

- 310 Wafer high performance butterfly valve
- 312 Lugged high performance butterfly valve

GENERAL APPLICATION

High performance applications such as steam, chill water, water, utility lines, gasoline, natural gas, air, oil, jet fuels and process lines. Contact your sales representative for appropriate materials for specific services.

Industry compliance

ASME B16.34
API 609
MSS-SP68
CRN Registration
PED Compliant in some configurations

TECHNICAL DATA

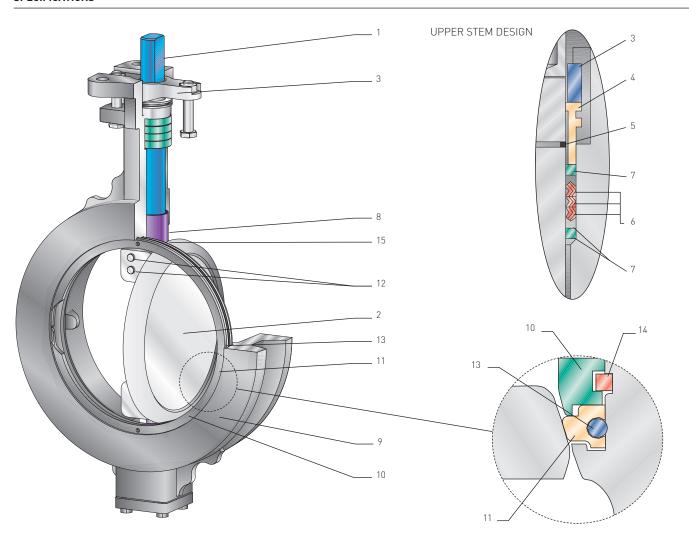
Size range: NPS 2 to 12 (DN 50 to 300)

Rating: ASME Class 150

Pressure: 285 psi (19.7 bar) bi-directional,

dead-end

Vacuum: 50 microns


Temperature: -20°F to 350°F (-29°C to 177°C)

FEATURES

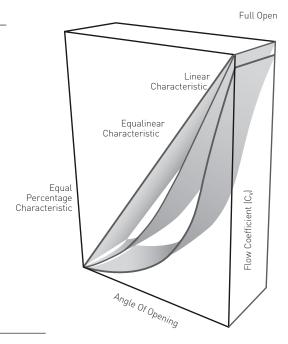
- Uninterrupted gasket surfaces help eliminate problems associated with seat retaining screws in the gasket surface and allows use of standard spiral wound gaskets.
- Unique interference seat design with energized elastomer 0-ring allows bi-directional ANSI Class VI shut-off at lower pressures. The seat is further energized by line pressure, providing the same tight bi-directional shut-off at full-rated pressure.
- Heavy duty circular key holds the seat and retaining ring in place, providing bi-directional, dead-end service at full-rated pressure. This helps eliminate the need for easily corroded and hard-to-remove retention screws.
- Valve stem designed to API 609 standards is blow-out resistant.
- Seat retaining ring is housed within the flange gasket ID to eliminate potential emission path.
- Face-to-face conforms to MSS SP-68 and can be configured to ISO 5752 short.
- Adjustable packing utilizes unique rocker-shaped gland bridge that compensates for uneven adjustment of gland nuts.
- Extended neck allows for two inches of clearance for insulation.

SPECIFICATIONS

MATERIALS

MAIER	IALJ			
No.	Description	Material	Material standard	Optional material
1	Stem	17-4PH	ASTM A 564 cond. H1075 or H 1100	316 SS cond. B
2	Disc	316 SS	ASTM A 351-CF8M	
3	Gland bridge	17-4SS HT	ASTM A747-CB7C1-1	
4	Packing gland follower	316 SS	ASTM A 276-316	
5	Blowout-resistant ring	18-8 SS		
6	Packing	TFE	Die formed TFE braid	Graphite
7	Anti-extrusion ring	316 SS	ASTM A 276-316	
8	Bearings (upper and lower)	CS	TFE impregnated/fiber reinforced	
		SS	TFE impregnated/fiber reinforced	
9	Body	CS	ASTM A216-WCB	
		SS	ASTM A351-CF8M	
10	Seat retaining ring	CS	ASTM A36	
		SS	ASTM A240	
11	Seat	RTFE	Reinforced polytetrafluoroethylene	PTFE
12	Wedge pins	17-4PH	ASTM A564	316 SS cond. B
13	Seat backing O-ring		PFA encapsulated FKM	
14	Circular key	304 SS	ASTM A240	
15	Thrust bearing (upper and lower)	316 SS	Nitrided	

SPECIFICATIONS


Principles of design

K-LOK @is an ideal control valve designed to provide an inherent equalinear characteristic that is suitable for most linear and equal percentage applications.

The valve offers a high flow capacity, thin profile disc with a rangeability of 33:1.

The use of tangentially located disc/stem wedge pins removes engagement clearances and eliminates valve hysteresis.

While the valve is throttling, the stem's double offset location causes the disc to cam away from the seat, reducing wear and deformation. When the disc closes, a drop tight seal is assured. [See page 4 for additional information.]

DESIGN FEATURES

Stem (1) is manufactured from materials that provide maximum strength and stability. The stem surface is finished to better than Ra 31 for maximum sealing interface between the stem and the packing.

Gland bridge (3) incorporates a rocker shape to compensate for uneven adjustment of the gland nuts. The upper gland nuts are captured in the bridge for ease of maintenance.

Packing gland follower (4) has a circular groove for easy field removal.

Blowout-resistant ring (5) is standard on all Figure 310 and 312 valves.

Packing (6) utilizes a combination of force-dried, soft-braided rings and solid TFE "V" rings to provide a superior stem seal.

Bearings (8) of press fit steel or stainless steel are located near the disc to minimize the possibility of deflection.

Body (9) features an extended neck that allows for two inches of insulation and integral cast travel stop. Non-interrupted flange gasket surfaces allow for the use of standard spiral wound gaskets.

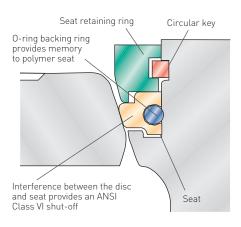
Seat retaining ring (10) is located within the flange gasket ID. This allows for an uninterrupted flange sealing surface and maximum emissions control.

Seat (11) is an advanced patented bi-directional dual-lock seat design* that provides an interference disc/seat seal at vacuum-to-low pressures and utilizes line pressure to achieve maximum sealability at medium-to-high pressures.

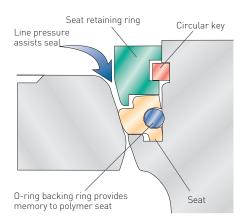
Wedge pins (12) are tangentially located for maximum strength and then welded in place after final assembly and testing.

Seat backing 0-ring (13) is available in a variety of materials to meet customer requirements. (Materials and applications are listed on page 8.)

Circular key (14) provides bi-directional, dead-end service at full-rated pressure.


Removable in the field for quick seat replacement.

Integrally cast mounting pad allows direct mounting of Keystone actuators.


Flange location webs allow precise alignment of valve between pipe flanges during installation.

*Patented

Vacuum 50 microns to Low Pressure

Medium to High Pressure

SPECIFICATIONS

DISC AND SEAT DESIGN

 $K-LOK^{\otimes}$ disc geometry maximizes flow capacity by increasing the available flow area through the valve. This increase in disc efficiency results in a high valve C_V .

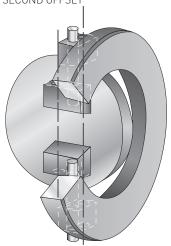
Two-piece stem vs. one-piece stem

The improved C_{ν} may be easily explained by comparing the aspect ratio of the K-LOK® two-piece stem and disc arrangement to that of a through-stem design. This unique disc configuration provides a universal inherent flow characteristic which is referred to as equalinear.

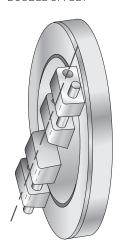
Double offset disc/stem

The K-LOK $^{\circ}$ design uses a double offset disc/stem design. The first offset is achieved by locating the stems downstream of the centerline of the seat. This allows for a total unobstructed 360 degrees sealing surface.

The second offset locates the stems off the center of the vertical axis of the seat. The combination of these two offsets creates a camming effect as the disc swings into and out of the seat. The disc lifts quickly out of the seat in the first few degrees of travel and does not contact the seat again until it is nearly closed. There is minimum wear between the seat and disc, so operating torques are reduced and seat life is extended.

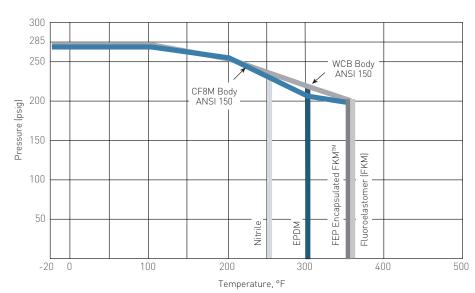

Competitor: K-LOK®: with one-piece stem K-LOK®: with two-piece stem

Aspect ratio = open area ÷ disc area


FIRST OFFSET

SECOND OFFSET

DOUBLE OFFSET



SPECIFICATIONS

C_{ν} VALVES VS. TRAVEL POSITION (installed in the preferred flow direction)

	Angle of opening													
Size NPS	10°	20°	30°	40°	50°	60°	70°	80°	90°					
2	0	4	14	25	35	42	46	50	52					
21/2	0	12	26	47	72	95	121	137	142					
3	0	14	30	53	82	111	142	161	168					
4	11	39	79	123	183	260	347	443	496					
5	24	66	133	202	295	425	574	755	859					
6	32	85	170	255	371	538	729	968	1106					
8	36	148	302	457	677	1016	1423	2034	2344					
10	41	221	455	691	1032	1571	2228	3271	3781					
12	45	288	596	907	1358	2082	2968	4409	5102					

PRESSURE/TEMPERATURE RATING FOR BODY AND BACKING RING MATERIALS

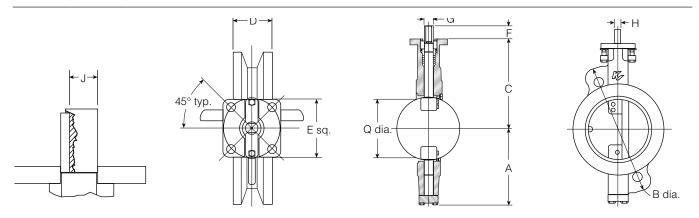
SEATING AND UN-SEATING TORQUE

Seating and un-seating torques are a function of the size of the valve and the shut-off pressure of the system.

Specific torque ratings can be found in the seating/un-seating chart at the intersection of the "size" row and the "shut-off pressure" column.

All torques listed are for normal service conditions (i.e. operating frequency is a minimum of once per month; disc corrosion is expected to be mild or minor, the media is a clean gas, liquid or steam, and is non-abrasive) and the chemical effects upon the seat are minor.

PTFE AND RTFE BI-DIRECTIONAL SEATING AND UN-SEATING TORQUE VALUES (clean water service)

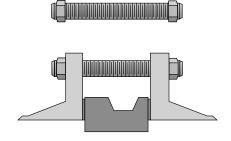

PIFE AND KIFE D	I-DIRECTIONAL SEATING AND C	JN-SEATING	TURQUE VALU	JES (Clean wa	ter service)										
		Seating and un-seating torque (lbs-in)													
		System shut-off pressure (psig)													
Size NPS	Shaft mounting code	0	50	100	150	200	250	285							
2	BBG	92	101	109	118	126	135	141							
21/2	BAC	142	158	175	191	208	224	236							
3	BAC	175	195	215	235	255	274	288							
4	BAC	260	296	333	369	406	442	468							
5	BAD	327	411	495	579	664	748	807							
6	BAD	448	563	677	792	906	1021	1101							
8	CAE	500	760	1019	1279	1539	1798	1980							
10	CAF	678	1119	1560	2000	2441	2882	3191							
12	CAF	970	1604	2238	2873	3507	4141	4585							

NOTES

- 1. Torques are applicable to PTFE and RTFE seats.
- 2. For other service conditions, select the torque applicable for the maximum differential pressure and multiply by the following factor:

Water: x 1.0 Lubricious service: x 0.75 Dry service: x 1.9 Heavy solids: x 2.5

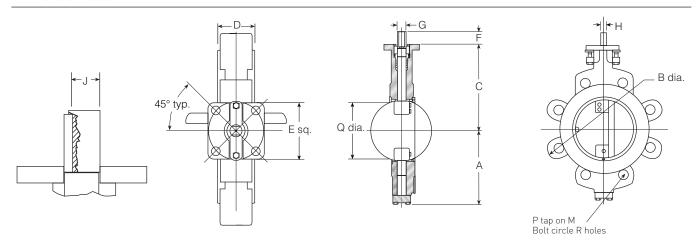
DIMENSIONS - WAFER STYLE



WAFER STYLE

= = ===																
				١	/alve dir	mension	s									
					M	SS			Bolt	No.	Hole	Weight	Adapt.			
Size NPS	Α	В	С	Q	E	D	F	G	Н	J	Key	circle	holes	dia.	(lbs.)	code
2	3.78	6.38	4.94	1.97	3.19	1.69	0.87	0.47	3/8	N/A	N/A	31/4	4	7/16	8	BBG
21/2	4.17	7.17	5.39	2.64	3.19	1.89	1.22	0.62	7/16	N/A	N/A	31/4	4	7/16	9	BAC
3	4.65	7.87	5.73	2.91	3.19	1.89	1.22	0.62	7/16	N/A	N/A	31/4	4	7/16	12	BAC
4	5.24	9.21	6.71	3.86	3.19	2.13	1.22	0.62	7/16	N/A	N/A	31/4	4	7/16	19	BAC
5	6.34	10.87	7.28	5.00	3.19	2.25	1.22	0.75	1/2	N/A	N/A	31/4	4	7/16	25	BAD
6	7.01	12.20	8.01	5.75	3.19	2.25	1.22	0.75	1/2	N/A	N/A	31/4	4	7/16	31	BAD
8	8.03	14.25	9.41	7.64	4.65	2.50	1.22	0.87	5/8	N/A	N/A	5	4	9/16	50	CAE
10	9.45	16.77	10.83	9.21	4.65	2.81	2.00	1.12	N/A	0.98	1/4 x 1/4	5	4	9/16	68	CAF
12	10.59	19.29	12.07	11.42	4.65	3.19	2.00	1.12	N/A	0.98	1/4 x 1/4	5	4	9/16	99	CAF

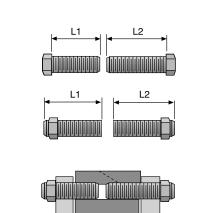
310 WAFER - RECOMMENDED FLANGE BOLT LENGTHS


			Lengths of fasteners (in.)						
Size NPS	Qty.	Bolt size	Bolts	All-thread studs					
2	4	5/8 - UNC	41/2	5					
21/2	4	5/8 - UNC	41/2	5					
3	4	5/8 - UNC	41/2	51/4					
4	8	5/8 - UNC	43/4	51/2					
5	8	3/4 - UNC	5	6					
6	8	3/4 - UNC	51/4	6					
8	8	3/4 - UNC	5¾	61/2					
10	12	7/8 - UNC	61/4	71/4					
12	12	7/8 - UNC	7	73/4					

NOTE

Bolt lengths are based on ANSI Class 150 weld neck flanges per ANSI B16.5 and a gasket thickness of 0.062 inch.

DIMENSIONS - LUG STYLE



LUG STYLE

LOUSTILL																		
				V.	alve dir	mensior	าร			Tapped lug data			To	p plate d	ata			
					М	SS								Bolt	No.	Hole	Weight	Adapt.
Size NPS	Α	В	С	Q	Ε	D	F	G	Н	J	М	P	R	circle	holes	dia.	(lbs.)	code
2	3.78	6.25	4.94	1.97	3.19	1.69	0.87	0.50	3/8	N/A	4.750	% - 11UNC-2B	4	31/4	4	7/16	12	BBG
21/2	4.17	7.01	5.39	2.64	3.19	1.89	1.22	0.62	7/16	N/A	5.500	% - 11UNC-2B	4	31/4	4	7/16	15	BAC
3	4.65	7.50	5.73	2.91	3.19	1.89	1.22	0.62	7/16	N/A	6.000	5⁄8 - 11UNC-2B	4	31/4	4	7/16	18	BAC
4	5.24	9.65	6.71	3.86	3.19	2.13	1.22	0.62	7/16	N/A	7.500	5⁄8 - 11UNC-2B	8	31/4	4	7/16	32	BAC
5	6.34	11.02	7.28	5.00	3.19	2.25	1.22	0.75	1/2	N/A	8.500	3/4 - 10UNC-2B	8	31/4	4	7/16	40	BAD
6	7.01	11.73	8.01	5.75	3.19	2.25	1.22	0.75	1/2	N/A	9.500	3/4 - 10UNC-2B	8	31/4	4	7/16	46	BAD
8	8.03	13.50	9.41	7.64	4.65	2.50	1.22	0.87	5/8	N/A	11.750	3/4 - 10UNC-2B	8	5	4	9/16	69	CAE
10	9.45	16.93	10.83	9.21	4.65	2.81	2.00	1.12	N/A	0.98	14.250	% - 9UNC-2B	12	5	4	9/16	121	CAF
12	10.59	19.02	12.07	11.42	4.65	3.19	2.00	1.12	N/A	0.98	17.000	% - 9UNC-2B	12	5	4	9/16	159	CAF

312 LUG – RECOMMENDED FLANGE BOLT LENGTHS

312 LUG - F	KECUMM	ENDED FLA	MRE ROLL F	ENGTHS		
				Length of fa	steners (in.)	
			Up st	ream side - L1	Down s	tream side - L2
Size NPS	Qty.	Bolt size	Bolts	All-thread studs	Bolts	All-thread studs
2	4	5/8 - UNC	11/2	21/2	13/4	21/2
21/2	4	5/8 - UNC	13/4	21/2	2	21/2
3	4	5/8 - UNC	13/4	21/2	2	23/4
4	8	5/8 - UNC	13/4	21/2	2	23/4
5	8	3/4 - UNC	2	3	21/4	3
6	8	3/4 - UNC	2	3	21/4	31/4
8	8	3/4 - UNC	2	3	21/4	31/4
10	12	7/8 - UNC	21/4	31/2	21/2	33/4
12	12	7/8 - UNC	21/2	33/4	23/4	4

NOTE

Bolt lengths are based on ANSI Class 150 weld neck flanges per ANSI B16.5 and a gasket thickness of 0.062 inch.

OPTIONS

OPTIONAL FLANGE STANDARDS

		Size (in.)																
	:	2		21/2		3		4		5		6		В	10		12	
Standard	310	312	310	312	310	312	310	312	310	312	310	312	310	312	310	312	310	312
ASME 300	Υ	Ν	Υ	Ν	Υ	Ν	Υ	Υ	Υ	Υ	Υ	Ν	Υ	Ν	Υ	Ν	Υ	Ν
DIN 2632 PN-10	Υ	Υ	Υ	Υ	Υ	Ν	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
DIN 2633 PN-16	Υ	Υ	Υ	Υ	Υ	Ν	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Ν	Υ	Υ	Υ	Υ
DIN 2634 PN-25	Υ	Υ	Υ	Ν	Υ	Ν	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Ν	Υ	Υ	Υ	Ν
JIS B 2212 10K	Υ	Υ	Υ	Υ	Υ	Ν	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Ν	Υ	Υ	Υ	Ν
JIS B 2213 16K	Υ	Ν	Υ	Ν	Υ	Ν	Υ	Υ	Υ	Υ	Υ	Ν	Υ	Ν	Υ	Υ	Υ	Ν

NOTES

- 1. Optional flange standard must be specified at time of order.
- 2. Valve is rated to 285 psi. Do not exceed pressure rating.