Y695A Series Vapor Recovery Regulators

Introduction

Scope of the Manual

This manual provides instructions for installation, startup, maintenance, and parts information for the Y695A Series vapor recovery regulators. Instructions and parts lists for other equipment used with these regulators are found in separate manuals.

Specifications

Specifications for the Y695A Series vapor recovery regulators are listed on page 2. Specifications for a given regulator as it originally comes from the factory are stamped on the nameplate.

Product Description

The Y695A Series vapor recovery regulators are direct-operated. They are used to sense an increase in vessel pressure and vent excessive internal vessel pressure to an appropriate vapor recovery disposal or reclamation system. They may also be used as backpressure regulators or relief valves.

Type Y695A—The Type Y695A has internal registration requiring no downstream control line.

Type Y695AM—The Type Y695AM has a blocked throat and a downstream control line connection for external registration.

Principle of Operation

The Y695A Series vapor recovery regulators are used to maintain a constant inlet (blanket) pressure with the outlet flowing to a system whose pressure is lower than that at the inlet. When vessel pressure increases above the setpoint of the regulator due to pumping in or thermal heating, the force of the control spring is overcome by pressure acting on the diaphragm. This moves the disk away from the orifice, allowing gas to flow from the vessel to the vapor recovery system. As vessel pressure is reduced, the force of the back disk spring causes the disk to move toward the orifice, decreasing the flow of gas out of the vessel. As vessel pressure drops below the setpoint of the regulator, the disk will seat against the orifice, shutting off the gas flow.

Installation

![WARNING]

Personal injury, property damage, equipment damage, or leakage due to escaping gas or bursting of pressure-containing parts may result if this regulator is overpressured or is installed where service conditions could exceed the limits given in the Specifications, or where conditions exceed any ratings of the adjacent piping or piping connections.

To avoid such injury or damage, provide pressure-relieving or pressure-limiting devices (as required by the appropriate code, regulation, or standard) to prevent service conditions from exceeding those limits. Additionally, physical damage to the regulator could cause personal injury or property damage due to escaping gas. To avoid such injury or damage, install the regulator in a safe and well ventilated location.
 Specifications

Body Size
NPS 3/4 or 1 (DN 20 or 25)

End Connection Styles
See Table 2

Maximum Allowable Inlet (Casing) Pressure
150 psig (10.3 bar)

Maximum Outlet Pressure
150 psig (10.3 bar)

Maximum Emergency Inlet Pressure to Avoid Internal Parts Damage
150 psig (10.3 bar)

Control Pressure Ranges
See Table 1

Orifice Size
7/16-inch (11 mm)

Temperature Capabilities

- **Nitrile (NBR):**
 - -20° to 180°F (-29° to 82°C)

- **Fluorocarbon (FKM):**
 - 40° to 300°F (4° to 149°C)

- **Perfluoroelastomer (FFKM):**
 - -20° to 300°F (-29° to 149°C)

- **Ethylene-Propylene (EPDM):**
 - -20° to 300°F (-29° to 149°C)

Spring Case Vent Connection
1/4 NPT

Diaphragm Case Connection
1/2 NPT

Approximate Weight
19 pounds (9 kg)

1. The pressure/temperature limits in this Instruction Manual and any applicable standard or code limitation should not be exceeded.

Table 1. Control Pressure Ranges (Spring, Key 6)

<table>
<thead>
<tr>
<th>RELIEF SET PRESSURE RANGE</th>
<th>SPRING PART NUMBER</th>
<th>SPRING COLOR</th>
<th>SPRING WIRE DIAMETER, INCHES (mm)</th>
<th>FREE LENGTH, INCHES (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 to 7-inches w.c. (5 to 17 mbar)(1)(2)</td>
<td>1B653827052</td>
<td>Red</td>
<td>0.08 (2.2)</td>
<td>3.62 (92)</td>
</tr>
<tr>
<td>3 to 13-inches w.c. (7 to 32 mbar)(1)(2)</td>
<td>1B653927022</td>
<td>Olive drab</td>
<td>0.10 (2.7)</td>
<td>3.75 (95)</td>
</tr>
<tr>
<td>10 to 26-inches w.c. (25 to 65 mbar)</td>
<td>1B537027052</td>
<td>Yellow</td>
<td>0.11 (2.9)</td>
<td>4.18 (106)</td>
</tr>
<tr>
<td>0.9 to 2.5 psig (0.06 to 0.17 bar)</td>
<td>1B537127022</td>
<td>Light green</td>
<td>0.15 (4.0)</td>
<td>4.06 (103)</td>
</tr>
<tr>
<td>1.3 to 4.5 psig (0.09 to 0.31 bar)</td>
<td>1B537227022</td>
<td>Light blue</td>
<td>0.18 (4.7)</td>
<td>3.94 (100)</td>
</tr>
<tr>
<td>3.8 to 7.0 psig (0.26 to 0.48 bar)</td>
<td>1B537327052</td>
<td>Black</td>
<td>0.21 (5.5)</td>
<td>3.98 (101)</td>
</tr>
</tbody>
</table>

1. Spring ranges based on spring case installed pointed down. When installed pointing up, the spring ranges increase by 2-inches w.c. (5 mbar).
2. Do not use Fluorocarbon (FKM) diaphragm with these springs at diaphragm temperatures lower than 60°F (16°C).

1. Use only qualified personnel when installing, operating, and maintaining the regulators. Before installing, inspect the regulators for any shipment damage or foreign material that may have collected during crating and shipment. Make certain the body interior is clean and the pipelines are free of foreign material. Apply pipe compound only to the male pipe threads.

2. Install the regulator using a straight run of pipe the same size or larger as the regulator body. Flow through the regulator body is indicated by the flow arrow attached to the body. If a block valve is required, install a full flow valve between the regulator and the blanketed vessel. For proper operation, the regulators should be installed with the spring case barrel pointed down. Key numbers referenced in this section are shown in Figures 3, 4, and 5.

A WARNING

A regulator may vent some gas to the atmosphere. In hazardous or flammable gas service, vented gas may accumulate, and cause personal injury, death, or property damage due to fire or explosion. Vent a regulator in hazardous gas service to a remote, safe location away from air intakes or any hazardous location. The vent line or stacking must be protected against condensation or clogging.

3. To keep the spring case vent from being plugged or the spring case from collecting moisture, corrosive chemicals, or other foreign material, point the vent down or otherwise protect it. To remotely vent the regulator, remove the vent (key 26) and install obstruction-free tubing or piping into the 1/4 NPT vent. Provide protection on a remote vent by installing a screened vent cap into the remote end of the vent pipe. If continuous operation of the system is required during inspection or maintenance, install a three-way bypass valve around the regulator.

4. Vapor recovery regulators are used to maintain a constant inlet (blanket) pressure with the outlet flowing to a system whose pressure is lower than that at the inlet. The recovery regulators are not intended to be used as an ASME certified relief device for overpressure protection on a tank. They are to be used as part of a gas blanketing system to control the outflow of blanketing gas under normal conditions...
and to collect tank vapors for the vapor disposal reclamation system. You should provide alternate methods of emergency overpressure protection.

Startup and Adjustment

WARNING

To avoid personal injury, property damage, or equipment damage caused by bursting of pressure containing parts or explosion of accumulated gas, never adjust the control spring to produce an outlet pressure higher than the upper limit of the outlet pressure range of that particular spring (see Table 1). If the desired outlet pressure is not within the range of the control spring, install a spring of the proper range according to the Diaphragm and Spring Case Area section of the maintenance procedure.

With installation completed, the regulator can be placed in operation by slowly opening the upstream and downstream block valves, if used, while using gauges to monitor pressure. The regulator has been adjusted at the factory to provide approximately the pressure requested. The range of allowable pressure settings is stamped on the nameplate. If a pressure setting beyond the stamped range is required, install a spring with the desired range by following the procedures for changing the spring in the Maintenance section. To adjust the pressure setting, perform the following steps (key numbers are referenced in Figures 3 and 5):

1. Remove the closing cap (key 22).
2. Turn the adjusting screw (key 35) either clockwise to increase control pressure or counterclockwise to decrease control pressure. The regulator will go into immediate operation. To ensure correct operation always use a pressure gauge to monitor the vapor recovery pressure when making adjustments.
3. Replace the closing cap (key 22).

Shutdown

First close the nearest upstream shutoff valve and then close the nearest downstream shutoff valve to vent the equipment properly. Next, open the vent valves on both the upstream and downstream sides of the regulator. All pressure between the shutoff valves is released through the open vent valves.

Maintenance

Regulator parts are subject to normal wear and must be inspected and replaced as necessary. The frequency of inspection and replacement of parts depends upon the severity of service conditions or the requirements of local, state, and federal regulations. Due to the care Fisher® takes in meeting all manufacturing requirements (heat treating, dimensional tolerances, etc.), use only replacement parts manufactured or furnished by Fisher.

WARNING

To avoid personal injury, property damage, or equipment damage caused by sudden release of pressure, isolate the regulator from all pressure and cautiously release trapped pressure from the regulator before attempting disassembly.
Body Area

This procedure is for gaining access to the disk assembly, orifice, and body seal O-ring. All pressure must be released from the regulator, before the following steps can be performed. Key numbers are referenced in Figures 3, 4, and 5.

1. To inspect and replace the disk assembly (key 13) remove the body cap assembly (key 43).
2. Remove the disk assembly (key 13) from the disk spacer (key 44) and replace if necessary.
3. To inspect the orifice (key 5, Figures 3 and 5) on Types Y695A and Y695AM or throat seal (key 31, Figure 5) and machine screw (key 33, Figure 5) on the Type Y695AM, remove the cap screws (key 2) and separate the diaphragm case assembly (key 4) from the body (key 1).
4. Remove and inspect the body seal O-ring (key 11) and the backup ring (key 49). Replace if damaged.
5. For a Type Y695AM (Figure 5), inspect the throat seal O-ring (key 31) by removing the machine screw (key 33). Replace if necessary. To install a throat seal, place the O-ring on the machine screw and thread into guide insert (key 18) to seal.
6. Inspect and replace the orifice (key 5) if necessary. Lightly lubricate the threads of the replacement orifice. Install with 29 to 37 foot-pounds (39 to 50 N•m) of torque.
7. Install the backup ring (key 49) into the body (key 1). Next place the body seal O-ring (key 11) into the body. See Figure 5.

Note

In the following step, be sure to install the spring case barrel pointed down as shown in Figure 1.

8. Replace the diaphragm casing (key 4) on the body (key 1) and secure with the cap screws (key 2) using 7 to 9 foot-pounds (9.5 to 12 N•m) of torque.
9. Secure the disk assembly (key 13) to the disk spacer (key 44). Place the back disk spring (key 41) and a new back body seal O-ring (key 42) on the back body cap (key 43).
10. Lightly lubricate the threads when replacing the body cap assembly.

Diaphragm and Spring Case Area

This procedure is for gaining access to the control spring, diaphragm, and lever assembly stem. All pressure must be released from the diaphragm case assembly before performing the following steps. Key numbers are referenced in Figures 3, 4, and 5.

To Change the Control Spring:

1. Remove the closing cap (key 22), and turn the adjusting screw (key 35) counterclockwise to remove all compression from the control spring (key 6).
2. Remove the adjusting screw (key 35) and change the control spring to match the desired spring range.
3. Install the adjusting screw (key 35) and follow steps 1 through 3 of the Startup and Adjustment section.
4. Install a replacement closing cap gasket (key 25), if necessary, and reinstall the closing cap (key 22).
5. If the spring range was changed, be sure to change the stamped spring range on the spring case nameplate.

To Disassemble and Reassemble Diaphragm Parts:

Use this procedure to gain access to the control spring, diaphragm assembly, valve stem, and stem O-ring. All pressure must be released from the diaphragm case assembly before performing these steps. Key numbers are referenced in Figures 3, 4, and 5.

1. Remove the closing cap (key 22) and the adjusting screw (key 35).
2. Remove the hex nuts (key 23, not shown) and cap screws (key 24), lift off the spring case assembly (key 3) and remove the control spring (key 6).
3. Remove the diaphragm (key 10) plus attached parts by tilting them so that the pusher post (key 8) slips off the lever assembly (key 16). To separate the diaphragm assembly (key 10) from the attached parts, unscrew the diaphragm plate cap screw (key 38) from the pusher post (key 8). If the only further maintenance is to replace the diaphragm parts, skip to step 7.
4. To replace the lever assembly (key 16), remove the machine screws (key 17). To replace the stem (key 14) or stem O-ring (key 30), perform Body Area Maintenance procedure steps 1 through 3, and pull the stem (key 14) out of the guide insert (key 18).
5. Install the stem (key 14) into the guide insert (key 18) and perform Body Area Maintenance procedure steps 7 through 10 as necessary.
6. Install the lever assembly (key 16) into the stem (key 14) and secure the lever assembly (key 16) with the machine screws (key 17).
7. Reassemble the diaphragm parts as follows:
 - Pusher post (key 8)
 - Diaphragm head gasket (key 45)
 - Diaphragm head (key 7)
 - Diaphragm (key 10)
Diaphragm head (key 7)
Lower spring seat (key 50)
Washer (key 36)
Diaphragm plate cap screws (key 38)
Secure using 5 to 6 foot-pounds (7 to 8 N•m) of torque.

8. Install the pusher post (key 8) plus attached diaphragm parts onto the lever assembly (key 16).

9. Install the spring case (key 3) on the diaphragm casing (key 4) so that the vent assembly (key 26) is correctly oriented, and secure it with the cap screws (key 24) and hex nuts (key 23, not shown) fingertight.

10. Install the control spring (key 6) and the adjusting screw (key 35) in the spring case (key 3). Turn the adjusting screw (key 35) clockwise until there is enough control spring (key 6) force to provide proper slack to the diaphragm (key 10). Using a crisscross pattern, finish tightening the cap screws (key 24) and hex nuts (key 23, not shown) to 160 to 190 inch-pounds (22 to 26 N•m) of torque. To adjust the outlet pressure to the desired setting, refer to the Startup and Adjustment section.

11. Install a replacement closing cap gasket (key 25) if necessary, and then install the closing cap (key 22).

To Convert Constructions

The Type Y695A to the Type Y695AM:
New parts required: keys 30, 31, and 33
1. Remove pipe plug (key 27) from the diaphragm casing (key 4).
2. Refer to steps 1 through 3 in the Body Area Maintenance section.
3. Insert the throat seal O-ring (key 31, Figure 5) and machine screw (key 33, Figure 5).
4. Insert the stem seal O-ring (key 30) by following steps 1 through 6 and 8 through 11 in the Diaphragm and Spring Case Area Maintenance section.
5. Reassemble following steps 7 through 10 of the Body Area Maintenance section.

The Type Y695AM to the Type Y695A:
New parts required: key 27
1. Insert pipe plug (key 27) in the diaphragm casing (key 4).
2. Follow steps 1 through 6 and 8 through 11 in the Diaphragm and Spring Case Area Maintenance section to remove the stem seal O-ring (key 30, Figure 5).
Table 2. Body Materials and Part Numbers (Body, key 1)

<table>
<thead>
<tr>
<th>BODY MATERIAL</th>
<th>END CONNECTION STYLE</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NPS 3/4 (DN 20) Body</td>
</tr>
<tr>
<td>Ductile iron</td>
<td>NPT</td>
<td>17B9020X012</td>
</tr>
<tr>
<td>CF8M Stainless steel</td>
<td>NPT</td>
<td>17B9020X032</td>
</tr>
<tr>
<td></td>
<td>ASME CL150 RF</td>
<td>17B5280X012</td>
</tr>
<tr>
<td></td>
<td>ASME CL300 RF</td>
<td>17B5280X032</td>
</tr>
<tr>
<td></td>
<td>PN 16/25/40</td>
<td>17B5280X052</td>
</tr>
<tr>
<td>CF8M Stainless steel with Carbon steel flanges</td>
<td>ASME CL150 RF</td>
<td>17B5280X072</td>
</tr>
<tr>
<td></td>
<td>ASME CL300 RF</td>
<td>17B5280X092</td>
</tr>
<tr>
<td></td>
<td>PN 16/25/40</td>
<td>17B5280X112</td>
</tr>
<tr>
<td>Hastelloy® C</td>
<td>ASME CL150 RF</td>
<td>- - -</td>
</tr>
</tbody>
</table>

1. All flanges are welded on except Hastelloy® C. All flange dimensions are 14-inches (356 mm) face-to-face.

3. Follow steps 1 through 5 of Body Area Maintenance to remove the throat seal (key 31, Figure 5) and machine screw (key 33, Figure 5).

4. Reassemble following steps 7 through 10 of the Body Area Maintenance section.

Parts Ordering

When contacting your local Sales Office about this regulator, include the type number and all other pertinent information stamped on the nameplate. Specify the complete 11-character part number from the following parts list when ordering replacement parts.

Parts List

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Body</td>
<td>See Table 2</td>
</tr>
<tr>
<td>2</td>
<td>Cap Screw (2 required)</td>
<td>1C856228992</td>
</tr>
<tr>
<td>3</td>
<td>Spring Case Assembly</td>
<td>1B3456X012</td>
</tr>
<tr>
<td>4</td>
<td>Diaphragm Casing</td>
<td>13B0109X042</td>
</tr>
<tr>
<td></td>
<td>CF8M Stainless steel</td>
<td>13B0109X032</td>
</tr>
<tr>
<td>5</td>
<td>Orifice, 7/16-inch (11 mm)</td>
<td>47B3063X012</td>
</tr>
<tr>
<td></td>
<td>316 Stainless steel</td>
<td>47B3064X012</td>
</tr>
<tr>
<td></td>
<td>Hastelloy® C</td>
<td>47B3064X022</td>
</tr>
<tr>
<td>6</td>
<td>Spring</td>
<td>0L0832X0012</td>
</tr>
<tr>
<td></td>
<td>2 to 7-inches w.c. (5 to 17 mbar)</td>
<td>0L0832X0012</td>
</tr>
<tr>
<td></td>
<td>3 to 13-inches w.c. (7 to 32 mbar)</td>
<td>0L0832X0022</td>
</tr>
<tr>
<td></td>
<td>10 to 26-inches w.c. (25 to 65 mbar)</td>
<td>0L0832X0022</td>
</tr>
<tr>
<td></td>
<td>0.9 to 2.5 psig (0.06 to 0.17 bar)</td>
<td>0L0832X012</td>
</tr>
<tr>
<td></td>
<td>1.3 to 4.5 psig (0.09 to 0.31 bar)</td>
<td>0L0832X012</td>
</tr>
<tr>
<td></td>
<td>3.8 to 7 psig (0.26 to 0.48 bar)</td>
<td>0L0832X012</td>
</tr>
<tr>
<td>7</td>
<td>Diaphragm Head (2 required)</td>
<td>1B79723X032</td>
</tr>
<tr>
<td></td>
<td>S304 Stainless steel</td>
<td>1B79723X032</td>
</tr>
<tr>
<td></td>
<td>Hastelloy® C</td>
<td>1B79723X022</td>
</tr>
</tbody>
</table>

*Recommended spare part.

Key Description Part Number
8 Pusher Post 316 Stainless steel 1B83465X012
Hastelloy® C 1B83465X022
10* Diaphragm Nitrile (NBR) 37B9720X012
Fluorocarbon (FKM) 23B0101X052
Nitrile (NBR) with Polytetrafluoroethylene (PTFE) 34B4375X012
11* Body Seal O-Ring Nitrile (NBR) 1H99306992
Fluorocarbon (FKM) 1H99306992
Perfluoroelastomer (FFKM) 1H9938X0042
Ethylenepropylene (EPDM) 1H9938X0022
12* Insert Seal Nitrile (NBR) 1B885506992
Fluorocarbon (FKM) 1B885506992
Perfluoroelastomer (FFKM) 1B885506992
Ethylenepropylene (EPDM) 1B885506992
13* Disk Assembly 316 Stainless Steel with Nitrile (NBR) 1E9948X0042
Fluorocarbon (FKM) 1E9948X0032
Perfluoroelastomer (FFKM) 1E9948X0052
Ethylenepropylene (EPDM) 1E9948X0062
Hastelloy® C with PTFE 1E9948X0072
Figure 4. Types Y695A and Y695AM Assembly Detail

Figure 5. Type Y695AM Assembly
Y695A Series

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
<th>Part Number</th>
<th>Key</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Pipe Plug</td>
<td></td>
<td>38</td>
<td>Cap Screw</td>
<td>1B290524052</td>
</tr>
<tr>
<td></td>
<td>Stainless steel</td>
<td>1A369224492</td>
<td>39</td>
<td>Back Disk Spring</td>
<td>1E984637022</td>
</tr>
<tr>
<td></td>
<td>Hastelloy® C</td>
<td>1A369235072</td>
<td>41</td>
<td>Stainless steel</td>
<td>1B0255X012</td>
</tr>
<tr>
<td>30*</td>
<td>Stem Seal (Type Y695AM only)</td>
<td></td>
<td>42*</td>
<td>Hastelloy® C and NACE</td>
<td>13A1584X012</td>
</tr>
<tr>
<td></td>
<td>Nitrile (NBR)</td>
<td>1H2926E0012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluorocarbon (FKM)</td>
<td>1H2926X0022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perfluoroelastomer (FKM)</td>
<td>1H2926X0042</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylene propylene (EPDM)</td>
<td>1H2926X012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31*</td>
<td>Throat Seal (Type Y695AM only)</td>
<td></td>
<td>43</td>
<td>Back Body Cap</td>
<td>1F2737X012</td>
</tr>
<tr>
<td></td>
<td>Nitrile (NBR)</td>
<td>1D682506992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluorocarbon (FKM)</td>
<td>1D6825X0012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perfluoroelastomer (FKM)</td>
<td>1D6825X0032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylene propylene (EPDM)</td>
<td>1D6825X0042</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Machine Screw (Type Y695AM only)</td>
<td></td>
<td>44</td>
<td>Disk Spacer</td>
<td>1E9856X0012</td>
</tr>
<tr>
<td></td>
<td>Stainless steel</td>
<td>1B0703X022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hastelloy® C</td>
<td>1B0703X032</td>
<td>45*</td>
<td>Diaphragm Head Gasket</td>
<td>1B3450X012</td>
</tr>
<tr>
<td>35</td>
<td>Adjusting Screw</td>
<td></td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Washer</td>
<td></td>
<td>47</td>
<td>Drive Screw (2 required)</td>
<td>1A369228982</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>49</td>
<td>Backup Ring</td>
<td>1B3446X012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>Lower Spring Seat</td>
<td>1B636325062</td>
</tr>
</tbody>
</table>

*Recommended spare part.

Industrial Regulators

Emerson Process Management Regulator Technologies, Inc.

USA - Headquarters
McKinney, Texas 75069-1872 USA
Tel: 1-800-558-5853
Outside U.S. 1-972-548-3574

Asia-Pacific
Shanghai, China 201206
Tel: +86 21 2892 9000

Europe
Bologna, Italy 40013
Tel: +39 051 4190611

Middle East and Africa
Dubai, United Arab Emirates
Tel: +971 4811 8100

For further information visit www.fisherregulators.com

Natural Gas Technologies

Emerson Process Management Regulator Technologies, Inc.

USA - Headquarters
McKinney, Texas 75069-1872 USA
Tel: 1-800-558-5853
Outside U.S. 1-972-548-3574

Asia-Pacific
Singapore, Singapore 128461
Tel: +65 6777 8211

Europe
Bologna, Italy 40013
Tel: +39 051 4190611

For further information visit www.fisherregulators.com

TESCOM

Emerson Process Management Tescom Corporation

USA - Headquarters
Elk River, Minnesota 55330-2445 USA
Tel: 1-763-241-3238

Europe
Selmsdorf, Germany 23923
Tel: +49 (0) 38823 31 0

For further information visit www.fisherregulators.com

The Emerson logo is a trademark and service mark of Emerson Electric Co. All other marks are the property of their prospective owners. Fisher is a mark owned by Fisher Controls, Inc., a business of Emerson Process Management.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. We reserve the right to modify or improve the designs or specifications of such products at any time without notice.

Emerson Process Management does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson Process Management product remains solely with the purchaser.