclockwise.

- **View/Edit Feedback Connection**—Select Rotary All, SStem - Roller or SStem - Standard. For rotary valves, enter Rotary - All, SStem - Roller. For sliding-stem valves, if the feedback linkage consists of a connector arm, adjustment arm, and feedback arm (similar to figure 4-7), enter SStem - Standard. If the feedback linkage consists of a roller that follows a cam (similar to figure 4-8), enter Rotary All, SStem - Roller.

- **Assembly Specification Sheet**—Allows you to view and edit the Specification Sheet used by ValveLink Software.

Table: Loss of Power and Loss of Pneumatic Supply

<table>
<thead>
<tr>
<th>Relay Type</th>
<th>Loss of Power</th>
<th>Loss of Pneumatic Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Acting Direct (Relay C)</td>
<td>Instrument goes to zero air output at port A.</td>
<td>Failure direction per actuator fail mode.</td>
</tr>
<tr>
<td>Double-Acting (Relay A)</td>
<td>Instrument goes to full supply air output at port A.</td>
<td>Failure direction cannot be determined.</td>
</tr>
<tr>
<td>Single-Acting Reverse (Relay B)</td>
<td>Instrument goes to full supply air output at port B.</td>
<td>Failure direction per actuator fail mode.</td>
</tr>
</tbody>
</table>

Figure 4-6. Zero Power Condition

Figure 4-7. Feedback Connection for Typical Sliding-Stem Actuator (Up to 4 inch Travel)

Partial Stroke (1-2-7)

- **Note**: Partial Stroke is only available for instrument level ODV.

Select Configure, Detailed Setup, and Partial Stroke. Follow the prompts on the Field Communicator display to configure the following partial stroke parameters: PST Enable and View/Edit PST Variables.
Figure 4-8. Feedback Connection for Typical Long-Stroke Sliding-Stem Actuator (4 to 24 Inches Travel)

- **PST Enable**—Yes or No. Enables or disables the Partial Stroke Test.

- **PST Variables View/Edit**—Follow the prompts on the Field Communicator display to enter or view information for following PST Variables: Max Travel Movement, Stroke Speed, Pause Time, PST Press Limit, PST Mode Enable, Pressure Set Point, and End Pt Control Enable.

Max Travel Movement—The default value for Max Travel Movement is 10%. It may be set to a value between 1 and 30% in 0.1% increments.

Pause Time—The Setup Wizard sets the Partial Stroke Pause Time to 5 seconds. This is the pause time between the up and down strokes of the test. It can be set for 5, 10, 15, 20 or 30 seconds.

PST Press Limit (single acting actuators)—During the Setup Wizard, or Auto Calibration, the Partial Stroke Pressure Limit value will be set to a positive value for single-acting actuator. For those actuators that vent from the test starting point, the pressure limit will be a minimum value. For those actuators that fill from the test starting point, the pressure limit will be a maximum value. The pressure signal used for this threshold depends on relay type and is summarized below.

<table>
<thead>
<tr>
<th>Relay Type</th>
<th>Pressure Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A or C</td>
<td>Port A – Port B</td>
</tr>
<tr>
<td>B</td>
<td>Port B – Port A</td>
</tr>
<tr>
<td>B Special App.</td>
<td>Port B</td>
</tr>
<tr>
<td>C Special App.</td>
<td>Port A</td>
</tr>
</tbody>
</table>

PST Press Limit (double-acting actuators)—During the Setup Wizard or Auto Travel Calibration, the PST Press Limit will be set to a negative value for actuators where the Partial Stroke Start Point is opposite of the Zero Power Condition (e.g., Partial Stroke Start Point = Open and Zero Power Condition = Closed) and to a positive value for actuators where the Partial Stroke Start Point is the same as the Zero Power Condition.

Note

The Max Travel Movement is the percentage of total span that the valve moves away from its operating state towards its fail state during a Partial Stroke Test.

Note

In order to manually set the partial stroke pressure limit with the correct value, you must be able to run a valve signature test using ValveLink software. It is then possible to set the partial stroke pressure limit with the Field Communicator, using the information generated by the valve signature test.

Stroke Speed—The stroke speed can be set for 1%/second, 0.5%/second, 0.25%/second, 0.12%/second, or 0.06%/second. The default value for Partial Stroke Speed is 0.25%/second.
To manually set the partial stroke pressure limit, disable the travel deviation alert by setting Travel Dev Alert Pt to 125%. Also disable “end point pressure control” and disable the partial stroke pressure limit by setting the values shown in table 4-9.

Run the partial stroke test using the Field Communicator. Once the test is completed download the partial stroke test results using ValveLink software.

Select the Press/Time radio button from the partial stroke valve signature graph. If actuator pressure starts high and moves low, find the minimum actuator pressure, Pmin. Otherwise, find the maximum actuator pressure, Pmax. Use table 4-10 to estimate the partial stroke pressure limit.

The default value is 0.

For double-acting valves, the differential pressure is used.

Table 4-9. Values for Disabling Partial Stroke Pressure Limit

<table>
<thead>
<tr>
<th>Actuator Type</th>
<th>Relay Type</th>
<th>Zero Power Condition</th>
<th>Partial Stroke Start Point</th>
<th>Partial Stroke Pressure Limit (Disabled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Acting</td>
<td>A or C</td>
<td>Closed</td>
<td>Open</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Closed</td>
<td>Psupply</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open</td>
<td>Closed</td>
<td>Psupply</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Closed</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open</td>
<td>Closed</td>
<td>Psupply</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Closed</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open</td>
<td>Closed</td>
<td>Psupply</td>
</tr>
</tbody>
</table>

Table 4-10. Estimates for Partial Stroke Pressure Limits

<table>
<thead>
<tr>
<th>Actuator Style</th>
<th>Relay Type</th>
<th>Zero Power Condition</th>
<th>PST Starting Point</th>
<th>Partial Stroke Pressure Limit<sup>(1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring and Diaphragm</td>
<td>A or C</td>
<td>Closed</td>
<td>Open</td>
<td>$P_{min} - 0.25 \times (Bench\ Set\ High - Bench\ Set\ Low)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Closed</td>
<td>$P_{max} + 0.25 \times (Bench\ Set\ High - Bench\ Set\ Low)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open</td>
<td>Closed</td>
<td>$P_{max} + 0.25 \times (Bench\ Set\ High - Bench\ Set\ Low)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Closed</td>
<td>$P_{min} - 0.25 \times (Bench\ Set\ High - Bench\ Set\ Low)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open</td>
<td>Closed</td>
<td>$P_{max} + 0.25 \times (Bench\ Set\ High - Bench\ Set\ Low)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Closed</td>
<td>$P_{min} - 0.25 \times (Bench\ Set\ High - Bench\ Set\ Low)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open</td>
<td>Closed</td>
<td>$P_{max} + 0.25 \times (Bench\ Set\ High - Bench\ Set\ Low)$</td>
</tr>
</tbody>
</table>

Single-Acting Piston	A or C	Closed	Open	$0.5 \times P_{min}$
			Closed	$P_{max} + 0.5 \times (Psupply - P_{max})$
		Open	Closed	$P_{max} + 0.5 \times (Psupply - P_{max})$
			Closed	$0.5 \times P_{min}$
		Open	Closed	$P_{max} + 0.5 \times (Psupply - P_{max})$

Double-Acting Piston	A	Closed	Open	$P_{min} - 0.5 \times (Psupply + P_{min})$
			Closed	$P_{max} + 0.5 \times (Psupply - P_{max})$
			Open	$P_{max} + 0.5 \times (Psupply - P_{max})$
			Closed	$P_{min} - 0.5 \times (Psupply + P_{min})$
DVC6000 Digital Valve Controllers
Section 5 Calibration

Calibration Overview .. 5-2

Travel Calibration .. 5-2
 Auto Travel Calibration .. 5-2
 Manual Travel Calibration .. 5-4
 Analog Calibration Adjust
 Digital Calibration Adjust
 Touch-Up Travel Calibration ... 5-6

Sensor Calibration .. 5-6
 Pressure Sensors .. 5-6
 Output Pressure Sensor Calibration
 Supply Pressure Sensor Calibration
 Travel Sensor ... 5-7
 DVC6010, DVC6015, DVC6030 and DVC6035 Digital Valve Controllers
 DVC6020 and DVC6025 Digital Valve Controllers
 Analog Input ... 5-10

Relay Adjust ... 5-10
 Double-Acting Relay .. 5-10
 Single-Acting Direct Relay ... 5-11
 Single-Acting Reverse Relay .. 5-11

Restore Factory Settings .. 5-11
Calibration Overview

When a DVC6000 digital valve controller is ordered as part of a control valve assembly, the factory mounts the digital valve controller on the actuator and connects the necessary tubing, then sets up and calibrates the controller. For remote-mounted digital valve controllers, the DVC6005 base unit ships separately from the control valve and does not include tubing, fittings or wiring.

For digital valve controllers that are ordered separately, recalibration of the analog input or pressure sensors generally is unnecessary. However, after mounting on an actuator, perform the initial setup (either auto or manual), then calibrate travel by selecting Calibrate, Travel Calibration, and Auto Calibration from the Configure menu. For more detailed calibration information, refer to the following calibration procedures, available from the Calibrate menu:

Travel Calibration

- **Auto Calibration** — This procedure automatically calibrates the travel. The calibration procedure uses the valve and actuator stops as the 0% and 100% calibration points.

- **Manual Calibration** — This procedure permits manual calibration of the travel. This calibration procedure allows you to determine the 0% and 100% calibration points and obtain the optimum linearity on a sliding-stem valve.

Sensor Calibration

- **Pressure Sensors** — This procedure permits calibrating the three pressure sensors. Normally the sensors are calibrated at the factory and should not need calibration.

- **Travel Sensor** — This procedure permits calibrating the travel sensor. Normally the travel sensor is calibrated at the factory. Calibrating the travel sensor should only be necessary if the travel sensor is replaced.

- **Analog In** — This procedure permits calibrating the analog input sensor. Normally the sensor is calibrated at the factory and should not need calibration.

Relay Adjustment — This procedure permits adjustment of the pneumatic relay.

Restore Factory Settings — This procedure permits you to restore the calibration settings back to the factory settings.

To display the calibrate menu, from the Online menu, select Configure and Calibrate.

Note

The Instrument Mode must be Out Of Service and the Protection set to None before the instrument can be calibrated.

If you are operating in burst mode, we recommend that you disable burst before continuing with calibration. Once calibration is complete, burst mode may then be turned back on.

WARNING

During calibration the valve will move full stroke. To avoid personal injury and property damage caused by the release of process fluid or pressure, isolate the valve from the process and equalize pressure on both sides of the valve or bleed off the process fluid.

Travel Calibration

There are two procedures available for calibrating travel:

- **Auto Calibration**
- **Manual Calibration**

Once the travel is calibrated by performing either the Auto Calibration or Manual Calibration procedures, the travel calibration can be “touched-up” using Touch-Up Travel Calibration.

Auto Calibration (1-3-1-1)

User interaction is only required with Auto Calibrate Travel when the feedback connection is SStem - Standard (Sliding Stem - Standard). A feedback connection of Rotary - All, SStem - Roller (Sliding Stem - Roller) requires no user interaction and you can start with step 6.

For a SStem - Standard feedback connection, interaction provides a more accurate crossover adjustment. Setting crossover establishes the zero degree point for the geometric correction used to translate the rotary motion observed by the travel sensor into the linear motion of the sliding-stem valve.
When a double-acting actuator is used, you will be prompted to run the Relay Adjustment when Auto Travel Calibration is selected. Select Yes to adjust the relay, Select No to proceed with Auto Travel Calibration. For additional information, refer to Relay Adjustment in this section.

Select Calibrate, Travel Calibration, Auto Calibration, then follow the prompts on the Field Communicator display to automatically calibrate travel.

1. Select the method of crossover adjustment: manual, last value, or default. Manual is the recommended choice. If you select Manual, the Field Communicator will prompt you to adjust the crossover in step 3.

If you select Last Value, the crossover setting currently stored in the instrument is used and there are no further user interactions with the auto-calibration routine (go to step 6). Use this selection if you cannot use manual, such as when you cannot see the valve.

If you select Default, an approximate value for the crossover is written to the instrument and there are no further user interactions with the auto-calibration routine (go to step 6). Use this selection only as a last resort. Default assumes a midrange position on the travel sensor as the crossover point, however, this may not be an appropriate value to use for crossover because of variations in mounting and travel sensor calibration.

2. The instrument seeks the high and low drive points and the minor loop feedback (MLFB) and output bias. No user interaction is required in this step. For a description of these actions see step 6.

3. If you select Manual in step 1, you are asked to select an adjustment source, either analog or digital. If you use a current source to adjust the crossover, select Analog and go to step 4. If you wish to adjust the current source digitally, select Digital and go to step 5.

4. If you selected Analog as the crossover adjustment source, the Field Communicator prompts you to adjust the current source until the feedback arm is 90° to the actuator stem, as shown in figure 5-1. After you have made the adjustment, press OK and go to step 6.

5. If you selected Digital as the crossover adjustment source, the Field Communicator displays a menu to allow you to adjust the crossover.

Select the direction and size of change required to set the feedback arm so it is 90° to the actuator stem, as shown in figure 5-1. Selecting large, medium, and small adjustments to the crossover causes changes of approximately 10.0°, 1.0°, and 0.1°, respectively, to the rotation of the feedback arm.

If another adjustment is required, repeat step 5. Otherwise, select Done and go to step 6.

6. The remainder of the auto calibration procedure is automatic.

During calibration, the instrument seeks the high and low end points and the minor loop feedback (MLFB) and output bias. By searching for the end points, the instrument establishes the limits of physical travel, i.e., the actual travel 0 and 100% positions. This also determines how far the relay beam swings to calibrate the sensitivity of the beam position sensor.

Adjusting the minor loop feedback bias is done around mid travel. The valve position is briefly moved back and forth to determine the relay beam position at quiescence. Essentially, it establishes the zero point for the Minor Loop Feedback circuit. The back and forth motion is performed to account for hysteresis.

Adjusting the output bias aligns the travel set point with the actual travel by computing the drive signal required to produce 0% error. This is done while the valve is at 50% travel, making very small adjustments. Calibration is complete when the “Auto Calibration has completed” message appears.

7. Place the instrument In Service and verify that the travel properly tracks the current source.

If the unit does not calibrate, refer to table 5-1 for error messages and possible remedies.
Manual Calibration (1-3-1-2)

It is recommended that you adjust the relay before manually calibrating travel. For additional information refer to Relay Adjustment in this section.

![Note]

Relay Adjustment is only available for the double-acting relay (Relay A).

Two procedures are available to manually calibrate travel:

- Analog Adjust
- Digital Adjust

Analog Calibration Adjust

Select Calibrate, Travel Calibration, Manual Calibration and Analog Adjust. Connect a variable current source to the instrument LOOP + and LOOP – terminals. The current source should be capable of generating 4 to 20 mA. Follow the prompts on the Field Communicator display to calibrate the instrument’s travel in percent.

![Note]

0% Travel = Valve Closed
100% Travel = Valve Open

1. Adjust the input current until the valve is near mid-travel. Press OK.

2. If the feedback connection is Rotary - All, SSStem - Roller, go to step 6. If the feedback connection is SSStem - Standard, you are prompted to set the crossover point. Adjust the current source until the feedback arm is 90° to the actuator stem, as shown in figure 5-1. Then press OK.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Possible Problem and Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input current must exceed 3.8 mA for calibration.</td>
<td>The analog input signal to the instrument must be greater than 3.8 mA. Adjust the current output from the control system or the current source to provide at least 4.0 mA.</td>
</tr>
<tr>
<td>Place Out Of Service and ensure Calibrate Protection is disabled before calib.</td>
<td>The Instrument Mode must be Out of Service and the Protection must be None before the instrument can be calibrated. For information on changing instrument protection and mode, see the beginning of this section.</td>
</tr>
</tbody>
</table>
| Calibration Aborted. An end point was not reached. | The problem may be one or the other of the following:
1. The tuning set selected is too low and the valve does not reach an end point in the allotted time. Press the Hot Key, select Stabilize/Optimize then Increase Response (selects next higher tuning set).
2. The tuning set selected is too high, valve operation is unstable and does not stay at an end point for the allotted time. Press the Hot Key, select Stabilize/Optimize then Decrease Response (selects next lower tuning set).

| Invalid travel value. Check travel sensor and feedback arm adjustments, and inst supply press. Then, repeat Auto Calib. | Prior to receiving this message, did the instrument output go from zero to full supply? If not, verify instrument supply pressure by referring to the specifications in the appropriate actuator instruction manual. If supply pressure is correct, check instrument pneumatic components (I/P converter and relay).
If the instrument output did go from zero to full supply prior to receiving this message, then verify proper mounting by referring to the appropriate mounting procedure in the Installation section. Verify travel sensor adjustment by performing the appropriate Travel Sensor Adjust procedure in the Calibration section. Making the crossover adjustment with the valve positioned at either end of its travel will also cause this message to appear. |
| Aborting due to response code or device status. | The instrument may have been taken out of service by a primary master. Put the instrument into service with the primary master or cycle the power off and on. |

![Note]

In steps 3 through 7, the accuracy of the current source adjustment affects the position accuracy.

3. Adjust the current source until the valve is at 0% travel, then press OK.

4. Adjust the current source until the valve is at 100% travel, then press OK.

5. Adjust the current source until the valve is at 50% travel, then press OK.
6. Adjust the current source until the valve is at 0% travel, then press OK.
7. Adjust the current source until the valve is at 100% travel, then press OK.
8. Adjust the current source until the valve is near 5% travel, then press OK.
9. Adjust the current source until the valve is near 95% travel, then press OK.
10. Place the instrument In Service and verify that the travel properly tracks the current source.

Digital Calibration Adjust
Select Calibrate, Travel Calibration, Manual Calibration and Digital Adjust. Connect a variable current source to the instrument LOOP + and LOOP – terminals. The current source should be set between 4 and 20 mA. Follow the prompts on the Field Communicator display to calibrate the instrument’s travel in percent.

Note
0% Travel = Valve Closed
100% Travel = Valve Open

1. Adjust the input current until the valve is near mid-travel. Press OK.
2. From the adjustment menu, select the direction and size of change required to adjust the output until the valve is near mid-travel. Selecting large, medium, and small adjustments causes changes of approximately 10.0°, 1.0°, and 0.1°, respectively, to the feedback arm rotation.
 If another adjustment is required, repeat step 2. Otherwise, select Done and go to step 3.
3. If the feedback connection is Rotary - All, SStem - Roller, go to step 8. If the feedback connection is SStem - Standard, adjust the feedback arm to the crossover point by using the adjustment menu.
4. From the adjustment menu, select the direction and size of change required to set the feedback arm so it is 90° to the actuator stem, as shown in figure 5-1. Selecting large, medium, and small adjustments to the crossover causes changes of approximately 10.0°, 1.0°, and 0.1°, respectively, to the feedback arm rotation.
 If another adjustment is required, repeat step 4. Otherwise, select Done and go to step 5.
5. From the adjustment menu, select the direction and size of change required to set the travel at 0%. Selecting large, medium, and small adjustments causes changes of approximately 10.0°, 1.0°, and 0.1°, respectively, to the feedback arm rotation.
 If another adjustment is required, repeat step 5. Otherwise, select Done and go to step 6.
6. From the adjustment menu, select the direction and size of change required to set the travel to 100%. Selecting large, medium, and small adjustments causes changes of approximately 10.0°, 1.0°, and 0.1°, respectively, to the feedback arm rotation.
 If another adjustment is required, repeat step 6. Otherwise, select Done and go to step 7.
7. From the adjustment menu, select the direction and size of change required to set the travel to 50%. Selecting large, medium, and small adjustments causes changes of approximately 10.0°, 1.0°, and 0.1°, respectively, to the feedback arm rotation for a sliding-stem valve or to the travel for a rotary valve.
 If another adjustment is required, repeat step 7. Otherwise, select Done and go to step 8.
8. From the adjustment menu, select the direction and size of change required to set the travel to 0%. Selecting large, medium, and small adjustments causes changes of approximately 10.0°, 1.0°, and 0.1°, respectively, to the feedback arm rotation for a sliding-stem valve or to the travel for a rotary valve.
 If another adjustment is required, repeat step 8. Otherwise, select Done and go to step 9.
9. From the adjustment menu, select the direction and size of change required to set the travel to 100%. Selecting large, medium, and small adjustments causes changes of approximately 10.0°, 1.0°, and 0.1°, respectively, to the feedback arm rotation for a sliding-stem valve or to the travel for a rotary valve.
 If another adjustment is required, repeat step 9. Otherwise, select Done and go to step 10.
10. From the adjustment menu, select the direction and size of change required to set the travel to near 5%. Selecting large, medium, and small adjustments causes changes of approximately 10.0°, 1.0°, and 0.1°, respectively, to the feedback arm rotation for a sliding-stem valve or to the travel for a rotary valve.
 If another adjustment is required, repeat step 10. Otherwise, select Done and go to step 11.
11. From the adjustment menu, select the direction and size of change required to set the travel to near 95%. Selecting large, medium, and small adjustments causes changes of approximately 10.0°, 1.0°, and 0.1°, respectively, to the feedback arm rotation for a sliding-stem valve or to the travel for a rotary valve.
 If another adjustment is required, repeat step 11. Otherwise, select Done and go to step 12.
12. Place the instrument In Service and verify that the travel properly tracks the current source.

Touch-Up Travel Calibration

Once the travel is calibrated by performing either the Auto or Manual Calibration procedure, the travel calibration can be “touched-up” by shorting the Auxiliary Terminal Connections for 3 to 5 seconds to activate Touch-Up Calibration. Touch-Up Travel Calibration uses Last Value for the crossover adjustment. You can abort the procedure by shorting the auxiliary terminals for 1 second.

To enable Touch-Up Travel Calibration the **Aux Terminal Mode** must be set to **Auto Calibration**. The instrument **Operational Status** during calibration is **Calibration in Progress**.

Use Touch-Up Calibration to calibrate the digital valve controller travel whenever the I/P converter or relay is replaced. Do not use Touch-Up calibration for initial calibration when mounting the instrument on an actuator, or if the travel sensor assembly or printed wiring board assembly was replaced.

You can use Touch-Up Travel Calibration to calibrate the digital valve controller if you suspect calibration has changed due to drift. However, prior to initiating Touch-Up Travel Calibration, perform a Valve Signature diagnostic test, using ValveLink software. This will capture the as-found data for future root cause analysis.

Sensor Calibration

Pressure Sensors (1-3-2-1)

There are three pressure sensors: output A, output B and supply. Select the appropriate menu depending upon which pressure sensor you are calibrating.

Note

The pressure sensors are calibrated at the factory and should not require calibration.

Output Pressure Sensor Calibration

To calibrate the output pressure sensors, connect an external reference gauge to the output being calibrated. The gauge should be capable of measuring maximum instrument supply pressure. From the Calibrate menu, select **Sensor Calibration** and **Press Sensors**. Depending upon the sensor you wish to calibrate, select either **Output A Sensor** or **Output B Sensor**. Follow the prompts on the Field Communicator display to calibrate the instrument’s output pressure sensor.

1. Adjust the supply pressure regulator to the desired supply pressure. Press OK.

2. Select a) Zero only, or b) Zero and Span (gauge required) sensor calibration.

 a. If Zero only calibration is selected, wait until output x pressure has completely exhausted, then continue. Once calibration is completed, go to step 6. The output x pressure corresponds to A or B, depending on which output you are calibrating.

 b. If Zero and Span calibration is selected, wait until output x pressure has completely exhausted, then continue. You will then be asked to wait until output x pressure has reached full supply, then continue. The output x pressure corresponds to A or B, depending on which output you are calibrating. Proceed with step 3.

3. The instrument sets the output pressure to full supply. The following message appears:

 ![Use the Increase and Decrease selections until the displayed pressure matches the output x pressure.](image)

 The output x pressure corresponds to A or B, depending on which output you are calibrating. Press OK when you have read the message.

4. The value of the output pressure appears on the display.

5. From the adjustment menu, select the direction and size of adjustment to the displayed value. Selecting large, medium, and small adjustments causes changes of approximately 3.0 psi/0.207 bar/20.7 kPa, 0.30 psi/0.0207 bar/2.07 kPa, and 0.03 psi/0.00207 bar/0.207 kPa, respectively. Adjust the displayed value until it matches the output pressure, select Done and go to step 6.

6. Place the instrument In Service and verify that the displayed pressure matches the measured output pressure.
Supply Pressure Sensor Calibration

Note

Supply Pressure Sensor Calibration is not available for instrument level HC.

To calibrate the supply pressure sensor, connect an external reference gauge to the output side of the supply regulator. The gauge should be capable of measuring maximum instrument supply pressure.

From the Calibrate menu, select Sensor Calibration, Pressure Sensors, and Supply Sensor. Follow the prompts on the Field Communicator display to calibrate the instrument's supply pressure sensor.

1. Select a) Zero Only, or b) Zero and Span (gauge required).
 a. If Zero Only calibration is selected, adjust the supply pressure regulator to remove supply pressure from the instrument. Press OK. Once calibration is complete, go to step 5.
 b. If Zero and Span calibration is selected, adjust the supply pressure regulator to remove supply pressure from the instrument. Press OK. Adjust the supply regulator to the maximum instrument supply pressure. Press OK. Proceed with step 2.

2. The following message appears:

 Use the Increase and Decrease selections until the displayed pressure matches the instrument supply pressure.

 Press OK when you have read this message.

3. The value of the pressure appears on the display.

4. From the adjustment menu, select the direction and size of adjustment to the displayed value. Selecting large, medium, and small adjustments causes changes of approximately 3.0 psi/0.207 bar/20.7 kPa, 0.30 psi/0.0207 bar/2.07 kPa, and 0.03 psi/0.00207 bar/0.207 kPa, respectively. Adjust the displayed value until it matches the supply pressure, select Done and go to step 5.

5. Place the instrument In Service and verify that the displayed pressure matches the measured supply pressure.

Travel Sensor (1-3-2-2)

The travel sensor is normally adjusted at the factory and should not require adjustment. However, if the travel sensor has been replaced, adjust the travel sensor by performing the appropriate procedure. See the Maintenance section for travel sensor replacement procedures.

DVC6010, DVC6015, DVC6030 and DVC6035 Digital Valve Controllers

WARNING

Failure to remove air pressure may cause personal injury or property damage from bursting parts.

1. Remove supply air and remove the instrument from the actuator.

2. As shown in figure 5-2, align the feedback arm (key 79) with the housing by inserting the alignment pin (key 46) through the hole marked “A” on the feedback arm. Fully engage the alignment pin into the tapped hole in the housing.
3. Loosen the screw that secures the feedback arm to the travel sensor shaft. Position the feedback arm so that the surface of the feedback arm is flush with the end of the travel sensor shaft.

4. Connect a current source to the instrument LOOP – and LOOP + terminals. Set the current source to any value between 4 and 20 mA. Connect the Field Communicator to the TALK terminals.

5. Before beginning the travel sensor adjustment, set the instrument mode to Out Of Service and the protection to None.

6. From the Calibrate menu select Sensor Calibration, Travel Sensor. Follow the prompts on the Field Communicator display to adjust the travel sensor counts to the value listed in table 5-2.

Table 5-2. Travel Sensor Counts

<table>
<thead>
<tr>
<th>Digital Valve Controller</th>
<th>Travel Sensor Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVC6010 / DVC6015</td>
<td>700 ±200</td>
</tr>
<tr>
<td>DVC6020 / DVC6025</td>
<td>2100 ±200</td>
</tr>
<tr>
<td>DVC6030(1) / DVC6035(2)</td>
<td>Counterclockwise shaft rotation 600 ±200</td>
</tr>
<tr>
<td>DVC6030(3) / DVC6035(2)</td>
<td>Clockwise shaft rotation 3400 ±200</td>
</tr>
</tbody>
</table>

1. Refer to figure 2-9 to determine the desired starting position for the DVC6030 based on counterclockwise potentiometer shaft rotation.
2. Refer to figure 2-14 to determine the desired starting position for the DVC6035 based on potentiometer shaft, counterclockwise or clockwise.
3. Refer to figure 2-10 to determine the desired starting position for the DVC6030 based on clockwise potentiometer shaft rotation.

Note

The alignment pin (key 46) is stored inside the digital valve controller housing.

7. While observing the travel sensor counts, tighten the screw that secures the feedback arm to the travel sensor shaft. Be sure the travel sensor counts remain within the tolerances listed in table 5-2. Paint the screw to discourage tampering with the connection.

8. Disconnect the Field Communicator and current source from the instrument.

9. Remove the alignment pin and store it in the instrument housing.

10. Install the digital valve controller on the actuator.

WARNING

Failure to remove air pressure may cause personal injury or property damage from bursting parts.

1. Remove supply air and remove the instrument from the actuator.

2. See figure 5-4 for parts identification. Disconnect the bias spring (key 82) from the feedback arm assembly (key 84) and the arm assembly (key 91). Remove the mounting bracket (key 74) from the back of the digital controller. Hold the arm assembly (key 91) so that the arm assembly points toward the terminal box and the arm is parallel to the back of the housing, as shown in figure 5-3.

3. Loosen the screw that secures the arm assembly to the travel sensor shaft. Position the arm assembly...
so that the outer surface is flush with the end of the travel sensor shaft.

4. Connect a current source to the instrument LOOP – and LOOP + terminals. Set the current source to any value between 4 and 20 mA. Connect the Field Communicator to the TALK terminals.

5. Before beginning the travel sensor adjustment, set the instrument mode to Out Of Service and the protection to None.

6. From the Calibrate menu, select Sensor Calibration, Travel Sensor. Follow the prompts on the Field Communicator display to adjust the travel sensor counts to the value listed in table 5-2.

Note

In the next step, be sure the arm assembly outer surface remains flush with the end of the travel sensor shaft.

7. While observing the travel sensor counts, tighten the screw that secures the arm assembly to the travel sensor shaft. Be sure the travel sensor counts remain within the tolerances listed in table 5-2. Paint the screw to discourage tampering with the connection.

8. Disconnect the Field Communicator and current source from the instrument.
9. Apply lubricant (key 63) to the pin portion of the arm assembly (key 91).

10. Replace the mounting bracket on the back of the instrument and reconnect the bias spring between the feedback arm assembly and the arm assembly on the travel sensor shaft.

11. Install the digital valve controller on the actuator.

Analog Input (1-3-2-3)

To calibrate the analog input sensor, connect a variable current source to the instrument LOOP+ and LOOP− terminals. The current source should be capable of generating an output of 4 to 20 mA. From the Configure menu select Calibrate, Sensor Calibration, and Analog In. Follow the prompts on the Field Communicator display to calibrate the analog input sensor.

1. Set the current source to the target value shown on the display. The target value is the Input Range Low value. Press OK.

2. The following message appears:

 Use Increase and Decrease selections until the displayed current matches the current source.

 Press OK when you have read this message.

3. The value of the Analog Input appears on the display.

4. From the adjustment menu, select the direction and size of adjustment to the displayed value. Selecting large, medium, and small adjustments causes changes of approximately 0.4 mA, 0.04 mA, and 0.004 mA, respectively. Adjust the displayed value until it matches the current source, select Done and go to step 5.

5. Set the current source to the target value shown on the display. The target value is the Input Range High value. Press OK.

6. The following message appears:

 Use Increase and Decrease selections until the displayed current matches the current source.

 Press OK when you have read this message.

7. The value of the Analog Input appears on the display.

8. From the adjustment menu, select the direction and size of adjustment to the displayed value. Selecting large, medium, and small adjustments causes changes of approximately 0.4 mA, 0.04 mA, and 0.004 mA, respectively. Adjust the displayed value until it matches the current source, select Done and go to step 9.

9. Place the instrument In Service and verify that the analog input displayed matches the current source.

Relay Adjust (1-3-3)

Before beginning travel calibration, check the relay adjustment. To check relay adjustment, select Relay from the Calibrate menu, then follow the prompts on the Field Communicator display. Replace the digital valve controller cover when finished.

Note

Relay B and C are not user-adjustable.

Double-Acting Relay

The double-acting relay is designated by “Relay A” on a label affixed to the relay itself. For double-acting actuators, the valve must be near mid-travel to properly adjust the relay. The Field Communicator will automatically position the valve when Relay is selected.

Rotate the adjustment disc, shown in figure 5-5, until the output pressure displayed on the Field Communicator is between 50 and 70% of supply pressure. This adjustment is very sensitive. Be sure to allow the pressure reading to stabilize before making another adjustment (stabilization may take up to 30 seconds or more for large actuators).
If the low bleed relay option has been ordered stabilization may take approximately two minutes longer than the standard relay.

Relay A may also adjusted for use in single-acting-direct applications. Rotate the adjustment disc as shown in figure 5-5 for single-acting direct operation.

Single-Acting Relays

WARNING

If the unused port is monitoring pressure, ensure that the pressure source conforms to ISA Standard 7.0.01 and does not exceed the pressure supplied to the instrument. Failure to do so could result in personal injury or property damage caused by loss of process control.

Single-Acting Direct Relay

The single-acting direct relay is designated by “ Relay C” on a label affixed to the relay itself. Relay C requires no adjustment.

Single-Acting Reverse Relay

The single-acting reverse relay is designated by “ Relay B” on a label affixed to the relay itself. Relay B is calibrated at the factory and requires no further adjustment.

Restoring Factory Settings (1-3-4)

From the Online menu, select Configure, Calibrate, and Restore Factory Settings. Follow the prompts on the Field Communicator display to restore calibration to the factory settings. You should only restore the calibration if it is not possible to calibrate an individual sensor. Restoring calibration returns the calibration of all of the sensors and the tuning set to their factory settings. Following restoration of the factory calibration, the individual sensors should be recalibrated.
Section 6 Viewing Device Variables and Diagnostics

Service Tools ... 6-2
Alert Conditions ... 6-2
Status ... 6-4
Device Record ... 6-4
Stroke Valve ... 6-4
Partial Stroke Test ... 6-5

Overview .. 6-2
Analog Input ... 6-7
Setpoint .. 6-7
Travel ... 6-7
Drive Signal ... 6-7
Pressure ... 6-7
Variables ... 6-7
Device Information .. 6-8
DD Information .. 6-8
Note
Service Tools are not available for instrument level AC.

Alert Conditions (2-1)

Instrument Alert Conditions, when enabled, detect many operational and performance issues that may be of interest. To view these alerts, from the Online menu select Service Tools, Alert Conditions. The alert conditions for each group of alerts are listed below. If there are no alerts active for a particular group the group will not be displayed on the Field Communicator. See table 6-1 for alert groups.

- Electronics—If an electronics alert is active it will appear under ELECT ALERTS.

 Drive Current
 Drive Current Alert—This alert is indicated when the drive current does not read as expected. If this alert occurs, check the connection between the I/P converter and the printed wiring board assembly. Try removing the I/P converter and re-installing it. If the failure does not clear, replace the I/P converter or the printed wiring board assembly.

 Drive Signal
 Drive Signal Alert—This alert is indicated when the Drive Signal is greater or less than the expected maximum or minimum.

 Processor Impaired
 Offline/Failed Alert—This alert is indicated if a failure, enabled from the Self Test Shutdown menu, caused an instrument shutdown. Press Enter to see which of the specific failures caused the Offline/Failed indication.

 Power Starvation Alert—This alert is activated if the instrument does not have enough power to function properly. Firmware 7 and below.

- Low Power Write Alert—This alert is activated if a write to the instrument is attempted when the loop current is less than approximately 3.5 mA. Firmware 9, 10, and 11.

- Non-Critical NVM Alert—This alert is indicated if the checksum for data, which are not critical for instrument operation, has failed.

- Critical NVM Alert—This alert is indicated when the Non-Volatile Memory integrity test fails. Configuration data is stored in NVM. If this failure is indicated, restart the instrument and see if it clears. If it does not clear, replace the printed wiring board assembly.

- Flash ROM Alert—This alert indicates that the Read Only Memory integrity test failed. If this alert is indicated, restart the instrument and see if it clears. If it does not clear, replace the printed wiring board assembly.

- No Free Time Alert—This alert is indicated if the instrument is unable to complete all of the configured tasks. This will not occur with a properly functioning instrument.

- Reference Voltage Alert—This failure is indicated whenever there is a failure associated with the internal voltage reference. If this alert is indicated replace the printed wiring board assembly.

- Internal Sensor Out of Limits—This alert is indicated if there is a possible problem with either the pressure sensor or the printed wiring board assembly submodule.

- Variable Out of Range—This alert is indicated if there is a possible problem with one or more of the following: the Analog Input Signal, the I/P converter submodule, the pneumatic relay submodule, or the printed wiring board.

- Field device malfunction—The alert is indicated if the pressure, position, or temperature sensors are providing invalid readings.

- Sensor—If a sensor alert is active it will appear under SENSOR ALERTS.

- Travel Sensor Alert—This alert is indicated if the sensed travel is outside the range of −25.0 to 125.0% of calibrated travel. If this alert is indicated, check the instrument mounting and the travel sensor adjustment. Also, check that the electrical connection from the travel sensor is properly plugged into the printed wiring board assembly. After restarting the instrument, if the alert does not clear, troubleshoot the printed wiring board assembly or travel sensor.

- Pressure Sensors
 Pressure Sensor Alert—This alert is indicated if the actuator pressure is outside the range of −24.0 to 125.0% of the calibrated pressure for more than 60
seconds. If this alert is indicated, check the instrument supply pressure. If the failure persists, ensure the printed wiring board assembly is properly mounted onto the Module Base Assembly, and the pressure sensor O-rings are properly installed. If the alert does not clear after restarting the instrument, replace the printed wiring board assembly.

Note

The pressure sensor alert is used for output A, output B, and the supply pressure sensor. Check the pressure values to see which sensor is causing the alert.

Temperature Sensor

Temperature Sensor Alert—This alert is indicated when the instrument temperature sensor fails, or the sensor reading is outside of the range of −40 to 85°C (−40 to 185°F). The temperature reading is used internally for temperature compensation of inputs. If this alert is indicated, restart the instrument and see if it clears. If it does not clear, replace the printed wiring board assembly.

- Environment—If an environment alert is active it will appear under ENVIRO ALERTS.

Supply Pressure

Supply Pressure Lo Alert—This alert is indicated when supply pressure is lower than the configured limit.

Auxiliary Terminal Alert

Aux Terminal Alert—This alert is set when the auxiliary input terminals are either open or closed, depending upon the selection for the Auxiliary Input Alert State.

Loop Current Validation Alert—This alert is activated if the loop current is out of valid range. If the control system is known to output currents outside of this range, the loop current shutdown should not be enabled. If this alert is indicated, clear the alert by restarting the instrument with the loop current verified to be in the valid range. If the alert does not clear, replace the printed wiring board. Only available in firmware 9, 10, and 11.

- Travel—If a travel alert is active it will appear under TRAVEL ALERTS.

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Alerts Include in Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Alerts</td>
<td>Travel Alert Lo</td>
</tr>
<tr>
<td></td>
<td>Travel Alert Hi</td>
</tr>
<tr>
<td></td>
<td>Travel Alert Lo Lo</td>
</tr>
<tr>
<td></td>
<td>Travel Alert Hi Hi</td>
</tr>
<tr>
<td></td>
<td>Travel deviation</td>
</tr>
<tr>
<td></td>
<td>Drive signal</td>
</tr>
<tr>
<td>Failure Alerts</td>
<td>No free time</td>
</tr>
<tr>
<td></td>
<td>Flash ROM fail</td>
</tr>
<tr>
<td></td>
<td>Drive current fail</td>
</tr>
<tr>
<td></td>
<td>Ref Voltage fail</td>
</tr>
<tr>
<td></td>
<td>NVM fail</td>
</tr>
<tr>
<td></td>
<td>Temperature sensor fail</td>
</tr>
<tr>
<td></td>
<td>Pressure sensor fail</td>
</tr>
<tr>
<td></td>
<td>Travel sensor fail</td>
</tr>
<tr>
<td>Miscellaneous Alerts</td>
<td>Auxiliary input</td>
</tr>
</tbody>
</table>

Travel Deviation

Travel Deviation Alert—The difference between Setpoint and Travel is greater than the configured limits.

Travel Limit

Travel Alert Hi Hi—This alert is indicated if the Travel is greater than the configured limit.

Travel Alert Lo Lo—This alert is indicated if the Travel is lower than the configured limit.

Travel Limit Hi/Lo

Travel Alert Hi—This alert is indicated if the Travel is greater than the configured limit.

Travel Alert Lo—This alert is indicated if the Travel is lower than the configured limit.

Travel Limit / Cutoff

Travel Limit/Cutoff Hi—This alert is indicated if the Travel is limited high or the high cutoff is in effect.

Travel Limit/Cutoff Lo—This alert is indicated if the Travel is limited low or the low cutoff is in effect.

- Travel History—If a travel history alert is active it will appear under TVL HIST ALERTS.

Cycle Count

Cycle Count Alert—This alert is indicated if the Cycle Counter exceeds the Cycle Count Alert Point.

Travel Accumulator

Travel Accumulator Alert—This alert is indicated if the Travel Accumulator exceeds the Travel Accumulator Alert Point.

- SIS (ODV tier only)—If an SIS alert is active it will appear under SIS ALERTS.

Partial Stroke Test (PST)

Valve Stuck or Pressure/Travel Path Obstructed—This alert is indicated if the valve is stuck or the pressure/travel path is obstructed.

End Point Pressure Deviation

Pressure Deviation Alert—The alert is indicated if
the difference between the target pressure and the actual pressure exceeds the Pressure Deviation Alert Point for a period of time greater than the Pressure Deviation Time.

Locked in Safety Alert—This alert is indicated if the ODV unit is locked in the safety position.

- Alert Record
 Alert Record has Entries—This alert indicates that an alert has been saved to the alert record.

 Alert Record Full—This alert indicates that the alert record is full.

Viewing Instrument Status (2-2)

To view the instrument status, from the Service Tools menu select Status. This menu item indicates the status of the Operational items listed below. The status of more than one operational item may be indicated.

Instrument Time
 Inst Time Invalid

Calibration and Diagnostics
 Cal in Progress
 Autocal in Progress
 Diag in Progress
 Diag Data Avail

Operational
 Press Ctrl Active
 Multi-Drop

Integrator
 Integrator Sat Hi
 Integrator Sat Lo

Device Record (2-3)

Device Record is not available for instrument level AC.

From the Online menu, select Service Tools, Device Record. Follow the prompts on the Field Communicator display to view the following parameters:

- Maximum Recorded Temperature—shows the maximum temperature the instrument has experienced since installation.

- Minimum Recorded Temperature—shows the minimum temperature the instrument has experienced since installation.

- View Number of Days Powered Up—indicates in hours or days the total elapsed time the instrument has been powered up.

- Number of Power Ups—indicates how many times the instrument has cycled power.

Stroking the Digital Valve Controller Output (2-4)

Stroke Valve is not available with instrument level AC.

From the Online menu, select Service Tools, Stroke Valve. Follow the prompts on the Field Communicator display to select from the following:

- Done—Select this if you are done. All ramping is stopped when DONE is selected.

- Ramp Open—Ramps the travel toward open at the rate of 1.0% per second of the ranged travel.

- Ramp Closed—Ramps the travel toward closed at the rate of 1.0% per second of the ranged travel.

- Ramp to Target—Ramps the travel to the specified target at the rate of 1.0% per second of the ranged travel.
Partial Stroke Test (2-5)

Note
Partial Stroke Test is only available for instrument level ODV.

WARNING
During the partial stroke test the valve will move. To avoid personal injury and property damage caused by the release of pressure or process fluid, provide some temporary means of control for the process.

The Partial Stroke Test allows the DVC6000 digital valve controllers with instrument level ODV to perform a Valve Signature type of test while the instrument is in service and operational. In some applications, it is important to be able to exercise and test the valve to verify that it will operate when commanded. This feature allows the user to partially stroke the valve while continually monitoring the input signal. If a demand arises, the test is aborted and the valve moves to its commanded position. The partial stroke valve travel is configurable between 1 and 30% maximum travel, in 0.1% increments. Data from the last partial stroke test is stored in the instrument memory for retrieval by ValveLink software.

The Partial Stroke Test allows you to perform a partial, 10%, stroke test (standard) or a custom stroke test. With the custom stroke test, the stroke may be extended up to 30%. Be sure to check plant guidelines before performing a custom stroke test. The purpose of this test is to ensure that the valve assembly moves upon demand.

A partial stroke test can be initiated when the valve is operating at either 4 or 20 mA (point-to-point mode). In applications where a spurious trip is to be minimized, 4 mA is the normal operating position.

When enabled, a partial stroke test may be initiated by the device (as a scheduled, auto partial stroke test), a remote push button located in the field or at the valve, the 475 Field Communicator, or ValveLink software.

Device (Digital Valve Controller)
The Auto Partial Stroke Test allows the partial stroke test to be scheduled by the DVC6000. The test is scheduled in number of hours between tests. Any power cycle will reset the test clock timer.

Auxiliary Terminal
The auxiliary terminal can be used for different applications. The default configuration is for a partial stroke test initiated by shorting the contacts wired to the auxiliary +/- terminals of the DVC6000. Refer to Auxiliary Terminal Wiring Length Guidelines below.

Local Push Button
A partial stroke test command may be sent to the digital valve controller using a set of contacts wired to the auxiliary +/- terminals. To perform a test, the contacts must be closed for 3 to 5 seconds and then opened. To abort the test, close the contacts for 1 second. The last set of diagnostic data is stored in the instrument memory for later retrieval via ValveLink software.

Local DI
When configured by the user interface, the Auxiliary Terminal can be used as a discrete input from a pressure switch, temperature switch etc., to provide an alert.

Auxiliary Terminal Wiring Length Guidelines
The Auxiliary Input Terminals of a DVC6000 with instrument level ODV can be used with a locally-mounted switch for initiating a partial stroke test. Some applications require that the partial stroke test be initiated from a remote location.

The length for wiring connected to the Auxiliary Input Terminals is limited by capacitance. For proper operation of the Auxiliary Input Terminals capacitance should not exceed 18000 pF. As with all control signal wiring, good wiring practices should be observed to minimize adverse effect of electrical noise on the Aux Switch function.

Example Calculation: Capacitance per foot or per meter is required to calculate the length of wire that may be connected to the Aux switch input. The wire should not exceed the capacitance limit of 18000 pF. Typically the wire manufacturer supplies a data sheet which provides all of the electrical properties of the wire. The pertinent parameter is the highest possible capacitance. If shielded wire is used, the appropriate number is the "Conductor to Other Conductor & Shield" value.
Example — 18AWG Unshielded Audio, Control and Instrumentation Cable

Manufacturer’s specifications include:

Nom. Capacitance Conductor to Conductor @ 1 KHz: 26 pF/ft
Nom. Conductor DC Resistance @ 20 Deg. C: 5.96 Ohms/1000 ft
Max. Operating Voltage – UL 200 V RMS (PLTC, CMG), 150 V RMS (ITC)
Allowable Length with this cable = 18000pF /(26pF/ft) = 692 ft

Example — 18AWG Shielded Audio, Control and Instrumentation Cable

Manufacturer’s specifications include:

Nom. Characteristic Impedance: 29 Ohms
Nom. Inductance:.15 μH/ft
Nom. Capacitance Conductor to Conductor @ 1 KHz: 51 pF/ft
Nom. Cap. Cond. to other Cond. & Shield @ 1 KHz 97 pF/ft
Allowable Length with this cable = 18000pF /(97pF/ft) = 185 ft

The AUX switch input passes less than 1 mA through the switch contacts, and uses less than 5V, therefore, neither the resistance nor the voltage rating of the cable are critical. Ensure that switch contact corrosion is prevented. It is generally advisable that the switch have gold-plated or sealed contacts.

Field Communicator

1. Connect the Field Communicator to the LOOP terminals on the digital valve controller.

2. Turn on the Field Communicator.

3. From the Online menu, select Service Tools, Partial Stroke Test.

4. Select either Standard (10%) or Custom. With the Custom Stroke Test, the stroke may be entered up to 30% with configurable stroking speed and pause time.

5. The currently configured Stroke, Stroking Speed, and Pause Time is displayed. Choose “Yes” to run the test using these values. Choose “No” to modify the values. The default value for Stroke Speed is 0.25%/second.

6. The valve begins to move and the actual travel reported by the digital valve controller is displayed on the Field Communicator.

7. Once the valve has reached the endpoint, check that the valve has reached the desired set point. The valve should return to its original position.

For information on configuring the Partial Stroke Test, see Partial Stroke Variables in the Detailed Setup section.
Overview (3)
The following menus are available to define and/or view information about the instrument. From the Online menu select Overview.

Note
These variables are not available for instrument level AC. Supply Pressure alert is not available for instrument level HC.

Analog In—the value of the instrument analog input in mA (milliamperes) or % (percent) of ranged input.

Setpoint—the requested valve position in % of ranged travel.

Travel—the value of the DVC6000 digital valve controller travel in % (percent) of ranged travel. Travel always represents how far the valve is open.

Drive Signal—the value of the instrument drive signal in % (percent) of maximum drive.

Pressure
Shows the value of the instrument supply and output pressures in psi, bar, kPa, or kg/cm². Also shows the output pressure differential. To display pressures may require selecting the variable; a detail display of that variable with its values will appear.

• Pressure A—the value of Output Pressure A in psi, bar, kPa, or kg/cm².

• Pressure B—the value of Output Pressure A in psi, bar, kPa, or kg/cm².

• A Minus B—the value of the output pressure differential in psi, bar, kPa, or kg/cm².

• Pressure—the instrument supply pressure in psi, bar, kPa, or kg/cm². Not available in instrument level HC.

Variables
The Variables menu is available to view additional variables, including; Auxiliary Input, Temperature, Maximum Temperature, Minimum Temperature, Cycle Counter, Travel Accumulator, Raw Travel Input, Run Time, and Number of Power Ups.

Note
These variables are not available for instrument level AC.

If a value for a variable does not appear on the display, select the variable and a detailed display of that variable with its value will appear. A variable’s value does not appear on the menu if the value becomes too large to fit in the allocated space on the display, or if the variable requires special processing, such as Aux Input.

• Auxiliary Input—A discrete input that can be used with an independent limit or pressure switch. Its value is either open or closed.

• Temperature—The internal temperature of the instrument is displayed in either degrees Fahrenheit or Celsius.

• Maximum Recorded Temperature—Shows the maximum temperature the instrument has experienced since installation.

• Minimum Recorded Temperature—Shows the minimum temperature the instrument has experienced since installation.

• Cycle Counter—Displays the number of times the valve travel has cycled. Only changes in direction of the travel after the travel has exceeded the deadband are counted as a cycle. Once a new cycle has occurred, a new deadband around the last travel is set. The value of the Cycle Counter can be reset from the Cycle Count Alert menu. See page 4-15 of the Detailed Setup section for additional information.

• Travel Accumulator—contains the total change in travel, in percent of ranged travel. The accumulator only increments when travel exceeds the deadband. Then the greatest amount of change in one direction from the original reference point (after the deadband has been exceeded) will be added to the Travel Accumulator. The value of the Travel Accumulator can be reset from the Travel Accumulator menu. See page 4-15 of the Detailed Setup section for additional information.
Note

Do not use the following raw travel input indication for calibrating the travel sensor. The following should only be used for a relative indication to be sure the travel sensor is working and that it is moving in the correct direction. Perform the Travel Sensor Adjust procedure in the Calibration section to calibrate the travel sensor.

• Raw Travel Input—Indicates the travel sensor position in analog-to-digital converter counts. When the travel sensor is operating correctly, this number changes as the valve strokes.

• View Number of Days Powered Up—Indicates in hours or days the total elapsed time the instrument has been powered up.

• Number of Power Ups—Indicates how many times the instrument has cycled power.

Device Information

The Device Information menu is available to view information about the instrument. Follow the prompts on the Field Communicator display to view information in the following fields: HART Tag, Device ID, Manufacturer, Model, Device Revision, Firmware Revision, Hardware Revision, Instrument Level, and HART Universal Revision.

• Hart Tag—A HART tag is a unique name (up to eight characters) that identifies the physical instrument.

• Device ID—Each instrument has a unique Device Identifier. The device ID provides additional security to prevent this instrument from accepting commands meant for other instruments.

Table 6-2. Functions Available for Instrument Level

<table>
<thead>
<tr>
<th>Instrument Level</th>
<th>Functions Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Communicates with the Field Communicator. Provides basic setup and calibration.</td>
</tr>
<tr>
<td>HC</td>
<td>Communicates with the Field Communicator and ValveLink software. In addition to above, provides: travel cutoffs and limits, minimum opening and closing times, input characterization (linear, equal percentage, quick opening, and custom), trending with ValveLink Solo, and the following alerts: travel deviation; travel alert high, low, high high, and low low; drive signal; auxiliary terminal; cycle counter; and travel accumulation.</td>
</tr>
<tr>
<td>AD</td>
<td>Includes all functions listed above plus (with ValveLink software) all offline diagnostic tests (dynamic error band, drive signal, step response, and valve signature) plus online trending</td>
</tr>
<tr>
<td>PD</td>
<td>Includes all functions listed above plus all Performance Diagnostics online/in-service valve testing (valve friction, electronics, and mechanical condition)</td>
</tr>
<tr>
<td>ODV</td>
<td>Includes all functions listed above plus partial stroke test and lead/lag input filter.</td>
</tr>
</tbody>
</table>

• Manufacturer—Identifies the manufacturer of the instrument.

• Model—Identifies the instrument model.

• Device Revision—The revision number of the software for communication between the Field Communicator and the instrument.

• Firmware Revision—The revision number of the firmware in the instrument.

• Hardware Revision—The revision number of the electrical circuitry within the instrument printed wiring board.

• Instrument Level—Indicates the instrument level
 AC—Auto Calibrate
 HC—HART Communicating
 AD—Advanced Diagnostics
 PD—Performance Diagnostics
 ODV—Optimized Digital Valve

Table 6-2 lists the functions available for each instrument level.

• HART Universal Revision—The revision number of the HART Universal Commands which are used as the communications protocol for the instrument.

DD Information

Contains the device description in the Field Communicator.
Section 7 Maintenance and Troubleshooting

Module Base Maintenance
- Removing the Module Base .. 7-3
- Replacing the Module Base .. 7-4

Submodule Maintenance
- I/P Converter
 - Removing the I/P Converter .. 7-6
 - Replacing the I/P Converter .. 7-6
- Printed Wiring Board (PWB) Assembly
 - Removing the Printed Wiring Board Assembly 7-6
 - Replacing the Printed Wiring Board Assembly 7-7
 - Setting the Printed Wiring Board Switch 7-7
- Pneumatic Relay
 - Removing the Pneumatic Relay ... 7-7
 - Replacing the Pneumatic Relay ... 7-7
- Gauges, Pipe Plugs or Tire Valves ... 7-7

Terminal Box
- Removing the Terminal Box .. 7-8
- Replacing the Terminal Box .. 7-8

Travel Sensor
- Disassembly
 - DVC6010 Digital Valve Controller and DVC6015 Remote Feedback Unit (Sliding-Stem) .. 7-9
 - DVC6020 Digital Valve Controller and DVC6025 Remote Feedback Unit (Rotary) .. 7-9
 - DVC6030 Digital Valve Controller and DVC6035 Remote Feedback Unit (Rotary) .. 7-10
- Assembly
 - DVC6010 Digital Valve Controller and DVC6015 Remote Feedback Unit (Sliding-Stem) .. 7-10
 - DVC6020 Digital Valve Controller and DVC6025 Remote Feedback Unit (Rotary) .. 7-12
 - DVC6030 Digital Valve Controller and DVC6035 Remote Feedback Unit (Rotary) .. 7-13

Troubleshooting ... 7-14

Checking Voltage Available .. 7-14

Checking Loop Current ... 7-15
The DVC6000 digital valve controller enclosure is rated NEMA 4X and IP66, therefore periodic cleaning of internal components is not required. If the DVC6000 is installed in an area where the exterior surfaces tend to get heavily coated or layered with industrial or atmospheric contaminants, however, it is recommended that the vent (key 52) be periodically inspected to ensure it is fully open. If the vent appears to be clogged, the vent can be removed, cleaned and replaced. Lightly brush the exterior of the vent to remove contaminant and run a mild water/detergent solution through the vent to ensure it is fully open.

WARNING

Personal injury or property damage can occur from cover failure due to overpressure. Ensure that the housing vent opening is open and free of debris to prevent pressure buildup under the cover.

WARNING

To avoid static discharge from the plastic cover when flammable gases or dust are present, do not rub or clean the cover with solvents. To do so could result in a spark that may cause the flammable gases or dust to explode, resulting in personal injury or property damage. Clean with a mild detergent and water only.

WARNING

Avoid personal injury or property damage from sudden release of process pressure or bursting of parts. Before performing any maintenance procedures on the DVC6000 digital valve controller:

- Always wear protective clothing, gloves, and eyewear.
- Do not remove the actuator from the valve while the valve is still pressurized.
- Disconnect any operating lines providing air pressure, electric power, or a control signal to the actuator. Be sure the actuator cannot suddenly open or close the valve.

- Use bypass valves or completely shut off the process to isolate the valve from process pressure. Relieve process pressure from both sides of the valve.
- Use lock-out procedures to be sure that the above measures stay in effect while you work on the equipment.
- Check with your process or safety engineer for any additional measures that must be taken to protect against process media.
- Vent the pneumatic actuator loading pressure and relieve any actuator spring precompression so the actuator is not applying force to the valve stem; this will allow for the safe removal of the stem connector.

WARNING

When using natural gas as the supply medium, or for explosion proof applications, the following warnings also apply:

- Remove electrical power before removing the housing cap. Personal injury or property damage from fire or explosion may result if power is not disconnected before removing the cap.
- Remove electrical power before disconnecting any of the pneumatic connections.
- When disconnecting any of the pneumatic connections or any pressure retaining part, natural gas will seep from the unit and any connected equipment into the surrounding atmosphere. Personal injury or property damage may result from fire or explosion if natural gas is used as the supply medium and appropriate preventive measures are not taken. Preventive measures may include, but are not limited to, one or more of the following: Remote venting of the unit, re-evaluating the hazardous area classification, ensuring adequate ventilation, and the removal of any ignition sources. For information on remote venting of this controller, refer to page 2-22.
Maintenance and Troubleshooting

- Ensure that all caps and covers are correctly installed before putting this unit back into service. Failure to do so could result in personal injury or property damage from fire or explosion.

CAUTION

When replacing components, use only components specified by the factory. Always use proper component replacement techniques, as presented in this manual. Improper techniques or component selection may invalidate the approvals and the product specifications, as indicated in table 1-2. It may also impair operations and the intended function of the device.

Note

If the feedback arm (key 79) or feedback arm assembly (key 84) is removed from the digital valve controller, the travel sensor (key 77) must be recalibrated.

Because of the diagnostic capability of the DVC6000, predictive maintenance is available through the use of ValveLink software. Using the digital valve controller, valve and instrument maintenance can be enhanced, thus avoiding unnecessary maintenance. For information on using the ValveLink software, refer to the ValveLink software online help.

Tools Required

Table 7-1 lists the tools required for maintaining the DVC6000 digital valve controller.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Size</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phillips Screwdriver</td>
<td></td>
<td>Relay, printed wiring board assembly, and cover screws</td>
</tr>
<tr>
<td>Hex key</td>
<td>5 mm</td>
<td>Terminal box screw</td>
</tr>
<tr>
<td>Hex key</td>
<td>1.5 mm</td>
<td>Terminal box cover screw</td>
</tr>
<tr>
<td>Hex key</td>
<td>2.5 mm</td>
<td>I/P converter screws</td>
</tr>
<tr>
<td>Hex key</td>
<td>5 mm</td>
<td>Travel sensor screws</td>
</tr>
<tr>
<td>Hex key</td>
<td>6 mm</td>
<td>Module base screws</td>
</tr>
<tr>
<td>Open-end wrench</td>
<td>1/2-inch</td>
<td>Connector Arm screw (DVC6010)</td>
</tr>
<tr>
<td>Open-end wrench</td>
<td>9/64-inch</td>
<td>Feedback arm screw</td>
</tr>
<tr>
<td>Hex key</td>
<td>7/16-inch</td>
<td>DVC6010 mounting bolts</td>
</tr>
<tr>
<td>Hex key</td>
<td>3/16-inch</td>
<td>DVC6020 mounting bolts</td>
</tr>
</tbody>
</table>

Removing the Module Base

To remove the module base for DVC6010, DVC6020 and DVC6030 digital valve controllers, perform the following steps. Refer to figures 8-2, 8-3 and 8-4, respectively, for key number locations.

WARNING

To avoid personal injury or equipment damage from bursting of parts, turn off the supply pressure to the digital valve controller and bleed off any excess supply pressure before attempting to remove the module base assembly from the housing.

1. For sliding-stem applications only, a protective shield for the feedback linkage is attached to the side of the module base assembly (see figures 2-1 and 2-2). Remove this shield and keep for reuse on the replacement module. The replacement module will not have this protective shield.

2. Unscrew the four captive screws in the cover (key 43) and remove the cover from the module base (key 2).

3. Using a 6 mm hex socket wrench, loosen the three-socket head screws (key 38). These screws are captive in the module base by retaining rings (key 154).

Module Base Maintenance

The digital valve controller contains a module base consisting of the I/P converter, printed wiring board assembly, and pneumatic relay. The module base may be easily replaced in the field without disconnecting field wiring or tubing.
Note

The module base is linked to the housing by two cable assemblies. Disconnect these cable assemblies after you pull the module base out of the housing.

4. Pull the module base straight out of the housing (key 1). Once clear of the housing, swing the module base to the side of the housing to gain access to the cable assemblies.

5. The digital valve controller has two cable assemblies, shown in figure 7-1, which connect the module base, via the printed wiring board assembly, to the travel sensor and the terminal box. Disconnect these cable assemblies from the printed wiring board assembly on the back of the module base.

CAUTION

To avoid affecting performance of the instrument, take care not to damage the module base seal or guide surface. Do not bump or damage the bare connector pins on the PWB assembly. Damaging either the module base or guide surface may result in material damage, which could compromise the instrument's ability to maintain a pressure seal.

Replacing the Module Base

To replace the module base, for DVC6010, DVC6020 and DVC6030 digital valve controllers, perform the following steps. Refer to figures 8-2, 8-3 and 8-4, respectively, for key number locations.

1. Ensure the module base seal (key 237) is properly installed in the housing (key 1). Ensure the O-ring (key 12) is in place on the module base assembly.

2. Connect the terminal box connector to the PWB assembly (key 50). Orientation of the connector is required.

3. Connect the travel sensor connector to the PWB assembly (key 50). Orientation of the connector is required.

4. Insert the module base (key 2) into the housing (key 1).
5. Install three socket head screws (key 38) in the module base into the housing. If not already installed, press three retaining rings (key 154) into the module base. Evenly tighten the screws in a crisscross pattern to a final torque of 16 N•m (138 lbf•in).

WARNING

Personal injury, property damage, or disruption of process control can result if the cable assemblies/wiring are damaged when attaching the cover to the module base assembly.

Ensure that the cable assemblies/wiring are position in the cavity of the module base so they do not get compressed or damaged when attaching the cover to the module base assembly in step 6.

6. Attach the cover (key 43) to the module base assembly.

7. For sliding-stem applications only, install the protective shield onto the side of the replacement module base assembly (see figures 2-1 and 2-2).

Submodule Maintenance

The digital valve controller’s module base contains the following submodules: I/P converter, PWB assembly, and pneumatic relay. If problems occur, these submodules may be removed from the module base and replaced with new submodules. After replacing a submodule, the module base may be put back into service.

CAUTION

Exercise care when performing maintenance on the module base. Reinstall the cover to protect the I/P converter and gauges when servicing other submodules.

In order to maintain accuracy specifications, do not strike or drop the I/P converter during submodule maintenance.

I/P Converter

Refer to figures 8-2 through 8-9 for key number locations. The I/P converter (key 41) is located on the front of the module base.

Note

After I/P converter submodule replacement, calibrate the digital valve controller to maintain accuracy specifications.

Replacing the I/P Filter

A screen in the supply port beneath the I/P converter serves as a secondary filter for the supply medium. To replace this filter, perform the following procedure:

1. Remove the I/P converter (key 41) and shroud (key 169) as described in the Removing the I/P Converter procedure.

2. Remove the screen (key 231) from the supply port.

3. Install a new screen in the supply port as shown in figure 7-2.

4. Inspect the O-ring (key 39) in the I/P output port. If necessary, replace it.

5. Reinstall the I/P converter (key 41) and shroud (key 169) as described in the Replacing the I/P Converter procedure.
Removing the I/P Converter
1. Remove the front cover (key 43), if not already removed.
2. Refer to figure 7-3. Using a 2.5 mm hex socket wrench, remove the four socket-head screws (key 23) that attach the shroud (key 169) and I/P converter (key 41) to the module base (key 2).
3. Remove the shroud (key 169); then pull the I/P converter (key 41) straight out of the module base (key 2). Be careful not to damage the two electrical leads that come out of the base of the I/P converter.
4. Ensure that the O-ring (key 39) and screen (key 231) stay in the module base and do not come out with the I/P converter (key 41).

Replacing the I/P Converter
1. Refer to figure 7-2. Inspect the condition of the O-ring (key 39) and screen (key 231) in the module base (key 2). Replace them, if necessary. Apply silicone lubricant to the O-rings.
2. Ensure the two boots (key 210) shown in figure 7-3 are properly installed on the electrical leads.
3. Install the I/P converter (key 41) straight into the module base (key 2), taking care that the two electrical leads feed into the guides in the module base. These guides route the leads to the printed wiring board assembly submodule.
4. Install the shroud (key 169) over the I/P converter (key 41).
5. Install the four socket-head screws (key 23) and evenly tighten them in a crisscross pattern to a final torque of 1.6 N·m (14 lbf·in).
6. After replacing the I/P converter, calibrate travel or perform touch-up calibration to maintain accuracy specifications.

PWB (Printed Wiring Board) Assembly
Refer to figures 8-2 through 8-9 for key number locations. The PWB assembly (key 50) is located on the back of the module base assembly (key 2).

Note
If the PWB assembly submodule is replaced, calibrate and configure the digital valve controller to maintain accuracy specifications.

Removing the Printed Wiring Board Assembly
1. Separate the module base from the housing by performing the Removing the Module Base procedure.
2. Remove three screws (key 33).
3. Lift the PWB assembly (key 50) straight out of the module base (key 2).
4. Ensure that the O-rings (key 40) remain in the pressure sensor bosses on the module base assembly (key 2) after the PWB assembly (key 50) has been removed.
Table 7-2. DIP Switch Configuration\(^{(1)}\)

<table>
<thead>
<tr>
<th>Operational Mode</th>
<th>Switch Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multidrop Loop</td>
<td>UP</td>
</tr>
<tr>
<td>Point-to-Point Loop</td>
<td>DOWN</td>
</tr>
</tbody>
</table>

1. Refer to figure 7-4 for switch location.

Revising the PWB Assembly and Setting the DIP Switch

1. Apply silicone lubricant to the pressure sensor O-rings (key 40) and install them on the pressure sensor bosses in the module base assembly.

2. Properly orient the PWB assembly (key 50) as you install it into the module base. The two electrical leads from the I/P converter (key 41) must guide into their receptacles in the PWB assembly and the pressure sensor bosses on the module base must fit into their receptacles in the PWB assembly.

3. Push the PWB assembly (key 50) into its cavity in the module base.

4. Install and tighten three screws (key 33) to a torque of 1 Nm (10.1 lb-in).

5. Set the DIP switch on the PWB assembly according to table 7-2.

6. Reassemble the module base to the housing by performing the Replacing the Module Base procedure.

7. Setup and calibrate the digital valve controller.

Pneumatic Relay

Refer to figures 8-2 through 8-9 for key number locations. The pneumatic relay (key 24) is located on the front of the module base.

Note

For the digital valve controller to operate with a 4 to 20 mA control signal, be sure the DIP switch is in the point-to-point loop position, i.e., switch in down position.

Removing the Pneumatic Relay

1. Loosen the four screws that attach the relay (key 24) to the module base. These screws are captive in the relay.

2. Remove the relay.

Replacing the Pneumatic Relay

1. Visually inspect the holes in the module base to ensure they are clean and free of obstructions. If cleaning is necessary, do not enlarge the holes.

2. Apply silicone lubricant to the relay seal and position it in the grooves on the bottom of the relay as shown in figure 7-5. Press small seal retaining tabs into retaining slots to hold relay seal in place.

3. Position the relay (with shroud) on the module base. Tighten the four screws, in a crisscross pattern, to a final torque of 2 Nm (20.7 lb-in).

4. Using the Field Communicator, verify that the value for the parameter Relay matches the relay type installed.

5. After replacing the relay and verifying the relay type, calibrate travel or perform touch-up calibration to maintain accuracy specifications.

Gauges, Pipe Plugs, or Tire Valves

Depending on the options ordered, the DVC6000 will be equipped with either gauges (key 47), pipe plugs (key 66), or tire valves (key 67). Single-acting direct instruments will also have a screen (key 236, figure 8-6). These are located on the top of the module base next to the relay.
Perform the following procedure to replace the gauges, tire valves, or pipe plugs. Refer to figures 8-5 through 8-6 for key number locations.

1. Remove the front cover (key 43).

2. Remove the gauge, pipe plug, or tire valve as follows:
 - For gauges (key 47), the flats are on the gauge case. Use a wrench on the flats of the gauge to remove the gauge from the module base. For double-acting instruments, to remove the supply gauge remove one of the output gauges.
 - For pipe plugs (key 66) and tire valves (key 67), use a wrench to remove these from the module base.

3. Apply sealant (key 64) to the threads of the replacement gauges, pipe plugs, or tire valves.

4. Using a wrench, screw the gauges, pipe plugs, or tire valves into the module base.

Terminal Box

WARNING

Refer to the Maintenance WARNING at the beginning of this section.

Refer to figures 8-2 through 8-9 for key number locations.

The terminal box is located on the housing and contains the terminal strip assembly for field wiring connections.

Note

This procedure also applies to the DVC6005 remote terminal box.

Removing the Terminal Box

WARNING

To avoid personal injury or property damage caused by fire or explosion, remove power to the instrument before removing the terminal box cover in an area which contains a potentially explosive atmosphere or has been classified as hazardous.

1. Loosen the set screw (key 58) in the cap (key 4) so that the cap can be unscrewed from the terminal box.

2. After removing the cap (key 4), note the location of field wiring connections and disconnect the field wiring from the terminal box.

3. Separate the module base from the housing by performing the Removing the Module Base procedure.

4. Remove the screw (key 72). Pull the terminal box assembly straight out of the housing.

5. Remove two wire retainers (key 44), internal and external to the terminal box.

Replacing the Terminal Box

Note

Inspect all O-rings for wear and replace as necessary.

1. Install two wire retainers (key 44), internal and external to the terminal box.

2. Apply silicone lubricant to the O-ring (key 35) and install the O-ring over the stem of the terminal box.

3. Insert the terminal box assembly stem into the housing until it bottoms out. Position the terminal box assembly so that the hole for the screw (key 72) in the terminal box aligns with the threaded hole in the housing. Install the screw (key 72).

4. Connect the terminal box connector to the PWB assembly (key 50). Orientation of the connector is required.

5. Reassemble the module base to the housing by performing the Replacing the Module Base procedure.

6. Reconnect the field wiring as noted in step 2 in the Removing the Terminal Box procedure.

7. Apply silicone lubricant to the O-ring (key 36) and install the O-ring over the 2-5/8 inch threads of the
terminal box. Use of a tool is recommended to prevent cutting the O-ring while installing it over the threads.

8. Apply lubricant (key 63) to the 2-5/8 inch threads on the terminal box to prevent seizing or galling when the cap is installed.

9. Screw the cap (key 4) onto the terminal box.

10. Install a set screw (key 58) into the cap (key 4). Loosen the cap (not more than 1 turn) to align the set screw over one of the recesses in the terminal box. Tighten the set screw (key 58).

11. Apply sealant (key 64) to the conduit entrance plug (key 62) and install it into the unused conduit entry of the terminal box.

Travel Sensor

WARNING

Refer to the Maintenance WARNING at the beginning of this section.

Replacing the travel sensor requires removing the digital valve controller from the actuator.

WARNING

To avoid personal injury or property damage caused by fire or explosion, remove power to the instrument before removing the potentiometer in an area which contains a potentially explosive atmosphere or has been classified as hazardous.

Disassembly

Note

If the feedback arm (key 79) or feedback arm assembly (key 84) is removed from the digital valve controller, the travel sensor (key 77) must be recalibrated.

DVC6010 Digital Valve Controller and DVC6015 Remote Feedback Unit

Refer to figure 8-2 for DVC6010 and 8-7 for DVC6015 key number locations.

1. Remove piping and fittings from the instrument.

2. Disconnect the adjustment arm from the connector arm and the feedback arm (see figures 2-1 and 2-2).

3. Remove the instrument from the actuator.

4. Loosen the screw (key 80) that secures the feedback arm (key 79) to the travel sensor shaft.

5. Remove the feedback arm (key 79) from the travel sensor shaft.

If disassembling a DVC6010 digital valve controller, use step 6a. If disassembling a DVC6015 remote feedback unit, use step 6b.

6. a. Separate the module base from the housing by performing the Removing the Module Base procedure.

 b. Disconnect the three potentiometer assembly wires from the terminals.

7. Remove the screw (key 72) that fastens the travel sensor assembly to the housing.

8. Pull the travel sensor assembly (key 223) straight out of the housing.

DVC6020 Digital Valve Controller and DVC6025 Remote Feedback Unit

Refer to figure 8-3 for DVC6020 and 8-8 for DVC6025 key number locations.

1. Remove piping and fittings from the instrument.

2. Remove the digital valve controller from the actuator.

3. Disconnect the bias spring (key 82) from the feedback arm assembly (key 84) and the arm assembly (key 91). Remove the mounting bracket (key 74) from the back of the digital controller. If the torsion spring (key 93) needs to be replaced, ensure that the shaft on which it is installed is smooth and free of rough spots. Replace the entire feedback arm assembly if necessary.

4. Loosen the screw (key 80) that secures the arm assembly to the travel sensor shaft.

5. Remove the arm assembly (key 91) from the travel sensor assembly (key 77) shaft.

If disassembling a DVC6020 digital valve controller, use step 6a. If disassembling a DVC6025 remote feedback unit use step 6b.

6. a. Separate the module base from the housing by performing the Removing the Module Base procedure.

 b. Disconnect the three potentiometer assembly wires from the terminals.
DVC6000 Digital Valve Controllers

7. Remove the screw (key 72) that fastens the travel sensor assembly to the housing.
8. Pull the travel sensor assembly (key 223) straight out of the housing.

DVC6030 Digital Valve Controller and DVC6035 Remote Feedback Unit
Refer to figure 8-4 for DVC6030 and 8-9 for DVC6035 key number locations.

1. Remove piping and fittings from the instrument.
2. Remove the digital valve controller from the actuator. Loosen the screw (key 80) that secures the feedback arm (key 79) to the travel sensor shaft. Remove the feedback arm from the travel sensor shaft.

If disassembling a DVC6030 digital valve controller use step 3a. If disassembling a DVC6035 remote feedback unit use step 3b.

3. a. Separate the module base from the housing by performing the Removing the Module Base procedure.
 b. Disconnect the three potentiometer assembly wires from the terminals.
4. From within the housing, unscrew the travel sensor assembly (key 223) from the housing.

Assembly

Note
If the feedback arm (key 79) or feedback arm assembly (key 84) is removed from the digital valve controller, the travel sensor (key 77) must be recalibrated.

DVC6010 Digital Valve Controller and DVC6015 Remote Feedback Unit
Refer to figure 8-2 for DVC6010 and 8-7 for DVC6015 key number locations.

1. Insert the travel sensor assembly (key 223) into the housing (key 1). Secure the travel sensor assembly with screw (key 72).

If assembling a DVC6010 digital valve controller, use step 2a. If assembling a DVC6015 remote feedback unit, use step 2b.

2. a. Connect the travel sensor connector to the PWB as described in the Replacing the Module Base procedure.
 b. Connect the three travel sensor wires to the terminals.

Note
For the DVC6015 feedback unit, connect the potentiometer assembly (key 223) wires to the terminals as follows:
red → terminal 1
white → terminal 2
black → terminal 3

3. Loosely assemble the bias spring (key 78), screw (key 80), plain washer (key 163), and nut (key 81) to the feedback arm (key 79), if not already installed.
4. Attach the feedback arm (key 79) to the travel sensor shaft.

Two methods are available for adjusting the travel sensor. You can use a multimeter to measure the potentiometer resistance, or if you have a Field Communicator, you can use the procedure in the Calibration section. To use the multimeter, perform steps 5 through 13. To use the Field Communicator, skip to step 14.

Travel Sensor Adjustment with a Multimeter

5. Align the feedback arm (key 79) to the housing (key 1) by inserting the alignment pin (key 46) through the hole marked “A” on the feedback arm. Fully engage the alignment pin into the tapped hole in the side of the housing. Position the feedback arm so that the surface is flush with the end of the travel sensor shaft.
6. Connect a multimeter set to a resistance range of 50,000 ohms. Measure the resistance between pins 1 and 3 of the travel sensor connector. Refer to figure 7-6 for pin location. The resistance should be between 40,000 and 50,000 ohms.
7. Multiply the result in step 6 by 0.046 to get a calculated resistance. The calculated resistance should be in the range of 1840 to 2300 ohms.
8. Re-range the multimeter to a resistance of 3000 ohms between pins 2 and 3 of the travel sensor connector. Refer to figure 7-6 for pin location.
9. Adjust the travel sensor shaft to obtain the calculated resistance determined in step 7, ± 100 ohms.
Figure 7-6. Potentiometer Resistance Measurement

Note

In the next step, be sure the feedback arm surface remains flush with the end of the travel sensor shaft.

10. While observing the resistance, tighten the screw (key 80) to secure the feedback arm to the travel sensor shaft. Be sure the resistance reading remains at the calculated resistance determined in step 7, ± 100 ohms. Paint the screw to discourage tampering with the connection.

11. Disconnect the multimeter from the travel sensor connector.

12. For the DVC6010, connect the travel sensor connector to the PWB as described in Replacing the Module Base.

13. Travel sensor replacement is complete. Install the digital valve controller on the actuator.

Travel Sensor Adjustment with the Field Communicator

The next two steps do not apply if you used a multimeter to adjust the travel sensor. Perform these steps only if you elected to adjust the travel sensor using the Field Communicator.

14. For the DVC6010, connect the travel sensor connector to the PWB as described in Replacing the Module Base.
15. For both the DVC6010 and the DVC6015, perform the appropriate Travel Sensor Adjust procedure in the Calibration section.

DVC6020 Digital Valve Controller and DVC6025 Remote Feedback Unit

Refer to figure 8-3 for DVC6020 and 8-8 for DVC6025 key number locations.

1. Insert the travel sensor assembly (key 223) into the housing. Secure the travel sensor assembly with screw (key 72).

If assembling a DVC6020 digital valve controller, use step 2a. If assembling a DVC6025 remote feedback unit, use step 2b.

2. a. Connect the travel sensor connector to the PWB as described in Replacing the Module Base.

 b. Connect the three travel sensor wires to the terminals.

3. Loosely assemble the screw (key 80), plain washer (key 163), and nut (key 81) to the arm assembly (key 91), if not already installed.

4. Attach the arm assembly (key 91) to the travel sensor assembly (key 223) shaft.

Two methods are available for adjusting the travel sensor. You can use a multimeter to measure the potentiometer resistance, or if you have a Field Communicator, you can use the procedure in the Calibration section. To use the multimeter, perform steps 5 through 17. To use the Field Communicator, skip to step 18.

Note

For the DVC6025 feedback unit, connect the potentiometer assembly (key 223) wires to the terminals as follows:
red → terminal 1
white → terminal 2
black → terminal 3

Note

In the next step, be sure the arm assembly outer surface remains flush with the end of the travel sensor shaft.
10. While observing the resistance, tighten the screw (key 80) to secure the feedback arm to the travel sensor shaft. Be sure the resistance reading remains at the calculated resistance determined in step 6, ±100 ohms. Paint the screw to discourage tampering with the connection.

11. Disconnect the multimeter from the travel sensor connector.

12. Apply anti-seize (key 64) to the pin portion of the arm assembly (key 91).

13. Position the mounting bracket over the back of the digital valve controller. Push the feedback arm assembly (key 84) toward the housing and engage the pin of the arm assembly into the slot in the feedback arm.

14. Install the mounting bracket (key 74).

15. Install the bias spring (key 82) as shown in figure 7-7.

16. For the DVC6020 only, connect the travel sensor connector to the PWB as described in Replacing the Module Base.

17. Travel sensor replacement is complete. Install the digital valve controller on the actuator.

Travel Sensor Adjustment with the Field Communicator

The next two steps do not apply if you used a multimeter to adjust the travel sensor. Perform these steps only if you elected to adjust the travel sensor using the Field Communicator.

18. For the DVC6020 only, connect the travel sensor connector to the PWB as described in Replacing the Module Base.

19. For both the DVC6020 and the DVC6025, perform the appropriate Travel Sensor Adjust procedure in the Calibration section.

DVC6030 Digital Valve Controller and DVC6035 Remote Feedback Unit

Refer to figure 8-4 for DVC6030 and 8-9 for DVC6035 key number locations.

1. Apply lubricant (key 63) to the travel sensor assembly threads.

2. Screw the travel sensor assembly (key 223) into the housing until it is tight.

If assembling a DVC6030 digital valve controller, use step 3a. If assembling a DVC6035 remote feedback unit, use step 3b.

3. a. Connect the travel sensor connector to the PWB as described in the Replacing the Module Base procedure.

 b. Connect the three travel sensor wires to the terminals.

Note

For the DVC6035 feedback unit, connect the potentiometer assembly (key 223) wires to the terminals as follows:

- red → terminal 1
- white → terminal 2
- black → terminal 3

4. Loosely assemble the bias spring (key 78), screw (key 80), plain washer (key 163), and nut (key 81) to the feedback arm (key 79), if not already installed.

5. Attach the feedback arm (key 79) to the travel sensor shaft.

Two methods are available for adjusting the travel sensor. You can use a multimeter to measure the potentiometer resistance, or if you have a Field Communicator, you can use the procedure in the Calibration section. To use the multimeter, perform steps 6 through 14. To use the Field Communicator, skip to step 15.

Travel Sensor Adjustment with a Multimeter

6. Align the feedback arm (key 79) to the housing (key 1) by inserting the alignment pin (key 46) through the hole marked “A” on the feedback arm. Fully engage the alignment pin into the tapped hole in the housing. Position the feedback arm so that the outer surface is flush with the end of the travel sensor shaft.

7. Connect a multimeter set to a resistance range of 50,000 ohms. Measure the resistance between pins 1 and 3 of the travel sensor connector. Refer to figure 7-6 for pin location. The resistance should be between 40,000 and 50,000 ohms.

8. Multiply the result in step 7 by 0.042 to get a calculated resistance. The calculated resistance should be in the range of 1680 to 2100 ohms.

9. Re-range the multimeter to a resistance of 3000 ohms between pins 2 and 3 of the travel sensor connector. Refer to figure 7-6 for pin location.

10. Adjust the travel sensor shaft to obtain the calculated resistance determined in step 8, ± 100 ohms.
Note

In the next step, be sure the feedback arm outer surface remains flush with the end of the travel sensor shaft.

11. While observing the resistance, tighten the screw (key 80) to secure the feedback arm to the travel sensor shaft. Be sure the resistance reading remains at the calculated resistance determined in step 8, ± 100 ohms. Paint the screw to discourage tampering with the connection.

12. Disconnect the multimeter from the travel sensor connector.

13. For the DVC6030 only, connect the travel sensor connector to the PWB as described in Replacing the Module Base.

14. Travel sensor replacement is complete. Install the digital valve controller on the actuator as described in the Installation section.

Travel Sensor Adjustment with the Field Communicator

The next two steps do not apply if you used a multimeter to adjust the travel sensor. Perform these steps only if you elected to adjust the travel sensor using the Field Communicator.

15. For the DVC6030 only, connect the travel sensor connector to the PWB as described in Replacing the Module Base.

16. For both the DVC6030 and the DVC6035, perform the appropriate Travel Sensor Adjust procedure in the Calibration section.

Troubleshooting

If communication or output difficulties are experienced with the instrument, refer to the troubleshooting chart in table 7-3. Also see the DVC6000 Troubleshooting Checklist on page 7-18.

Checking Voltage Available

WARNING

Personal injury or property damage caused by fire or explosion may occur if this test is attempted in an area which contains a potentially explosive atmosphere or has been classified as hazardous.

To check the Voltage Available at the instrument, perform the following:
1. Connect the equipment in figure 2-26 to the field wiring in place of the FIELDVUE instrument.
2. Set the control system to provide maximum output current.
3. Set the resistance of the 1 kilohm potentiometer shown in figure 2-26 to zero.
4. Record the current shown on the milliammeter.
5. Adjust the resistance of the 1 kilohm potentiometer until the voltage read on the voltmeter is 11.0 volts.
6. Record the current shown on the milliammeter.
7. If the current recorded in step 6 is the same as that recorded in step 4 (± 0.08 mA), the voltage available is adequate.
8. If the voltage available is inadequate, refer to Wiring Practices in the Installation section.
Checking the Loop Current Without Disturbing the Loop Wiring

WARNING

Personal injury or property damage caused by fire or explosion may occur if this test is attempted in an area which contains a potentially explosive atmosphere or has been classified as hazardous.

To check the loop current without disturbing the loop wiring perform the following procedure.

1. With the FIELDVUE instrument connected to a current source connect a digital multimeter reading Volts DC (0 to 1 VDC or mV scale) to the TEST terminals as shown in figure 7-8.

2. The reading at the test terminals is proportional to the loop current [0.004 V = 0.004 A (4 mA)] mA of loop current). Refer to Specifications, table 1-2, to determine if the current is sufficient.

Figure 7-8. Check the Loop Current using the TEST Terminals
Table 7-3. Instrument Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Analog input reading at instrument does not match actual current provided.</td>
<td>1a. Control mode not Analog.</td>
<td>1a. Check the control mode using the Field Communicator. If in the Digital or Test mode, the instrument receives its set point as a digital signal. Control is not based on input current. Change Control Mode to Analog.</td>
</tr>
<tr>
<td></td>
<td>1b. Low control system compliance voltage.</td>
<td>1b. Check system compliance voltage (see Wiring Practices in the Installation section).</td>
</tr>
<tr>
<td></td>
<td>1c. Instrument shutdown due to self test failure.</td>
<td>1c. Check instrument status using the Field Communicator (see Viewing Instrument Status in the Viewing Device Information section).</td>
</tr>
<tr>
<td></td>
<td>1d. Analog input sensor not calibrated.</td>
<td>1d. Calibrate the analog input sensor (see Analog Input Calibration in the Calibration section).</td>
</tr>
<tr>
<td></td>
<td>1e. Current leakage.</td>
<td>1e. Excessive moisture in the terminal box can cause current leakage. Typically the current will vary randomly if this is the case. Allow the inside of the terminal box to dry, then retest.</td>
</tr>
<tr>
<td>2. Instrument will not communicate.</td>
<td>2a. Insufficient Voltage Available.</td>
<td>2a. Calculate Voltage Available (see Wiring Practices in the Installation section). Voltage Available should be greater than or equal to 11 VDC.</td>
</tr>
<tr>
<td></td>
<td>2b. Controller output impedance too low.</td>
<td>2b. Install a HART filter after reviewing Control System Compliance Voltage requirements (see Wiring Practices in the Installation section).</td>
</tr>
<tr>
<td></td>
<td>2c. Cable capacitance too high.</td>
<td>2c. Review maximum cable capacitance limits (see Wiring Practices in the Installation section).</td>
</tr>
<tr>
<td></td>
<td>2d. HART filter improperly adjusted.</td>
<td>2d. Check filter adjustment (see the appropriate HART filter instruction manual).</td>
</tr>
<tr>
<td></td>
<td>2e. Improper field wiring.</td>
<td>2e. Check polarity of wiring and integrity of connections. Make sure cable shield is grounded only at the control system.</td>
</tr>
<tr>
<td></td>
<td>2f. Controller output providing less than 4 mA to loop.</td>
<td>2f. Check control system minimum output setting, which should not be less than 3.8 mA.</td>
</tr>
<tr>
<td></td>
<td>2g. Disconnected loop wiring cable at PWB.</td>
<td>2g. Verify connectors are plugged in correctly.</td>
</tr>
<tr>
<td></td>
<td>2h. PWB DIP switch not set properly.</td>
<td>2h. Check for incorrect setting or broken DIP switch on the back of the PWB. Reset switch or replace PWB, if switch is broken. See table 7-2 for switch setting information.</td>
</tr>
<tr>
<td></td>
<td>2j. PWB failure.</td>
<td>2j. Use a 4–20 mA current source to apply power to the instrument. Terminal voltage across the LOOP+ and LOOP− terminals should be 9 to 10.5 VDC. If the terminal voltage is not 9 to 10.5 VDC, replace the PWB.</td>
</tr>
<tr>
<td></td>
<td>2k. Polling address incorrect.</td>
<td>2k. Use the Field Communicator to set the polling address (refer to the Detailed Setup section). From the Utility menu, select Configure Communicator and Polling. Select Always Poll. Set the instrument polling address to 0.</td>
</tr>
<tr>
<td></td>
<td>2l. Defective terminal box.</td>
<td>2l. Check continuity from each screw terminal to the corresponding PWB connector pin. If necessary, replace the terminal box assembly.</td>
</tr>
<tr>
<td></td>
<td>2m. Defective Field Communicator or ValveLink modem cable.</td>
<td>2m. If necessary, repair or replace cable.</td>
</tr>
<tr>
<td></td>
<td>2n. ValveLink modem defective or not compatible with PC.</td>
<td>2n. Replace ValveLink modem.</td>
</tr>
<tr>
<td></td>
<td>2p. ValveLink hardlock defective or not programmed.</td>
<td>2p. Replace if defective or return to factory for programming.</td>
</tr>
<tr>
<td>3. Instrument will not calibrate, has sluggish performance or oscillates.</td>
<td>3a. Travel sensor seized, will not turn.</td>
<td>3a. Rotate feedback arm to ensure it moves freely. If not, replace the pot/bushing assy.</td>
</tr>
<tr>
<td></td>
<td>3b. Broken travel sensor wire(s).</td>
<td>3b. Inspect wires for broken solder joint at pot or broken wire. Replace pot/bushing assy.</td>
</tr>
<tr>
<td></td>
<td>3c. Travel sensor misadjusted.</td>
<td>3c. Perform Travel Sensor Adjust procedure in the Calibration section.</td>
</tr>
<tr>
<td></td>
<td>3d. Open travel sensor.</td>
<td>3d. Check for continuity in electrical travel range. If necessary, replace pot/bushing assy.</td>
</tr>
<tr>
<td></td>
<td>3e. Cables not plugged into PWB correctly.</td>
<td>3e. Inspect connections and correct.</td>
</tr>
<tr>
<td></td>
<td>3f. Feedback arm loose on pot.</td>
<td>3f. Perform Travel Sensor Adjust procedure in the Calibration section.</td>
</tr>
<tr>
<td></td>
<td>3g. Feedback arm bent/damaged or bias spring missing/damaged.</td>
<td>3g. Replace feedback arm and bias spring.</td>
</tr>
</tbody>
</table>
Table 7-3. Instrument Troubleshooting (Continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Instrument will not calibrate, has sluggish performance or oscillates.</td>
<td>3h. Configuration errors.</td>
<td>3h. Verify configuration: If necessary, set protection to None. If Out of Service, place In Service. Check: Travel Sensor Motion Tuning set Zero control signal Feedback Connection Control mode (should be Analog) Restart control mode (should be Analog)</td>
</tr>
<tr>
<td>3j. Restricted pneumatic passages in I/P converter.</td>
<td></td>
<td>3j. Check screen in I/P converter supply port of the module base. Replace if necessary. If passages in I/P converter restricted, replace I/P converter.</td>
</tr>
<tr>
<td>3k. O-ring(s) between I/P converter ass’y missing or hard and flattened losing seal.</td>
<td></td>
<td>3k. Replace O-ring(s).</td>
</tr>
<tr>
<td>3l. I/P converter ass’y damaged/corroded/clogged.</td>
<td></td>
<td>3l. Check for bent flapper, open coil (continuity), contamination, staining, or dirty air supply. Coil resistance should be between 1680 - 1860 ohms. Replace I/P assy if damaged, corroded, clogged, or open coil.</td>
</tr>
<tr>
<td>3m. I/P converter ass’y out of spec.</td>
<td></td>
<td>3m. I/P converter ass’y nozzle may have been adjusted. Verify drive signal (55 to 80% for double-acting; 60 to 85% for single-acting) with the valve off the stops. Replace I/P converter ass’y if drive signal is continuously high or low.</td>
</tr>
<tr>
<td>3n. Defective module base seal.</td>
<td></td>
<td>3n. Check module base seal for condition and position. If necessary, replace seal.</td>
</tr>
<tr>
<td>3p. Defective relay.</td>
<td></td>
<td>3p. Depress relay beam at adjustment location in shroud, look for increase in output pressure. Remove relay, inspect relay seal. Replace relay seal or relay if I/P converter ass’y good and air passages not blocked. Check relay adjustment.</td>
</tr>
<tr>
<td>3q. Defective 67CFR regulator, supply pressure gauge jumps around.</td>
<td></td>
<td>3q. Replace 67CFR regulator.</td>
</tr>
<tr>
<td>4. ValveLink diagnostic tests provide erroneous results.</td>
<td>4a. Bent or defective pressure sensor.</td>
<td>4a. Replace PWB.</td>
</tr>
<tr>
<td>4b. Pressure sensor O-ring missing.</td>
<td></td>
<td>4b. Replace O-ring.</td>
</tr>
<tr>
<td>5. Field Communicator does not turn on.</td>
<td>5a. Battery pack not charged.</td>
<td>5a. Charge battery pack. Note: Battery pack can be charged while attached to the Field communicator or separately. The Field Communicator is fully operable while the battery pack is charging. Do not attempt to charge the battery pack in a hazardous area.</td>
</tr>
</tbody>
</table>
DVC6000 Troubleshooting Checklist

1. Instrument serial number as read from nameplate __

2. Is the digital valve controller responding to the control signal? Yes _________ No _________
 If not, describe ___

3. Measure the voltage across the “Loop −” and Loop +” terminal box screws when the commanded current is
 4.0 mA and 20.0 mA: __________V @ 4.0 mA __________V @ 20.0 mA.
 (For a DVC6000 pwb built prior to 2003, these values should be around 9.4 V @ 4.0 mA. For a DVC6000 pwb
 built after 2003, these values should be around 9.6 V @ 4.0 mA and 10.3 V @ 20 mA.

4. Is it possible to communicate via HART to the digital valve controller? Yes _________ No _________

5. What is the Diagnostic Tier of the digital valve controller? AC ____ HC ____ AD ____ PD ____ ODV____

6. What is the firmware version of the digital valve controller? ______________

7. What is the hardware version of the digital valve controller? ______________

8. Is the digital valve controller’s Instrument Mode “In Service”? Yes _________ No _________

9. Is the digital valve controller’s Control Mode set to “Analog”? Yes _________ No _________

10. Is it on Travel or Pressure control?

11. What are the following parameter readings?
 - Input Signal _________ Drive Signal _________ %
 - Supply Pressure _________ Pressure A _________ Pressure B _________
 - Travel Target _________ % Travel _________ %

12. What are the following alert readings?
 - Fail alerts __
 - Valve alerts ___
 - Operational status __
 - Alert event record entries __

13. Export ValveLink data (if available) for the device (Status Monitor, Detailed Setup, etc.).

Mounting

1. Which DVC6000 do you have? DVC6010 ____ DVC6020 ____ DVC6030 ____ Remote Mount? ____

2. What Make, Brand, Style, Size, etc. actuator is the DVC6000 mounted on? ______________________

3. What is the full travel of the valve? __

4. What is the Mounting Kit part number? __

5. If mounting kits are made by LBP/Customer, please provide pictures of installation.

6. Is the Mounting kit installed per the instructions? Yes _________ No _________

7. What is the safe position of the valve? Fail closed _________ Fail open _________

8. For a DVC6010 or DVC6030: During full travel of the actuator, does the DVC6000 feedback arm move below
 the “A” or above the “B” alignment positions? (It should not) Yes _________ No _________
Section 8 Replaceable Parts

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts Ordering</td>
<td>8-2</td>
</tr>
<tr>
<td>Parts Kits</td>
<td>8-2</td>
</tr>
<tr>
<td>Parts List</td>
<td>8-3</td>
</tr>
<tr>
<td>Housing</td>
<td>8-3</td>
</tr>
<tr>
<td>Common Parts</td>
<td>8-3</td>
</tr>
<tr>
<td>Module Base</td>
<td>8-4</td>
</tr>
<tr>
<td>I/P Converter Assembly</td>
<td>8-4</td>
</tr>
<tr>
<td>Relay</td>
<td>8-4</td>
</tr>
<tr>
<td>Terminal Box</td>
<td>8-4</td>
</tr>
<tr>
<td>Feedback Connections Terminal Box</td>
<td>8-4</td>
</tr>
<tr>
<td>PWB Assembly</td>
<td>8-5</td>
</tr>
<tr>
<td>Pressure Gauges, Pipe Plugs, or Tire Valve Assemblies</td>
<td>8-5</td>
</tr>
<tr>
<td>Feedback / Remote Travel Sensor Parts</td>
<td>8-5</td>
</tr>
<tr>
<td>HART Filters</td>
<td>8-6</td>
</tr>
</tbody>
</table>
DVC6000 Digital Valve Controllers

Parts Ordering
Whenever corresponding with your Emerson Process Management sales office about this equipment, always mention the controller serial number. When ordering replacement parts, refer to the 11–character part number of each required part as found in the following parts list. Parts which do not show part numbers are not orderable.

WARNING
Use only genuine Fisher replacement parts. Components that are not supplied by Emerson Process Management should not, under any circumstances, be used in any Fisher instrument. Use of components not supplied by Emerson Process Management may void your warranty, might adversely affect the performance of the instrument, and could cause personal injury and property damage.

Note
All part numbers are for both aluminum and stainless steel constructions, unless otherwise indicated.

Parts Kits
<table>
<thead>
<tr>
<th>Kit</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>Elastomer Spare Parts Kit (kit contains parts to service one digital valve controller)</td>
<td>19B5402X012</td>
</tr>
<tr>
<td></td>
<td>Extreme Temperature option (fluorosilicone elastomers)</td>
<td>19B5402X022</td>
</tr>
<tr>
<td>2*</td>
<td>Small Hardware Spare Parts Kit (kit contains parts to service one digital valve controller)</td>
<td>19B5403X012</td>
</tr>
<tr>
<td>3</td>
<td>Conversion Kit (To convert a DVC6010 to DVC6020 or a DVC6015 to DVC6025) Also see note below</td>
<td>19B5405X012</td>
</tr>
</tbody>
</table>

Note
When converting a DVC6010 to a DVC6020 for pipe–away construction, also order pipe–away bracket kit, item 7.

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Conversion Kit (to convert a DVC6020 to DVC6010 or a DVC6025 to DVC6015)</td>
<td>14B5072X112</td>
</tr>
<tr>
<td>5</td>
<td>Feedback Arm Kit (contains feedback arm assembly, qty. 5, to convert a 2052 size 2 and 3 DVC6020 to a 2051 size 1 DVC6020)</td>
<td>GE44419X012</td>
</tr>
<tr>
<td>6</td>
<td>Alignment Pin Kit [kit contains 15 alignment pins (key 46)]</td>
<td>14B5072X092</td>
</tr>
<tr>
<td>7</td>
<td>Pipe-Away Bracket Kit (DVC6020) [kit contains mounting bracket (key 74) and O–ring (key 75)]</td>
<td>19B5404X012</td>
</tr>
<tr>
<td></td>
<td>Extreme Temperature option (fluorosilicone elastomers)</td>
<td>19B5404X022</td>
</tr>
<tr>
<td>8*</td>
<td>Seal Screen Kit [kit contains 25 seal screens (key 231) and 25 O–rings (key 39)]</td>
<td>14B5072X182</td>
</tr>
<tr>
<td></td>
<td>Standard and Extreme Temperature option (fluorosilicone elastomers)</td>
<td>19B5401X012</td>
</tr>
<tr>
<td>9</td>
<td>Terminal Box Kit, aluminum</td>
<td>19B5401X012</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>19B5401X012</td>
</tr>
<tr>
<td></td>
<td>Standard, Natural Gas approved</td>
<td>19B5401X072</td>
</tr>
<tr>
<td></td>
<td>Extreme Temperature option (fluorosilicone elastomers)</td>
<td>19B5401X022</td>
</tr>
<tr>
<td></td>
<td>Extreme Temperature option (fluorosilicone elastomers) Natural Gas Approved</td>
<td>19B5401X082</td>
</tr>
<tr>
<td></td>
<td>Stainless Steel, Extreme Temperature</td>
<td>19B5401X132</td>
</tr>
<tr>
<td></td>
<td>Stainless Steel, Extreme Temperature option (fluorosilicone elastomers), Natural Gas approved</td>
<td>19B5401X12</td>
</tr>
<tr>
<td>10*</td>
<td>I/P Converter Kit</td>
<td>38B6041X152</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>38B6041X152</td>
</tr>
<tr>
<td></td>
<td>For Extreme Temperature option (fluorosilicone elastomers)</td>
<td>38B6041X132</td>
</tr>
<tr>
<td>11</td>
<td>Adjustment Arm Kit (includes washer, nut and adjustment arm)</td>
<td>14B5072X132</td>
</tr>
<tr>
<td>12*</td>
<td>PTFE Sleeve Kit [For pot bushing assembly (kit includes 10 sleeves and Lubricant)]</td>
<td>14B5072X132</td>
</tr>
<tr>
<td></td>
<td>DVC6010 and DVC6020</td>
<td>GE08726X012</td>
</tr>
<tr>
<td></td>
<td>DVC6030</td>
<td>GE08727X012</td>
</tr>
<tr>
<td>13*</td>
<td>Spare Module Base Assembly Kit [kit contains module base (key 2); drive screws, qty. 2, (key 11); shield/label (key 19); hex socket cap screw, qty. 3, (key 38); self tapping screw, qty. 2 (key 49); pipe plug, qty. 3 (key 61); retaining ring, qty. 3 (key 154); screen (key 236); and flame arrestors, qty. 3 (key 243)]</td>
<td>GE18654X012</td>
</tr>
<tr>
<td></td>
<td>Aluminum</td>
<td>GE18654X012</td>
</tr>
<tr>
<td></td>
<td>Stainless Steel</td>
<td>GE18654X022</td>
</tr>
</tbody>
</table>

*Recommended spare
Parts

Kit Description Part Number

<table>
<thead>
<tr>
<th>Kit Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>14* Spare Housing Assembly Kit, [kit contains housing (key 1); drive screw, qty. 2 (key 11); shield (key 20); and screen (key 271)] Aluminum</td>
<td>DVC6010/DVC6020 GE18652X012, DVC6030 GE18653X012</td>
</tr>
<tr>
<td>15 Stainless Steel DVC6010/DVC6020 DVC6030</td>
<td>GE18653X022</td>
</tr>
<tr>
<td>16* DVC6020 Cam Adjustment Tool</td>
<td>GE12742X012</td>
</tr>
<tr>
<td>17 Travel Sensor with Feedback Arm Assembly and PTFE Sleeve Kit DVC6010 DVC6015 DVC6020 DVC6025</td>
<td>GG09947X012, GG09948X012, GG09949X012, GG09950X012</td>
</tr>
<tr>
<td>18 Remote Terminal Box Kit Standard</td>
<td>GE00418X012</td>
</tr>
<tr>
<td>19 Feedback Unit DVC6015 DVC6025 long arm DVC6025 Short Arm DVC6035 DVC6035 (for GX actuator)</td>
<td>49B7986X012, 49B7978X022, 49B7982X022</td>
</tr>
<tr>
<td>20 Remote Mount Retrofit Kit Note This kit converts an existing DVC6000 in the remote mounted version. Note that the DVC6030 cannot be converted to the DVC6035.</td>
<td>GE00419X012</td>
</tr>
<tr>
<td>21 Feedback Unit Termination Strip Kit DVC6020 Std or pipe-away(7), and DVC6005(22)</td>
<td>GE00420X012</td>
</tr>
<tr>
<td>22 Pipestand/Wall Mounting Kit</td>
<td>GE00419X012</td>
</tr>
</tbody>
</table>

Remote Mount Kits

- **Kit Description** Part Number
- Remote Terminal Box Kit Standard GE00418X012
- Feedback Unit DVC6015 DVC6025 long arm DVC6025 Short Arm DVC6035 DVC6035 (for GX actuator) 49B7986X012, 49B7978X022, 49B7982X022
- Remote Mount Retrofit Kit Note This kit converts an existing DVC6000 in the remote mounted version. Note that the DVC6030 cannot be converted to the DVC6035. GE00419X012
- Feedback Unit Termination Strip Kit DVC6020 Std or pipe-away(7), and DVC6005(22) GE00420X012
- Pipestand/Wall Mounting Kit GE00420X012

Severe Service Linkage Kits

- **Kit Description** Part Number
- Corrosion Kit DVC6010 0.25 to 2 Inch travel DVC6010 2 to 4 Inch travel DVC6020 short arm DVC6020 long arm DVC6030 rotary DVC6030 linear GE22667X012, GE22668X012, GE22670X012, GE22671X012, GE22672X012, GE22673X012
- Wear Kit DVC6010 0.25 to 2 Inch travel DVC6010 2 to 4 Inch travel DVC6020 short arm DVC6020 long arm DVC6030 rotary DVC6030 linear GE22674X012, GE22675X012, GE22676X012, GE22677X012, GE22678X012, GE22679X012

Parts List

Parts which do not show part numbers are not orderable as individual parts. In most cases, they are available in one of the parts kits listed under Parts Kits.

Note

Parts with footnote numbers shown are available in parts kits. Also see footnote information at the bottom of the page.

Key Description

- **Housing**
 - DVC6010, DVC6020, DVC6030, DVC6005 (see figures 8-2, 8-3, 8-4, and 8-5)
 - 1 Housing(14)
 - 11 Drive Screw(14) (2 req’d)
 - 14 Shield(14)
 - 52 Vent, plastic(2) DVC6010, DVC6030, and DVC6005 only
 - 74 Mounting Bracket DVC6020 Std or pipe-away(7), and DVC6005(22)
 - 16* O-Ring(7), DVC6020 only
 - 245 Pipe Plug, pl stl(7), DVC6020 Vent-away only
 - 248 Screw, hex head(22) (4 req’d), DVC6005 only
 - 249 Screw, hex head(22) (4 req’d), DVC6005 only
 - 250 Spacer(22) (4 req’d), DVC6005 only
 - 267 Standoff(22) (2 req’d), (DVC6005 only)
 - 271 Screen(14)

Common Parts

DVC6010, DVC6020, DVC6030, DVC6005 (see figures 8-2, 8-3, 8-4, and 8-5)

- 16* O-Ring(7) (3 req’d)
- 29 Warning label, for use only with LCIE hazardous area classifications
- 33 Mach Screw, pan hd, SST(2) (3 req’d)
- 38 Cap Screw, hex socket, SST(12,13) (3 req’d)

*Recommended spare

1. Available in the Klamterm Spare Parts Kit
2. Available in the Small Hardware Spare Parts Kit
3. Available in the DVC6010 to DVC6020 Conversion Kit
4. Available in the Pipe-Way Bracket Kit
5. Available in the Pipestand/Wall Mounting Kit
6. Available in the Spare Module Base Assembly Kit
7. Available in the Spare Housing Assembly Kit
8. Available in the Pipestand/Wall Mounting Kit

September 2013
DVC6000 Digital Valve Controllers

Key Description Part Number
43* Cover Assembly (includes cover screws) 38B9580X022
44 Extreme temperature option (fluorosilicone elastomers) 38B9580X032
45 Aluminum Construction 38B9580X042
48 Nameplate
49 Screw, self tapping (2 req’d) (13)
63 Lithium grease (not furnished with the instrument)
64 Anti-seize compound (not furnished with the instrument)
65 Lubricant, silicone sealant (not furnished with the instrument)
154 Retaining Ring (2) (3 req’d)
237 Module Base Seal (1)

Module Base
DVC6010, DVC6020, DVC6030, DVC6005
(see figures 8-2, 8-3, 8-4, 8-5, and 8-6)

- 2 Module Base (13)
- 11 Drive Screw (13) (2 req’d)
- 12 O-ring (1)
- 19 Label, Shield Assembly (13)
- 61 Pipe Plug, hex socket (13) (3 req’d)
- 236 Screen, for single-acting direct units only (13)

I/P Converter Assembly
DVC6010, DVC6020, DVC6030, DVC6005
(see figures 8-2, 8-3, 8-4, and 8-5)

- 23 Cap Screw, hex socket, SST (2,18) (4 req’d)
- 34* O-ring (1,9,18)
- 36* O-ring (1,9,18)
- 44 Wire Retainer, pl stl (2) (6 req’d) (not shown)
- 58 Set Screw, hex socket, SST (2,18)
- 62 Pipe Plug, hex hd, SST (18)
- 164 Terminal Box Assembly (9)

Relay
DVC6010, DVC6020, DVC6030, DVC6005
(see figures 8-2, 8-3, 8-4, and 8-5)

- 24* Relay Assembly, (includes shroud, relay seal, mounting screws) Standard
 - Single-acting direct (relay C) 38B5786X132
 - Double-acting (relay A) 38B5786X052
 - Single-acting reverse (relay B) 38B5786X092
 - Low Bleed
 - Single-acting direct (relay C) 38B5786X152
 - Double-acting (relay A) 38B5786X072
 - Single-acting reverse (relay B) 38B5786X112
 - Extreme Temperature option (fluorosilicone elastomers)
 - Standard Bleed
 - Single-acting direct (relay C) 38B5786X142
 - Double-acting (relay A) 38B5786X032
 - Single-acting reverse (relay B) 38B5786X102
 - Low Bleed
 - Single-acting direct (relay C) 38B5786X162
 - Double-acting (relay A) 38B5786X082
 - Single-acting reverse (relay B) 38B5786X122

Feedback Connections Terminal Box
DVC6005 (see figure 8-5)

- 4 Terminal Box Cap (18)
- 34* O-ring (1,9,18)
- 36* O-ring (1,9,18)
- 44 Wire Retainer, pl stl (2) (6 req’d) (not shown)
- 58 Set Screw, hex socket, SST (2,18)
- 62 Pipe Plug, hex hd, SST (18)
- 72 Cap Screw, hex socket, SST (2,18)
- 262 Adapter (18)
- 263* O-ring (18)
- 264 Terminal Box Assembly, remote (18)

- Key Description Part Number
- Terminal Box Cap (18)
- O-ring (1,9,18)
- O-ring (1,9,18)
- Wire Retainer, pl stl (2) (6 req’d) (not shown)
- Set Screw, hex socket, SST (2,18)
- Pipe Plug, hex hd, SST (18)
- Cap Screw, hex socket, SST (2,18)
- Adapter (18)
- O-ring (18)
- Terminal Box Assembly, remote (18)

- *Recommended spare
 1. Available in the Elastomer Spare Parts Kit
 2. Available in the Small Hardware Spare Parts Kit
 3. Available in the Seal Screen Kit
 4. Available in the Terminal Box Kits
 5. Available in the I/P Converter Kit
 6. Available in the Spare Module Base Assembly Kit
 7. Available in the Spare Shroud Kit
 8. Available in the Remote Terminal Box Kit
 9. Available in the Remote Terminal Box Kit
 10. Available in the Feedback Unit Kit

Figure 8-1. Terminal Box of Natural Gas Certified FIELDVUE DVC6000 Digital Valve Controller
PWB Assembly

DVC6010, DVC6020, DVC6030, DVC6005

(see figures 8-2, 8-3, 8-4, and 8-5)

Contact your Emerson Process Management sales office for PWB Assembly FS numbers.

Key	**Description**	**Part Number**
50*	PWB Assembly	
Standard	For instrument level AC	
For instrument level HC		
For instrument level AD		
For instrument level PD		
For instrument level ODv		
Extreme Temperature option (fluorosilicone elastomers)	For instrument level AC	
For instrument level HC		
For instrument level AD		
For instrument level PD		
For instrument level ODv		

Pressure Gauges, Pipe Plugs, or Tire Valve Assemblies (see figure 8-6)

Key	**Description**	**Part Number**
47*	Pressure Gauge, nickel-plated brass case, brass connection	
Double-acting (3 req’d); Single-acting (2 req’d)		
PSI/MPa Gauge Scale	To 60 PSI, 0.4 MPa	18B7713X042
To 160 PSI, 1.1 MPa	18B7713X022	
PSI/bar Gauge Scale	To 60 PSI, 4 bar	18B7713X032
To 160 PSI, 11 bar	18B7713X012	
PSI/KG/CM² Gauge Scale	To 60 PSI, 4 KG/CM²	18B7713X072
To 160 PSI, 11 KG/CM²	18B7713X082	

66 | Pipe Plug, hex hd |
For double-acting and single acting direct w/gauges	(none req’d)
For Single-acting reverse w/gauges	(1 req’d)
For all units w/o gauges	(3 req’d)

67 | Tire Valve Assembly (3 req’d) |
| Stainless Steel Construction |
| DVC6010 (oversized) | (4 req’d) |
| Not for mounting on 1250 and 1250R actuators. |

Feedback / Remote Travel Sensor Parts Common Feedback Parts

DVC6010, DVC6020, DVC6030, DVC6015, DVC6025, and DVC6035 (see figures 8-2, 8-3, 8-4, 8-7, 8-8, and 8-9)

Key	**Description**	**Part Number**
46	Alignment Pin(6,19)	
for DVC6010, DVC6030, DVC6015 and DVC6035		

64 | Anti-seize compound | (not furnished with the instrument) |

65 | Lubricant, silicone sealant | (not furnished with the instrument) |

72 | Cap Screw, hex socket(2,19) | (2 req’d) |
| for DVC6010, DVC6020, DVC6015, and DVC6025 |

78 | Bias Spring, SST(2,19) |
| for DVC6010, DVC6030, DVC6015 and DVC6035 |

DVC6015, DVC6025, and DVC6035

(see figures 8-7, 8-8, and 8-9)

Key	**Description**	**Part Number**
23 | Cap Screw, hex socket(19,21) | (2 req’d) |

44 | Wire Retainer, pl stl(19,21) | (9 req’d) |

49 | Screw, self tapping (2 req’d) |

58 | Set Screw, hex socket(19) |

62 | Pipe Plug, hex hd, SST(19) |

*Recommended spare

2. Available in the Small Hardware Spare Parts Kit

3. Available in the DVC6010 to DVC6020 Conversion Kit

4. Available in the DVC6020 to DVC6010 Conversion Kit

6. Available in Alignment Pin Kit

19. Available in Feedback Unit Kit

21. Available in Feedback Unit Termination Strip Kit
DVC6000 Digital Valve Controllers

Figure 8-2. FIELDVUE DVC6010 Digital Valve Controller Assembly

Key Description

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
<th>Part Number</th>
<th>Key</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>131</td>
<td>Retainer Wire</td>
<td></td>
<td>251</td>
<td>Feedback housing$^{(19)}$ (DVC6015 only)</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>Assembly Plate Shield$^{(19)}$ (DVC6015 only)</td>
<td></td>
<td>253</td>
<td>Terminal bracket$^{(19,21)}$</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>Terminal Strip$^{(19,21)}$</td>
<td></td>
<td>255</td>
<td>Terminal Cap$^{(19)}$</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>O-ring, fluorosilicone$^{(19)}$</td>
<td></td>
<td>257</td>
<td>Machine Screw, pan head$^{(19)}$ (2 req’d) (DVC6015 only)</td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>Label, cover$^{(19)}$</td>
<td></td>
<td>260</td>
<td>Hex Nut, SST (2 req’d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HART Filters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HF340, DIN rail mount</td>
<td>39B5411X022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HF341, DIN rail Mount, pass through (no filter)</td>
<td>39B5412X012</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Recommended spare
19. Available in Feedback Unit Kit
21. Available in Feedback Unit Termination Strip Kit

NOTES:
1. APPLY LUBRICANT KEY 65 TO ALL O-RINGS UNLESS OTHERWISE SPECIFIED

APPLY LUB, SEALANT

SEE FIGURE 8-6 FOR GAUGE CONFIGURATIONS

NOTES:
- APPLY LUBRICANT KEY 65 TO ALL O-RINGS UNLESS OTHERWISE SPECIFIED
Figure 8-3. FIELDVUE DVC6020 Digital Valve Controller Assembly

1. APPLY LUBRICANT KEY 65 TO ALL O-RINGS UNLESS OTHERWISE SPECIFIED
Figure 8-3. FIELDVUE DVC6020 Digital Valve Controller Assembly (continued)

APPLY LUB, SEALANT
NOTES:
SEE FIGURE 8-6 FOR GAUGE CONFIGURATIONS
2. APPLY LUBRICANT KEY 65 TO ALL O-RINGS UNLESS OTHERWISE SPECIFIED

Figure 8-3. FIELDVUE DVC6020 Digital Valve Controller Assembly (continued)
NOTES:

SEE FIGURE 8-6 FOR GAUGE CONFIGURATIONS

APPLY LUBRICANT KEY 65 TO ALL O-RINGS UNLESS OTHERWISE SPECIFIED

Figure 8-4. FIELDVUE DVC6030 Digital Valve Controller Assembly
Figure 8-5. FIELDVUE DVC6005 Base Unit

NOTES:
1. APPLY LUBRICANT KEY 65 TO ALL O–RINGS UNLESS OTHERWISE SPECIFIED

4903061–C SHEET 1 & 2

Figure 8-5. FIELDVUE DVC6005 Base Unit
Figure 8-5. FIELDVUE DVC6005 Base Unit (continued)

- APPLY LUB, SEALANT
- SEE FIGURE 8-6 FOR GAUGE CONFIGURATIONS
- APPLY LUBRICANT KEY 65 TO ALL O-RINGS UNLESS OTHERWISE SPECIFIED

Figure 8-5. FIELDVUE DVC6005 Base Unit (continued)
Figure 8-6. Typical FIELDVUE DVC6000 Digital Valve Controller Gauge Configuration

APPLY LUB, SEALANT

NOTE:
1. FOR SINGLE-ACTING DIRECT, OUTPUT B IS PLUGGED.
2. FOR SINGLE-ACTING REVERSE, OUTPUT A IS PLUGGED.

Figure 8-7. FIELDVUE DVC6015 Digital Valve Controller Assembly

APPLY LUB, SEALANT

NOTE:
1. APPLY LUBRICANT KEY 65 TO ALL O-RINGS UNLESS OTHERWISE SPECIFIED

SECTION A-A

SECTION B-B

SECTION C-C

SECTION D-D
Figure 8-8. FIELDVUE DVC6025 Digital Valve Controller Assembly

NOTE:
1. APPLY LUBRICANT KEY 65 TO ALL O-RINGS UNLESS OTHERWISE SPECIFIED
NOTE:
1. APPLY LUBRICANT KEY 65 TO ALL O-RINGS UNLESS OTHERWISE SPECIFIED

Figure 8-9. FIELDVUE DVC6035 Digital Valve Controller Assembly
Appendix A Principle of Operation

HART Communication ... A-2
DVC6000 Operation ... A-2
DVC6000 Digital Valve Controllers

HART Communication
The HART (Highway Addressable Remote Transducer) protocol gives field devices the capability of communicating instrument and process data digitally. This digital communication occurs over the same two-wire loop that provides the 4-20 mA process control signal, without disrupting the process signal. In this way, the analog process signal, with its faster update rate, can be used for control. At the same time, the HART protocol allows access to digital diagnostic, maintenance, and additional process data. The protocol provides total system integration via a host device.

The HART protocol uses frequency shift keying (FSK). Two individual frequencies of 1200 and 2200 Hz are superimposed over the 4–20 mA current signal. These frequencies represent the digits 1 and 0 (see figure A-1). By superimposing a frequency signal over the 4–20 mA current, digital communication is attained. The average value of the HART signal is zero, therefore no dc value is added to the 4-20 mA signal. Thus, true simultaneous communication is achieved without interrupting the process signal.

The HART protocol allows the capability of multidropping, i.e., networking several devices to a single communications line. This process is well suited for monitoring remote applications such as pipelines, custody transfer sites, and tank farms. See table 7-2 for instructions on changing the printed wiring board DIP switch configuration to multidrop.

DVC6000 Operation
The DVC6000 digital valve controller housing contains the travel sensor, terminal box, pneumatic input and output connections and a module base that may be easily replaced in the field without disconnecting field wiring or tubing. The module base contains the following submodules: I/P converter, printed wiring board (pwb) assembly, and pneumatic relay. The relay position is detected by sensing the magnet on the relay beam via a detector on the printed wiring board. This sensor is used for the minor loop feedback (MLFB) reading. The module base can be rebuilt by replacing the submodules. See figures A-3 and A-4.

DVC6000 digital valve controllers are loop-powered instruments that provide a control valve position proportional to an input signal from the control room. The following describes a double-acting DVC6010 digital valve controller mounted on a piston actuator.

As the input signal increases, the drive signal to the I/P converter increases, increasing the I/P output pressure. The I/P output pressure is routed to the pneumatic relay submodule. The relay is also connected to supply pressure and amplifies the small pneumatic signal from the I/P converter. The relay accepts the amplified pneumatic signal and provides two output pressures. With increasing input (4 to 20 mA signal), the output A pressure always increases.
Figure A-3. FIELDVUE DVC6000 Digital Valve Controller Block Diagram

The input signal is used to drive the I/P converter, which converts the electrical signal into a pneumatic signal. The pneumatic signal is then used to operate the pneumatic relay, which controls the output pressure to the valve and actuator. The output pressure is used to move the actuator stem, which in turn moves the valve in response to the input signal.

As the input signal increases, the drive signal to the I/P converter increases, increasing the I/P output pressure. The pneumatic relay increases the output A pressure and decreases the output B pressure. The stem moves downward until the correct position is attained. At this point the printed wiring board assembly stabilizes the I/P drive signal. This positions the flapper to prevent any further increase in nozzle pressure.

As the input signal decreases, the drive signal to the I/P converter submodule decreases, decreasing the I/P output pressure. The pneumatic relay decreases the output A pressure and increases the output B pressure. The stem moves upward until the correct position is attained. At this point the printed wiring board assembly stabilizes the I/P drive signal. This positions the flapper to prevent any further decrease in nozzle pressure.
Figure A-4. FIELDVUE DVC6000 Digital Valve Controller Assembly
DVC6000 Digital Valve Controllers

This section includes loop schematics required for wiring of intrinsically safe installations. It also contains the approvals nameplates. If you have any questions, contact your Emerson Process Management sales office.

HAZARDOUS LOCATION | NON-HAZARDOUS LOCATION

CLASS I, DIV 1, GROUPS A,B,C,D	CLASS II, DIV 1, GROUPS E,F,G	CLASS III
DVC6010, DVC6020, DVC6030	DVC6010S, DVC6020S, DVC6030S	
Vmax = 30 VDC	Imax = 226 mA	Ci = 5 nF
Li = 0.33 mH	P1 = 1.4 W	

Figure B-1. CSA Loop Schematic for FIELDVUE DVC6010, DVC6020, and DVC6030

NOTE 1, 3, 4, 5, 6

T CODE	T (amb)
T5 | ≤ 80°C
T6 | ≤ 75°C

SEE NOTES IN FIGURE B-4

Figure B-2. Typical CSA/FM Nameplate for FIELDVUE DVC6010, DVC6020, DVC6030, and DVC6005
The entity concept allows interconnection of intrinsically safe apparatus to associated apparatus not specifically examined in such combination. The criteria for interconnection is that the voltage (V_{max} or U_{i}), the current (I_{max} or I_{i}), and the power (P_{max} or P_{i}) of the intrinsically safe apparatus must be equal to or greater than the voltage (V_{o} or U_{o}), the current (I_{sc} or I_{o}), and the power (P_{o}) defined by the associated apparatus. In addition, the sum of the max unprotected capacitance (C_{i}) and max unprotected inductance (L_{i}), including the interconnecting cabling capacitance (C_{cable}) and cabling inductance (L_{cable}) must be less than the allowable capacitance (C_{a}) and inductance (L_{a}) defined by the associated apparatus. If the above criteria is met, then the combination may be connected.

V_{max} or U_{i} $\leq V_{\text{o}}$ or U_{o}
I_{max} or I_{i} $\leq I_{\text{sc}}$ or I_{o}
P_{max} or P_{i} $\leq P_{o}$
C_{i} + C_{cable} $\leq C_{a}$
L_{i} + L_{cable} $\leq L_{a}$

Installation must be in accordance with the Canadian Electrical Code (CEC) and ANSI/ISA RP12.6.

Maximum safe area voltage should not exceed 250 Vrms.

Resistance between intrinsically safe ground and earth ground must be less than one ohm.

Loops must be connected according to the barrier manufacturer's instructions.

If hand-held communicator or multiplexer is used, it must be CSA approved with entity parameters and installed per the manufacturer's control drawings.
DVC6000 Digital Valve Controllers

Figure B-6. FM Loop Schematic for FIELDVUE DVC6010, DVC6020, and DVC6030

Figure B-7. FM Loop Schematic for FIELDVUE DVC6005 with DVC6015, DVC6025, and DVC6035
[1] THE ENTITY CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALLY SAFE APPARATUS TO ASSOCIATED APPARATUS NOT SPECIFICALLY EXAMINED IN SUCH COMBINATION. THE CRITERIA FOR INTERCONNECTION IS THAT THE VOLTAGE (Vmax or Ui), THE CURRENT (Imax or Ii), AND THE POWER (Pmax or Pi) OF THE INTRINSICALLY SAFE APPARATUS MUST BE EQUAL TO OR GREATER THAN THE VOLTAGE (Voc or Uo), AND THE CURRENT (Isc or Io), AND THE POWER (Po) DEFINED BY THE ASSOCIATED APPARATUS. IN ADDITION, THE SUM OF THE MAX UNPROTECTED CAPACITANCE (Ci) AND MAX UNPROTECTED INDUCTANCE (Li), INCLUDING THE INTERCONNECTING CABLE CAPACITANCE (Ccable) AND CABLE INDUCTANCE (Lcable) MUST BE LESS THAN THE ALLOWABLE CAPACITANCE (Ca) AND INDUCTANCE (La) DEFINED BY THE ASSOCIATED APPARATUS. IF THE ABOVE CRITERIA IS MET, THEN THE COMBINATION MAY BE CONNECTED.

\[
\begin{align*}
V_{\text{max or } Ui} & \geq V_{\text{o orc } Uo} \\
I_{\text{max or } Ii} & \geq I_{\text{sc or Io}} \\
P_{\text{max or } Pi} & \geq P_{\text{o}} \\
C_{i} + C_{\text{cable}} & \leq C_{a} \\
L_{i} + L_{\text{cable}} & \leq L_{a}
\end{align*}
\]

[3] INSTALLATION MUST BE IN ACCORDANCE WITH THE NATIONAL ELECTRICAL CODE (NEC) NFPA70 AND ANSI/ISA RP12.6.01

[5] RESISTANCE BETWEEN INTRINSICALLY SAFE GROUND AND EARTH GROUND MUST BE LESS THAN ONE OHM

[6] LOOPS MUST BE CONNECTED ACCORDING TO THE BARRIER MANUFACTURER’S INSTRUCTION

[7] IF HAND-HELD COMMUNICATOR OR MULTIPLEXER IS USED IT MUST BE FM APPROVED WITH ENTITY PARAMETERS AND INSTALLED PER THE MANUFACTURER’S CONTROL DRAWING

Figure B-8. Notes for FM Loop Schematics

Figure B-9. Typical FM Nameplate for FIELDVUE DVC6015, DVC6025, and DVC6035

GEA3019 Sheet 8, Rev. E
DVC6000 Digital Valve Controllers

Figure B-10. ATEX Loop Schematic For FIELDVUE DVC6010, DVC6020, and DVC6030

Figure B-11. Typical ATEX Nameplates; Intrinsically Safe
THE ENTITY CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALLY SAFE APPARATUS TO ASSOCIATED APPARATUS NOT SPECIFICALLY EXAMINED IN SUCH COMBINATION. THE CRITERIA FOR INTERCONNECTION IS THAT THE VOLTAGE (V_{max} or U_i), THE CURRENT (I_{max} or I_i), AND THE POWER (P_{max} or P_i) OF THE INTRINSICALLY SAFE APPARATUS MUST BE EQUAL TO OR GREATER THAN THE VOLTAGE (V_{oc} or U_0), AND THE CURRENT (I_{sc} or I_0), AND THE POWER(P_0) DEFINED BY THE ASSOCIATED APPARATUS. IN ADDITION, THE SUM OF THE MAX UNPROTECTED CAPACITANCE (C_i) AND MAX UNPROTECTED INDUCTANCE (L_i), INCLUDING THE INTERCONNECTING CABLING CAPACITANCE (C_{cable}) AND CABLING INDUCTANCE (L_{cable}) MUST BE LESS THAN THE ALLOWABLE CAPACITANCE (C_a) AND INDUCTANCE (L_a) DEFINED BY THE ASSOCIATED APPARATUS. IF THE ABOVE CRITERIA IS MET, THEN THE COMBINATION MAY BE CONNECTED.

V_{max} or $U_i \geq V_{\text{oc}}$ or U_0

I_{max} or $I_i \geq I_{\text{sc}}$ or I_0

P_{max} or $P_i \geq P_0$

$C_i + C_{\text{cable}} \leq C_a$

$L_i + L_{\text{cable}} \leq L_a$

INSTALLATION MUST BE IN ACCORDANCE WITH THE NATIONAL WIRING PRACTICES OF THE COUNTRY IN USE.

LOOPS MUST BE CONNECTED ACCORDING TO THE BARRIER MANUFACTURER’S INSTRUCTIONS.

IF HAND-HELD COMMUNICATOR OR MULTIPLEXER IS USED, IT MUST BE ATEX APPROVED WITH ENTITY PARAMETERS AND INSTALLED PER THE MANUFACTURER’S CONTROL DRAWINGS.

Figure B-12. ATEX Loop Schematic for DVC6005 with DVC6015, DVC6025, and DVC6035

Figure B-13. Notes for ATEX Schematics
Figure B-14. Typical ATEX Nameplates; Flameproof

Figure B-15. Typical ATEX Nameplates; Type n
Figure B-16. IECEx Loop Schematic for FIELDVUE DVC6010, DVC6020, and DVC6030

Figure B-17. IECEx Loop Schematic for FIELDVUE DVC6005 with DVC6015, DVC6025, and DVC6035
THE ENTITY CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALLY SAFE APPARATUS TO ASSOCIATED APPARATUS NOT SPECIFICALLY EXAMINED IN SUCH COMBINATION. THE CRITERIA FOR INTERCONNECTION IS THAT THE VOLTAGE (V_{max} or U_i), THE CURRENT (I_{max} or I_i), AND THE POWER (P_{max} or P_i) OF THE INTRINSICALLY SAFE APPARATUS MUST BE EQUAL TO OR GREATER THAN THE VOLTAGE (V_{oc} or U_o), AND THE CURRENT (I_{sc} or I_o), AND THE POWER (P_o) DEFINED BY THE ASSOCIATED APPARATUS. IN ADDITION, THE SUM OF THE MAX UNPROTECTED CAPACITANCE (C_i) AND MAX UNPROTECTED INDUCTANCE (L_i), INCLUDING THE INTERCONNECTING CABLE CAPACITANCE (C_{cable}) AND CABLE INDUCTANCE (L_{cable}) MUST BE LESS THAN THE ALLOWABLE CAPACITANCE (C_a) AND INDUCTANCE (L_a) DEFINED BY THE ASSOCIATED APPARATUS. IF THE ABOVE CRITERIA IS MET, THEN THE COMBINATION MAY BE CONNECTED.

V_{max} or U_i $\leq V_{oc}$ or U_o

I_{max} or I_i $\leq I_{sc}$ or I_o

P_{max} or P_i $\leq P_o$

$C_i + C_{cable} \leq C_a$

$L_i + L_{cable} \leq L_a$

INSTALLATION MUST BE IN ACCORDANCE WITH THE NATIONAL WIRING PRACTICES OF THE COUNTRY IN USE.

LOOPS MUST BE CONNECTED ACCORDING TO THE BARRIER MANUFACTURER’S INSTRUCTIONS.

IF HAND-HELD COMMUNICATOR OR MULTIPLEXER IS USED IT MUST BE IECEx APPROVED WITH ENTITY PARAMETERS AND INSTALLED PER THE MANUFACTURERS CONTROL DRAWING.
Glossary

Alert Point
An adjustable value that, when exceeded, activates an alert.

Algorithm
A set of logical steps to solve a problem or accomplish a task. A computer program contains one or more algorithms.

Alphanumeric
Consisting of letters and numbers.

Analog Input Units
Units in which the analog input is displayed and maintained in the instrument.

ANSI (acronym)
The acronym ANSI stands for the American National Standards Institute

ANSI Class
Valve pressure/temperature rating.

Auxiliary Input Alert
Checks the status of the auxiliary input; a discrete input. When enabled, the Auxiliary Input Alert is active when the auxiliary input terminals are open or closed (shorted), depending upon the selection for Auxiliary Input Alert State.

Auxiliary Terminal (Indicator)
Indicates whether auxiliary wiring terminals are open or closed (such as by an external switch contact).

Bench Set
Pressure, supplied to an actuator, required to drive the actuator through rated valve travel. Expressed in pounds per square inch.

Byte
A unit of binary digits (bits). A byte consists of eight bits.

Calibration Location
Where the instrument was last calibrated; either in the factory or in the field.

Configuration
Stored instructions and operating parameters for a FIELDVUE Instrument.

Control Loop
An arrangement of physical and electronic components for process control. The electronic components of the loop continuously measure one or more aspects of the process, then alter those aspects as necessary to achieve a desired process condition. A simple control loop measures only one variable. More sophisticated control loops measure many variables and maintain specified relationships among those variables.

Control Mode
Defines where the instrument reads its set point. The following control modes are available for a FIELDVUE Instrument:

Analog The instrument receives its travel set point over the 4-20 mA loop.

Digital The instrument receives its set point digitally, via the HART communications link.

Test This is not a user-selectable mode. The Field Communicator or ValveLink software places the instrument in this mode whenever it needs to move the valve, such as for calibration or diagnostic tests.

Control Mode, Restart
Determines the instrument control mode after a restart. See Control Mode for the available restart control modes.
Controller
A device that operates automatically to regulate a controlled variable.

Crossover Point
The point at which the feedback pin is closest to the axis of rotation of the travel sensor. A visual indication of the crossover point is found when the slot in the instrument feedback arm forms a 90-degree angle with the valve stem.

Current-to-Pressure (I/P) Converter
An electronic component or device that converts a milliamp signal to a proportional pneumatic pressure output signal.

Cycle Counter
The capability of a FIELDVUE instrument to record the number of times the travel changes direction. The change in direction must occur after the deadband has been exceeded before it can be counted as a cycle.

Cycle Counter Alert
Checks the difference between the Cycle Counter and the Cycle Counter Alert Point. Cycle Counter Alert is active when the cycle counter value exceeds the Cycle Counter Alert Point. It clears after you reset the Cycle Counter to a value less than the alert point.

Cycle Counter Alert Point
An adjustable value which, when exceeded, activates the Cycle Counter Alert. Valid entries are 0 to 4 billion cycles.

Cycle Counter Deadband
Region around the travel reference point, in percent of ranged travel, established at the last increment of the Cycle Counter. The deadband must be exceeded before a change in travel can be counted as a cycle. Valid entries are 0% to 100%. Typical value is between 2% and 5%.

Deviation
Usually, the difference between set point and process variable. More generally, any departure from a desired or expected value or pattern.

Device ID
Unique identifier embedded in the instrument at the factory.

Device Revision
Revision number of the interface software that permits communication between the Field Communicator and the instrument.

Drive Signal
The signal to the I/P converter from the printed wiring board. It is the percentage of the total microprocessor effort needed to drive the valve fully open.

Drive Signal Alert
Checks the drive signal and calibrated travel. If one of the following conditions exists for more than 20 seconds, the Drive Signal Alert is active. If none of the conditions exist, the alert is cleared.

If Zero Power Condition = Closed
The alert is active when:
drive signal <10% and calibrated travel >3%
drive signal >90% and calibrated travel <97%

If Zero Power Condition = Open
The alert is active when:
drive signal <10% and calibrated travel <97%
drive signal >90% and calibrated travel >3%

Equal Percentage
A valve flow characteristic where equal increments of valve stem travel produce equal percentage changes in existing flow. One of the input characteristics available for a FIELDVUE Instrument. See also, Linear and Quick Opening.

Feedback Arm
The mechanical connection between the valve stem linkage and the FIELDVUE Instrument travel sensor.

Feedback Connection
Identifies the type of feedback linkage: rotary, sliding-stem roller or sliding-stem standard.

Feedback Signal
Indicates to the instrument the actual position of the valve. The travel sensor provides the feedback signal to the instrument printed wiring board assembly. A mechanical linkage connects the travel sensor to the valve stem or shaft.
Firmware Revision
The revision number of the instrument firmware. Firmware is a program that is entered into the instrument at time of manufacture and cannot be changed by the user.

Free Time
Percent of time that the microprocessor is idle. A typical value is 25%. The actual value depends on the number of functions in the instrument that are enabled and on the amount of communication currently in progress.

Full Ranged Travel
Current, in mA, that corresponds with the point where ranged travel is maximum, i.e., limited by the mechanical travel stops.

Gain
The ratio of output change to input change.

Hardware Revision
Revision number of the Fisher Controls instrument hardware. The physical components of the instrument are defined as the hardware.

HART (acronym)
The acronym HART stands for Highway Addressable Remote Transducer.

HART Tag
An eight-character name that identifies the physical instrument.

HART Universal Revision
Revision number of the HART Universal Commands which are the communications protocol for the instrument.

Input Characteristic
The relationship between the ranged travel and ranged input. Possible values include: linear, equal percentage, and quick opening.

Input Current
The current signal from the control system that serves as the analog input to the instrument. See also Input Signal.

Input Range
The analog input signal range that corresponds to the travel range.

Input Signal
The current signal from the control system. The input signal can be displayed in milliamperes or in percent of ranged input.

Instrument Level
Determines the functions available for the instrument. See table 6-2, page 6-8.

Instrument Mode
Determines if the instrument responds to its analog input signal. There are two instrument modes:
- **In Service**: For a fully functioning instrument, the instrument output changes in response to analog input changes. Typically changes to setup or calibration cannot be made when the instrument mode is In Service.
- **Out of Service**: The instrument output does not change in response to analog input changes when the instrument mode is Out of Service. Some setup parameters can be changed only when the instrument mode is Out of Service.

Instrument Protection
Determines if commands from a HART device can calibrate and/or configure certain parameters in the instrument. There are two types of instrument protection:
- **Configuration and Calibration**: Prohibits changing protected setup parameters; prohibits calibration.
- **None**: Permits both configuration and calibration. The instrument is "unprotected."

Instrument Serial Number
The serial number assigned to the printed wiring board by the factory but can be changed during setup. The instrument serial number should match the serial number on the instrument nameplate.

Leak Class
Defines the allowable leakage by a valve when it is closed. Leak class numbers are listed in two standards: ANSI/FCI 70-2 and IEC 534-4.
Linear
A valve flow characteristic where changes in flow rate are directly proportional to changes in valve stem travel. One of the input characteristics available for a FIELDVUE Instrument. See also, Equal Percentage and Quick Opening.

Linearity, dynamic
Linearity (independent) is the maximum deviation from a straight line best fit to the opening and closing curves and a line representing the average value of those curves.

Memory
A type of semiconductor used for storing programs or data. FIELDVUE instruments use three types of memory: Random Access Memory (RAM), Read Only Memory (ROM), and Non-Volatile Memory (NVM). See also these listings in this glossary.

Menu
A list of programs, commands, or other activities that you select by using the arrow keys to highlight the item then pressing ENTER, or by entering the numeric value of the menu item.

Minimum Closing Time
Minimum time, in seconds, for the travel to decrease through the entire ranged travel. This rate is applied to any travel decrease. Valid entries are 0 to 400 seconds. Deactivate by entering a value of 0 seconds.

Minimum Opening Time
Minimum time, in seconds, for the travel to increase through the entire ranged travel. This rate is applied to any travel increase. Because of friction, actual valve travel may not respond in exactly the same time frame. Valid entries are 0 to 400 seconds. Deactivate by entering a value of 0 seconds.

Non-Volatile Memory (NVM)
A type of semiconductor memory that retains its contents even though power is disconnected. NVM contents can be changed during configuration unlike ROM which can be changed only at time of instrument manufacture. NVM stores configuration restart data.

Parallel
Simultaneous: said of data transmission on two or more channels at the same time.

Polling Address
Address of the instrument. If the digital valve controller is used in a point-to-point configuration, set the polling address to 0. If it is used in a multidrop configuration, or split range application, set the polling address to a value from 0 to 15.

Pressure Sensor
A FIELDVUE instrument internal device that senses pneumatic pressure. DVC6000 digital valve controllers have three pressure sensors: one to sense supply pressure and two to sense the output pressures.

Primary Master
Masters are communicating devices. A primary master is a communicating device permanently wired to a field instrument. Typically, a HART-compatible control system or a computer running ValveLink software is the primary master.

In contrast, a secondary master is not often permanently wired to a field instrument. The Field Communicator or a computer running ValveLink software communicating through a HART modem could be considered a secondary master.

Quick Opening
A valve flow characteristic where most of the change in flow rate takes place for small amounts of stem travel from the closed position. The flow characteristic curve is basically linear through the first 40 percent of stem travel. One of the input characteristics available for a FIELDVUE Instrument. See also, Equal Percentage and Linear.

Random Access Memory (RAM)
A type of semiconductor memory that is normally used by the microprocessor during normal operation that permits rapid retrieval and storage of programs and data. See also Read Only Memory (ROM) and Non-Volatile Memory (NVM).
Rate
Amount of change in output proportional to the rate of change in input.

Read-Only Memory (ROM)
A memory in which information is stored at the time of instrument manufacture. You can examine but not change ROM contents.

Seat Load
Force exerted on the valve seat, typically expressed in pounds force per lineal inch of port circumference. Seat load is determined by shutoff requirements.

Set Point Filter Time
The time constant, in seconds, for the first-order input filter.

Software
Microprocessor or computer programs and routines that reside in alterable memory (usually RAM), as opposed to firmware, which consists of programs and routines that are programmed into memory (usually ROM) when the instrument is manufactured. Software can be manipulated during normal operation, firmware cannot.

Stroking Time
The time, in seconds, required to move the valve from its fully open position to fully closed, or vice versa.

Temperature Sensor
A device within the FIELDVUE instrument that measures the instrument’s internal temperature.

Travel
Movement of the valve stem or shaft which changes the amount the valve is open or closed.

Travel Accumulator Alert
Checks the difference between the Travel Accumulator value and the Travel Accumulator Alert Point. The Travel Accumulator Alert is active when the Travel Accumulator value exceeds the Travel Accumulator Alert Point. It clears after you reset the Travel Accumulator to a value less than the alert point.

Travel Accumulator Alert Point
An adjustable value which, when exceeded, activates the Travel Accumulator Alert. Valid entries are 0% to 4 billion %.

Travel Accumulator Deadband
Region around the travel reference point established at the last increment of the accumulator. This region must be exceeded before a change in travel can be accumulated. Valid entries are 0% to 100%.

Travel Alert
Checks the ranged travel against the travel high and low alert points. The travel alert is active if either the high or low point is exceeded. Once a high or low point is exceeded, the ranged travel must clear that point by the Travel Alert Deadband before the alert clears. Four travel alerts are available: Travel Alert Hi, Travel Alert Lo, Travel Alert Hi Hi, and Travel Alert Lo Lo.

Travel Alert Deadband
Travel, in percent of ranged travel, required to clear a travel alert, once it is active. Valid entries are −25% to 125%.

Travel Alert High Point
Value of the travel, in percent of ranged travel, which, when exceeded, sets the Travel Alert Hi alert. Valid entries are −25% to 125%.

Travel Alert High High Point
Value of the travel, in percent of ranged travel, which, when exceeded, sets the Travel Alert Hi Hi alert. Valid entries are −25% to 125%.

Travel Alert Low Point
Value of the travel, in percent of ranged travel, which, when exceeded, sets the Travel Alert Lo alert. Valid entries are −25% to 125%.

Travel Alert Low Low Point
Value of the travel, in percent of ranged travel, which, when exceeded, sets the Travel Alert Lo Lo alert. Valid entries are −25% to 125%.
Travel Cutoff
Defines the cutoff point for the travel, in percent of ranged travel. There are two travel cutoffs: high and low. Once travel exceeds the cutoff, the drive signal is set to either maximum or minimum, depending on the Zero Control Signal and if the cutoff is high or low. Minimum opening time or minimum closing time are not in effect while the travel is beyond the cutoff. Use the travel cutoff to obtain the desired seat load or to be sure the valve is fully open.

Travel Deviation
The difference between the analog input signal (in percent of ranged input), the “target” travel, and the actual "ranged" travel.

Travel Deviation Alert
Checks the difference between the target and the ranged travel. If the difference exceeds the Travel Deviation Alert Point for more than the Travel Deviation Time, the Travel Deviation Alert is active. It remains active until the difference is less than the Travel Deviation Alert Point.

Travel Deviation Alert Point
An adjustable value for the target travel and the ranged travel difference, expressed in percent. When this value is exceeded by the travel deviation for more than the Travel Deviation Time, the Travel Deviation Alert is active. Valid entries are 0% to 100%. Typically this is set to 5%.

Travel Deviation Time
The time, in seconds, that the travel deviation must exceed the Travel Deviation Alert Point before the alert is active. Valid entries are 1 to 60 seconds.

Travel Limit
A setup parameter that defines the maximum allowable travel (in percent of ranged travel) for the valve. During operation, the travel target will not exceed this limit. There are two travel limits: high and low. Typically the travel limit low will be used to keep the valve from going completely closed.

Travel Range
Travel, in percent of calibrated travel, that corresponds to the input range.

Travel Sensor
A device within the FIELDVUE instrument that senses valve stem or shaft movement. The travel sensor is mechanically connected to the valve stem or shaft.

Travel Sensor Motion
Establishes motion of the travel sensor. While viewing the end of the travel sensor shaft, if increasing air pressure to the actuator causes the shaft to rotate clockwise, travel sensor motion is CW. If increasing air pressure causes the shaft to rotate counterclockwise, travel sensor motion is CCW.

Tuning
The adjustment of control terms or parameter values to produce a desired control effect.

Tuning Set
Preset values that identify gain settings for a FIELDVUE instrument. The tuning set and supply pressure together determine an instrument’s response to input signal changes.

Watch Dog Timer
A timer that the microprocessor must rearm periodically. If the microprocessor is unable to rearm the timer, the instrument goes through reset.

Zero Power Condition
The position of the valve (open or closed) when the electrical power to the instrument is removed. Zero Power Condition (ZPC) is determined by relay and actuator action as follows:

- **Single Acting Direct (Relay C)**: Upon loss of power instrument goes to zero air output at port A. On loss of pneumatic supply failure direction is per the actuator fail mode.
- **Double Acting (Relay A)**: Upon loss of power instrument goes to full supply air output at port B. A goes to zero air output. The failure direction upon loss of pneumatic supply cannot be determined.
- **Single Acting Reverse (Relay B)**: Upon loss of power instrument goes to full supply air output at Port B. On loss of pneumatic supply failure direction is per the actuator fail mode.
Index

A

A Minus B, 6-7
AC, (Auto Calibrate), 6-8
Actuator Style, 4-19
AD, (Advanced Diagnostics), 6-8
Advanced Diagnostics, (AD), 6-8
Alert Conditions, 6-2
Alert Record, 6-4
Electronics, 6-2
Environment, 6-3
Sensor, 6-2
SIS, 6-3
Travel, 6-3
Travel History, 6-3
Alert Groups, 4-16
Failure Alerts, 4-16
Miscellaneous, 4-16
Valve Alerts, 4-16
Alert Record, 4-16
Alert Records
Clear, 4-16
View, 4-16
Alert Setup, 4-12
Alerts
Alert Record, 4-16
Alert Groups, 4-16
Enabling Alert Groups, 4-16
configuring, 4-12
Electronic, 4-12
Drive Signal Alert, 4-12
Processor Impaired Alerts, 4-12
Environment, 4-13
Environmental
Auxiliary Terminal Alerts, 4-13
Supply Press Lo Alert, 4-13
Sensor, 4-13
SIS, 4-15
Travel, 4-13
Deviation Alert, 4-13
Limit Alerts, 4-13
Travel Limit Cutoff Alerts, 4-14
Travel Limit Hi/Lo Alerts, 4-14
Travel History, 4-15
Cycle Count, 4-15
Cycle Count/Tvl Accum Deadband, 4-15
Travel Accumulator, 4-15
Analog Calibration Adjust, 5-4
Analog Input
Displaying Value, 6-7
Units, 4-18
Analog Input Calibration, 5-10
Analog Input Range, 4-18
Assembly Specification Sheet, 4-19
ATEX
Hazardous Area Classifications, 1-6, 1-10, 1-11
Loop Schematic, B-6, B-7
Nameplates, B-6, B-8
Special Conditions for Safe Use, 2-4, 2-5
Auto Calibrate, (AC), 6-8
Auto Calibrate Travel, 5-2
Error Messages, 5-3, 5-4
Auxiliary Input, Displaying Status, 6-7
Auxiliary Terminal, Wiring Length Guidelines, 6-5
Auxiliary Terminal Action, 4-4, 4-18

B

Basic Setup, 3-2
bias spring, 2-14
Burst Command, 4-3
Change, 4-3
Burst Enable, Change, 4-3
Burst Mode, 4-3
Commands, 2-34, 4-3
Enabling, 4-3
Burst Operation, 2-34

C

Calibration
Analog Input, 5-10
Auto Calibrate Travel, 5-2
 Error Messages, 5-4
Manual Calibrate Travel, 5-4
Pressure Sensors, 5-6
Relay Adjustment, 5-10
Sensor Calibration, 5-6
 Pressure Sensors, 5-6
Touch-Up Travel, 5-6
Travel
 Auto, 5-2
 Manual, 5-4
 Analog Calibration Adjust, 5-4
 Digital Calibration Adjust, 5-5
Travel Sensor, 5-7
Travel Sensor Adjust, 5-7
Calibration, Travel, 5-2
Calibration and Diagnostics, 4-17
Calibration Status and Location, 4-18
Change Cutoffs
 Travel Limit/Cutoff Alerts, 4-14
 Travel/Pressure Control, 4-9
Change Travel Limits, Travel Limit/Cutoff Alerts, 4-15
Classifications/Certifications, 1-6
Clear ALL Records, 4-16
Command 3, 4-3
Communication Cable Capacitance, 2-33
Connections
 Electrical
 4 to 20 mA Loop, 2-24
 Communication, 2-29
 Test, 2-29
 Pneumatic
 Output, 2-21
 to support solenoid testing, 2-22
 Supply, 2-19
 Vent, 2-22
Control Mode, 4-3
Control System Requirements
 Compliance Voltage, 2-32
 HART Filter, 2-30
 Voltage Available, 2-31
CSA
 Hazardous Area Classifications, 1-6, 1-8
 Loop Schematic, B-3
 Loop Schematics, B-2
 Nameplates, B-2, B-3
Custom Characterization, 4-11
 Define, 4-11
Cutoff Hi
 Travel Limit/Cutoff Alerts, 4-14
 Travel/Pressure Control, 4-9
Cutoff Lo
 Travel Limit/Cutoff Alerts, 4-14
 Travel/Pressure Control, 4-9
Cutoffs and Limits, Travel/Pressure Control, 4-9
Cycle Counter, 4-15
 Alert Point, 4-15
 Displaying Value, 6-7
 Enabling Alert, 4-15
 Resetting, 4-15
Cycle Counter Deadband, 4-15
Date, 4-17, 4-18
DD Information, 6-8
Define Custom Characterization, 4-11
Description, DVC6000 Series, 1-3
Descriptor, 4-17
Detailed Setup, 4-2
Device Information, 6-8
Device Record, 6-4
Device Revision, 6-8
Digital Calibration Adjust, 5-5
DIP Switch, Setting, 7-7
Drive Signal, Displaying Value, 6-7
Dynamic Response, 4-11
Educational Services, 1-4
Electrical Classification, Hazardous Area, 1-6
Electromagnetic Compatibility, 1-5
End Point Pressure Control, 4-9, 4-10
EPPC Saturation Time, 4-10
EPPC Setup Point, 4-10
Error Messages, Auto Calibrate Travel, 5-4
Factory Default Settings, Initial Setup, 3-3
Factory Settings, Restoring, 5-11
Failure Group Enable, 4-16
Feedback Connection, 4-19
Firmware Revision, 6-8
FM
Hazardous Area Classifications, 1-6, 1-9
Loop Schematic, B-4
Nameplates, B-5
Special Conditions of Safe Use, 2-4
Free Time, Self Test Failure, enabling to cause instrument shutdown, 4-12

G

Gauges, Tire Valves, & Pipe Plugs
Parts List, 8-5
Replacing, 7-7

H

Hardware Revision, 6-8
HART Communicating, (HC), 6-8
HART Filter, Part Numbers, 8-6
HART Tag, 4-17
HART Tri–Loop, Configuring DVC6000 for use with, 2-33
Hazardous Area Approvals, 2-4
HC, (HART Communicating), 6-8

I

I/P Converter
Parts List, 8-4
Removing, 7-6
Replacing, 7-6
Replacing Filter, 7-5
IECEEx
Conditions of Certification, 2-5
Hazardous Area Classifications, 1-6, 1-11
Loop Schematic, B-9
Nameplates, B-10
Input Characterization, 4-10
Input Range, 4-18
Installation, 2-3

Instrument Clock, Setting, 4-16, 4-18
Instrument Date and Time, 4-18
Instrument Level, 6-8
capabilities, 1-2
Instrument Mode, 3-2, 4-2
Instrument Serial Number, 4-17
Instrument Status, 6-4
Viewing, 6-4
Instrument Time, 4-16
Integral Action, Enable Integral Settings, 4-6
Integral Dead Zone, 4-17
Integral Enable
Pressure, 4-8
Travel, 4-6
Integral Gain
Pressure, 4-8
Travel, 4-6
Integral Limit, 4-7, 4-17
Integral Settings, 4-7
Integrator Saturation, Status, 4-17
Internal Temperature, Displaying Value, 6-7

L

Lag Time, 4-11
Lead/Lag, 4-11
typical filter settings, 4-12
Lead/Lag Set Point Filter, 4-11
Loop Current, checking, 7-15
Loop Schematic
ATEX, B-6, B-7
CSA, B-3
FM, B-4
IECEEx, B-9
Loop Schematics, CSA, B-2

M

Manual Calibrate Travel, 5-4
Manual Conventions, 1-2
Manufacturer, 4-18
Maximum Output Capacity, 1-5
maximum supply pressure, 4-18
DVC6000 Digital Valve Controllers

Message, 4-17
Minimum Closing Time, 4-11
Minimum Opening Time, 4-11
Miscellaneous Group Enable, 4-16
Module Base
 Removal, 7-3
 Replacing, 7-4
Module Base, Parts List, 8-4
Module Base Maintenance, 7-3
Mounting, 2-6
 67CFR, 2-18
 DVC6005 base unit, 2-13
 Pipestand, 2-13
 Wall, 2-13
 DVC6010, 2-6
 DVC6015, 2-13
 DVC6020, 2-8
 DVC6025, 2-15
 DVC6030, 2-10
 DVC6035, 2-16

Nameplates
 ATEX, B-6, B-8
 CSA, B-2, B-3
 FM, B-5
 IECEx, B-10

natural gas, as supply medium, 7-2
Natural Gas Certified, Single Seal device, 2-20
Number of Power Ups, Displaying Status, 6-8

ODV, (Optimized Digital Valve), 6-8
Operational, 4-17
 Status, 4-17
Optimized Digital Valve, (ODV), 6-8
Output Pressure, Displaying Value, 6-7
Overview, 6-7

Parameters, Factory Default, Detailed Setup, 4-2
Partial Stroke, 4-19
Partial Stroke Test, 6-5
 Configuring
 Partial Stroke Pressure Limit, 4-20
 Partial Stroke Tvl, 4-20
 Pause Time, 4-20
 Stroke Speed, 4-20
 initiating, 6-5
 Device (Digital Valve Controller), 6-5
 Field Communicator, 6-6
 Remote Push Button, 6-5
 Local DI, 6-5
 Local Push Button, 6-5
Parts
 Common Parts, 8-3
 Feedback Parts, 8-5
 Gauges, Tire Valves, & Pipe Plugs, 8-5
 HART Filters, 8-6
 I/P Converter Assembly, 8-4
 Kits, 8-2
 Module Base, 8-4
 Ordering, 8-2
 Printed Wiring Board Assembly, 8-5
 Relay, 8-4
 Terminal Box, 8-4
PD, (Performance Diagnostics), 6-8
Performance Diagnostics, (PD), 6-8
Performance Tuner, 3-4, 4-7
Pneumatic Relay
 Adjusting, 5-10
 Parts List, 8-4
 Removing, 7-7
 Replacing, 7-7
Polling Address, 4-17
Press Set Point, 4-10
Pressure A, 6-7
Pressure Control, 4-9
Pressure Range Hi, 4-9
Pressure Range Lo, 4-9
Pressure Sensor Calibration, 5-6
Pressure Tuning Sets, Gain Values, 4-7
Pressure Units, 4-17
Index

Principle of Operation
DVC6000, A-2
HART Communication, A-2

Printed Wiring Board Assembly
Parts List, 8-5
Removing, 7-6
Replacing, 7-7
Setting DIP Switch, 7-7

Protection, 3-2, 4-3
PST Press Limit, double acting actuators, 4-20

R

Raw Travel Input, Displaying Status, 6-8
Related Documents, 1-3
Relay
Double−Acting, 5-10
Single−Acting Direct, 5-11
Single−Acting Reverse, 5-11
Relay A, 5-10
Relay Adjustment, 5-10
Double−Acting, 5-10
Relay B, 5-11
Relay C, 5-11
Relay Type, 4-18
Remote Travel Sensor Connections, 2-25
Using a 10 kOhm External Potentiometer as, 2-25
Using a Two−Resistor Series as, 2-27
Using the DVC6015, DVC6025 and DVC6035 Feedback unit as, 2-25
reset, 4-8
Restart Control Mode, 4-3
Revision Information, DVC6000
Device, 6-8
Firmware, 6-8
Hardware, 6-8
HART Universal, 6-8

S

Serial Number
Instrument, 4-17
Valve, 4-17, 4-18
Service Tools, 6-2

Set Point Filter Time, 4-11
Set Point Rate Close, 4-11
Set Point Rate Open, 4-11
Setpoint, 6-7
Setup Wizard, 3-2
SIS, Pressure Mode Enable, 4-10
SIS Alerts, 4-15
Solenoid Valve Testing, 2-22
special application, 2-22
Special Instructions for Safe Use and Installations in Hazardous Locations, 2-4
ATEX Flameproof, 2-5
ATEX Intrinsic Safety, 2-4
ATEX Type n, 2-5
CSA, 2-4
FM, 2-4
IECEx Intrinsic Safety, Type n, Flameproof, 2-5
Specifications, 1-3
Stabilize/Optimize, 3-4, 4-6
Status, 4-16, 6-4
Calibration & Diagnostics, 4-17
Instrument Time, 4-16
Integrator, 4-17
Integrator Saturation, 4-17
Operational, 4-17
Steady−State Air Consumption, 1-5
Stroke Valve, 6-4
Stroking the Output, with Field Communicator, 6-4
Supply Pressure, 1-5
Displaying Value, 6-7

T

Temperature
Maximum Recorded, Displaying Value, 6-7
Minimum Recorded, Displaying Value, 6-7
Units, 4-17
Terminal Box
Parts List, 8-4
Removing, 7-8
Replacing, 7-8
TEST Terminals, 7-15
Third−Party Approvals, 2-4
Touch−Up Travel Calibration, 5-6
DVC6000 Digital Valve Controllers

Travel, Displaying Value, 6-7
Travel / Pressure Control, 4-9
 End Point Pressure Control, 4-9
 Pressure Control, 4-9
Travel Accumulation Alert Enable, 4-15
Travel Accumulator
 Displaying Value, 6-7
 Enabling Alert, 4-15
 Resetting, 4-15
Travel Accumulator Alerts, 4-15
Travel Cutoffs, 4-9
Travel Deviation Alert, 4-13
Travel History Alerts, 4-15
travel indicator, 2-11
Travel Limit Lo, Travel/Pressure Control, 4-9
Travel Limit/Cutoff Alerts, 4-14
Travel Limits
 Change, 4-9, 4-15
 Setting, 4-9
Travel Limit Hi
 Travel Limit/Cutoff Alerts, 4-14
 Travel/Pressure Control, 4-9
Travel Sensor
 Adjusting
 DVC6010, 5-7
 DVC6015, 5-7
 DVC6020, 5-8
 DVC6025, 5-8
 DVC6030, 5-7
 DVC6035, 5-7
Parts List, 8-5
Removing
 DVC6010, 7-9
 DVC6015, 7-9
 DVC6020, 7-9
 DVC6025, 7-9
 DVC6030, 7-10
 DVC6035, 7-10
Replacing
 DVC6010, 7-10
 DVC6015, 7-10
 DVC6020, 7-12
 DVC6025, 7-12
 DVC6030, 7-13
 DVC6035, 7-13
Travel Sensor Adjust, 5-7

Travel Sensor Motion, 4-19
Travel Target, Displaying Value, 6-7
Travel Tuning Sets, Gain Values, 4-4
Troubleshooting, Instrument, 7-14
Tuning, 4-4
 Pressure, 4-7
 Travel, 4-4
Tuning Sets
 Pressure, 4-7
 Gain Values, 4-7
 Travel, 4-4
 Gain Values, 4-4

U
Upper Operating Pressure, 4-10

V
Valve Group Enable, 4-16
Valve Serial Number, 4-17, 4-18
Valve Style, 4-19
View Alert Records, 4-16
View Number of Days Powered Up, 6-8
Voltage Available
 Calculating, 2-31
 Checking, 7-14

W
Wiring Length Guidelines, Auxiliary Terminal, 6-5
Wiring Practices
 Communication Cable Capacitance, 2-33
 Control System Requirements, 2-30
 Compliance Voltage, 2-32
 HART Filter, 2-30
 Voltage Available, 2-31

Z
Zero Control Signal, 4-18
Zero Power Condition, 4-18