Electrochemical H$_2$S Detector
Used with ST1200 H$_2$S Sensor
Important Instructions

This manual is provided for informational purposes only. Although the information contained in this manual is believed to be accurate, it could include technical inaccuracies or typographical errors. Changes are, therefore, periodically made to the information within this document and incorporated without notice into subsequent revisions of the manual. Emerson assumes no responsibility for any errors that may be contained within this manual.

This manual is a guide for the use of a Toxic Gas Transmitter and the data and procedures contained within this document have been verified and are believed to be adequate for the intended use of the transmitter. If the transmitter or procedures are used for purposes other than as described in the manual without receiving prior confirmation of validity or suitability, Net Safety Monitoring Inc does not guarantee the results and assumes no obligation or liability.

No part of this manual may be copied, disseminated or distributed without the express written consent of Emerson.

Emerson products, are carefully designed and manufactured from high quality components and can be expected to provide many years of trouble free service. Each product is thoroughly tested, inspected and calibrated prior to shipment. Failures can occur which are beyond the control of the manufacturer. Failures can be minimized by adhering to the operating and maintenance instructions herein. Where the absolute greatest of reliability is required, redundancy should be designed into the system.

MODEL: H₂S-100ppm. Optional 50ppm, 20ppm and 10ppm

Available in: 24Vdc Version / 12Vdc Version / 10 - 32Vdc

Assembly consists of:

XP-H₂S housing (supersedes PE-EX-H₂S-S) ST1200-XXX sensor (supersedes PE1200-XX-XXX) JB2 junction box

CB2 connector board
Warranty

1. **Limited Warranty.** Subject to the limitations contained in Section 10 (Limitation of Remedy and Liability) herein, Seller warrants that (a) the licensed firmware embodied in the Goods will execute the programming instructions provided by Seller; (b) that the Goods manufactured by Seller will be free from defects in materials or workmanship under normal use and care; and (c) Services will be performed by trained personnel using proper equipment and instrumentation for the particular Service provided. The foregoing warranties will apply until the expiration of the applicable warranty period. Sensors and detectors are warranted against defective parts and workmanship for 24 months from the date of purchase and other electronic assemblies for 36 months from the date of purchase. Products purchased by Seller from a third party for resale to Buyer (Resale Products) shall carry only the warranty extended by the original manufacturer. Buyer agrees that Seller has no liability for Resale Products beyond making a reasonable commercial effort to arrange for procurement and shipping of the Resale Products. If Buyer discovers any warranty defects and notifies Seller thereof in writing during the applicable warranty period, Seller shall, at its option, (i) correct any errors that are found by Seller in the firmware or Services; (ii) repair or replace FOB point of manufacture that portion of the Goods found by Seller to be defective; or (iii) refund the purchase price of the defective portion of the Goods/Services. All replacements or repairs necessitated by inadequate maintenance; normal wear and usage; unsuitable power sources or environmental conditions; accident; misuse; improper installation; modification; repair; use of unauthorized replacement parts; storage or handling; or any other cause not the fault of Seller, are not covered by this limited warranty and shall be replaced or repaired at Buyer’s sole expense and Seller shall not be obligated to pay any costs or charges incurred by Buyer or any other party except as may be agreed upon in writing in advance by Seller. All costs of dismantling, reinstallation, freight and the time and expenses of Seller’s personnel and representatives for site travel and diagnosis under this limited warranty clause shall be borne by Buyer unless accepted in writing by Seller. Goods repaired and parts replaced by Seller during the warranty period shall be in warranty for the remainder of the original warranty period or 90 days, whichever is longer. This limited warranty is the only warranty made by Seller and can be amended only in a writing signed by an authorized representative of Seller. The limited warranty herein ceases to be effective if Buyer fails to operate and use the Goods sold hereunder in a safe and reasonable manner and in accordance with any written instructions from the manufacturers. THE WARRANTIES AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE. THERE ARE NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, AS TO MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE OR ANY OTHER MATTER WITH RESPECT TO ANY OF THE GOODS OR SERVICES.

2. **Limitation of Remedy and Liability.** SELLER SHALL NOT BE LIABLE FOR DAMAGES CAUSED BY DELAY IN PERFORMANCE. THE REMEDIES OF BUYER SET FORTH IN THE AGREEMENT ARE EXCLUSIVE. IN NO EVENT, REGARDLESS OF THE FORM OF THE CLAIM OR CAUSE OF ACTION (WHETHER BASED IN CONTRACT, INFRINGEMENT, NEGLIGENCE, STRICT LIABILITY, OTHER TORT OR OTHERWISE), SHALL SELLER’S LIABILITY TO BUYER AND/OR BUYER’S CUSTOMERS EXCEED THE PRICE TO BUYER OF THE SPECIFIC GOODS MANUFACTURED OR SERVICES PROVIDED BY SELLER GIVING RISE TO THE CLAIM OR CAUSE OF ACTION. BUYER AGREES THAT IN NO EVENT SHALL SELLER’S LIABILITY TO BUYER AND/OR BUYER’S CUSTOMERS EXTEND TO INCLUDE INCIDENTAL, CONSEQUENTIAL OR PUNITIVE DAMAGES. THE TERM “CONSEQUENTIAL DAMAGES” SHALL INCLUDE, BUT NOT BE LIMITED TO, LOSS OF ANTICIPATED PROFITS, REVENUE OR USE AND COSTS INCURRED INCLUDING WITHOUT LIMITATION FOR CAPITAL, FUEL AND POWER, AND CLAIMS OF BUYER’S CUSTOMERS.
Contents

Section 1: Description ... ii

Section 2: Features ... 3

Section 3: Specifications ... 5

Section 4: Sensor operation .. 7
 4.1 Sensing element .. 7
 4.2 Sensor output ... 7

Section 5: Installation .. 9
 5.1 Detector positioning .. 9
 5.2 Wiring requirements .. 9
 5.3 Sensor wiring ... 10

Section 6: Startup procedure ... 14

Section 7: Calibration ... 16

Section 8: Maintenance ... 18
 8.1 Sensing element replacement .. 18

Section 9: Troubleshooting ... 20

Section 10: Spare parts ... 22

Appendix A: Electrostatic sensitive device handling procedure 24

Appendix B: Wire Resistance in Ohms .. 26
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Cross sensitivity of electrochemical sensor to 100 ppm concentrations</td>
<td>7</td>
</tr>
<tr>
<td>5-1</td>
<td>Maximum wiring distances from sensor to controller/transmitter</td>
<td>10</td>
</tr>
<tr>
<td>9-1</td>
<td>Troubleshooting guide</td>
<td>20</td>
</tr>
</tbody>
</table>
List of Figures

Figure 3-1 H₂S Detector assembly ... 6
Figure 5-1 Sensor wiring ... 11
Section 1: Description

The Net Safety Monitoring Inc. H₂S-XXX-XX electrochemical Hydrogen Sulfide (H₂S) gas detector consists of an explosion-proof enclosure, electronic circuitry and an electrochemical H₂S sensing element. This H₂S sensor provides continuous monitoring of hydrogen sulphide (H₂S) concentrations in the range of 0 to 100, 50, 20 or 10 parts per million (ppm). The detector can be used with one of the Net Safety Monitoring Inc. Uni-Trol™ Controllers or with other devices that are capable of monitoring a 4 to 20 mA dc input and provide for calibration of the incoming signal. The explosion-proof detector is CSA certified for use in hazardous locations.
Section 2: Features

- Electrochemical sensor for increased accuracy, repeatability and reliability.
- High specificity to H₂S reduces the chance of false alarms caused by other gases.
- Temperature compensation to ensure consistent performance over the entire operating temperature range.
- Self-contained transmitter circuitry permits use without a separate controller.
- Explosion-proof housing.
- EMI/RFI protected.
Section 3: Specifications

- **Operating Range:**
 - 0 to 100 ppm
 - Optional 0-50ppm, 0-20ppm and 0-10 ppm models available

- **Response Time:**
 - 20% full range within 12 seconds
 - 50% full range within 30 seconds

 Note: When H₂S concentration equal to full scale is applied

- **Drift:**
 - Less than 2 ppm per month

- **Accuracy:**
 - ±10 percent of applied gas concentration or ±3 ppm, whichever is greater

- **Sensor Life:**
 - Commonly 2 to 4 years

- **Operating Voltage:**
 - 10 to 32Vdc. 24Vdc nominal

- **Temperature Range:**
 - Operation: -40 °F to 122 °F (-40 °C to 50 °C)
 - Recommended Storage: 32 °F to 68 °F (0 °C to 20 °C)

- **Humidity Range:**
 - 15 to 90% RH, non-condensing

- **Certification:**
 - CSA certified, Class 1, Division 1, Groups C & D

- **Enclosure Material:**
 - Anodized aluminum or optional stainless steel

- **Dimensions:**
 - Refer to Figure 3-1.
• Shipping Weight (Approximate):
 - Housing: 2.5 pounds (1.1 kilograms)
 - Sensing element: 0.2 pounds (0.1 kilograms)

Figure 3-1 H₂S Detector assembly
Section 4: Sensor Operation

4.1 Sensing element

The electrochemical sensing element uses capillary diffusion barrier technology for detecting the presence of hydrogen sulphide gas. The electrochemical sensing element provides improved accuracy, reliability and extended calibration intervals when compared to ordinary solid-state type sensors.

The response of the sensing element is highly specific to \(\text{H}_2\text{S} \). Since many commonly encountered gases have little, if any, effect on the electrical response of the sensor, false indications caused by the presence of these gases is greatly reduced. Below is a list of responses of the \(\text{H}_2\text{S} \) electrochemical sensor to 100 ppm concentrations of other gases.

Table 4-1 Cross sensitivity of electrochemical sensor to 100 ppm concentrations

<table>
<thead>
<tr>
<th></th>
<th>0ppm</th>
<th>< 1ppm</th>
<th>< 15ppm</th>
<th>< -30ppm</th>
<th>< -20ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{HC})</td>
<td>CO</td>
<td>(\text{SO}_2)</td>
<td>(\text{NO}_2)</td>
<td>(\text{Cl}_2)</td>
<td></td>
</tr>
<tr>
<td>(\text{C}_4\text{H}_4)</td>
<td>(\text{NO})</td>
<td>(\text{H}_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{HCl})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 Sensor output

The sensor housing contains circuitry for generating a 4 to 20 mA dc output signal corresponding to levels of \(\text{H}_2\text{S} \) from 0 to 100 ppm (optional 0-50 ppm, 0-20 ppm and 0-10 ppm models available by special order). The 4 to 20 mA output is an un-calibrated signal, therefore, calibration capabilities must be provided by a transmitter, controller or display module to be used with the sensor.

The sensor may be calibrated externally by removing it from the housing and placing it in a calibration appliance for adjustment. Consult your distributor.
Section 5: Installation

5.1 Detector positioning

Proper detector positioning is essential for providing maximum protection. The most effective number and placement of sensors varies depending on the conditions at the job site. The individual performing the installation must rely on experience and common sense to determine the number of detectors needed and the best detector location.

The following factors are important and should be considered for every installation:

Since hydrogen sulfide is heavier than air, it will tend to settle near the floor or ground, unless it is heated, mixed with other gases that are lighter than air, or prevented from settling by air movement.

Consider how rapidly the H₂S will diffuse into the air. Select a location for the sensor as close as practical to an anticipated source.

Consider ventilation characteristics of the immediate area. Air movement will cause the gas to become more concentrated in some areas than others. Always place the sensors where the most concentrated accumulation of hydrogen sulfide gas is anticipated. Also consider the fact that some ventilation systems do not operate continuously.

Locate the sensor away from potential sources of contamination (dirt, etc.) if possible.

The sensor should be installed with the flame arrestor pointing down (refer to Figure 3-1) to prevent build-up of contaminants and enhance weather resistance. The sensor must be accessible for testing and calibration.

Exposure to excessive heat or vibration can cause premature failure of electronic devices and should be avoided if possible. Shielding the device from intense sunlight will reduce solar heating and may increase the life of the unit.

5.2 Wiring requirements

Two wire cable is used for connecting the sensor to a transmitter, controller, or display module. The use of shielded cable is highly recommended to protect against interference caused by extraneous electrical "noise."
The maximum distance between the sensor and controller is limited by the resistance of the connecting wiring, which is a function of the gauge of the wire used. See table below for the maximum wiring distance for a given wire size. If a transmitter is used, refer to the transmitter manual for specific wiring instructions.

Table 5-1 Maximum wiring distances from sensor to controller/transmitter

<table>
<thead>
<tr>
<th>Wire Size (AWG)</th>
<th>Maximum Sensor To Controller Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>5700 Feet / 1750 Meters</td>
</tr>
<tr>
<td>16</td>
<td>9000 Feet / 2800 Meters</td>
</tr>
</tbody>
</table>

5.3 Sensor wiring

1. Determine the best mounting locations for the sensors.
2. Mount the sensor junction box, allowing room between the junction box and the mounting surface for the sensor and calibration cup. The junction box should be electrically connected to earth ground.
3. Remove the cover from the junction box.

NOTICE

Do not apply power to the system with the junction box cover removed unless the area has been declassified.

4. Remove the cap from the sensor housing.
5. Remove the sensing element assembly from the packaging. Determine proper orientation for the assembly, then carefully plug it into the sensor housing.

NOTICE

Handle the sensing element assembly carefully. To avoid possible damage, observe the normally accepted procedures for handling electrostatic sensitive devices. Refer to "Electrostatic Sensitive Device Handling Procedure" in the Appendix for further information.

6. Place the cap back on the sensor housing. Do not overtighten.
7. Thread the sensor housing into the junction box. The sensor should be tight to ensure an explosion proof housing, but do not overtighten. CSA requires 5 full threads engaged.

NOTICE

Coat sensor threads with an appropriate grease to ease installation. Lubricate the junction box cover threads and O-Ring to ensure a water-tight enclosure.

8. Connect the sensor wires to the sensor terminals inside the junction box. Connect the controller wiring to the controller wiring terminal block. Refer to **Figure 5-1** on the next page. Connect the shield to earth ground at the controller end only. Under normal conditions, the other end of the shield should not be connected at the sensor junction box unless such a connection is required by local wiring codes.
Wiring Code:
Red lead: +24V dc, (+12V dc version dependent)
Black lead: signal
Green lead: Chassis (earth) ground

9. Check the sensor wiring to ensure proper connections. Place the cover back on the junction box.

Figure 5-1 Sensor wiring
Section 6: Startup Procedure

1. Secure output loads that are actuated by the system to prevent activation of these devices.

2. Check all wiring for proper connection. Be sure that the sensor has been wired properly.

3. Apply power to the system and allow the sensor to operate for about an hour, then perform the "Start-up Procedure" and "Calibration Procedure" as outlined in the transmitter, controller, or display module manual.

4. Place the system in normal operation.
Section 7: Calibration

Since each application is different, the length of time between regularly scheduled calibrations can vary from one installation to the next.

Calibration must be performed when:

- a new system is initially put into service
- the sensing element is replaced
- a transmitter or controller used with the sensor is replaced.

NOTICE

Do not use ampules and dilution bottles for calibration. Use certified bottled gas. To ensure adequate protection, the H₂S detection system must be calibrated on a regularly scheduled basis.

It is recommended that the sensor be calibrated one hour after power-up and calibration should be checked every 30 days thereafter and re-calibrated if necessary. Consult the controller manual for proper calibration procedure.

It is acceptable to use ampules and dilution bottles for checking sensor response but not for calibration. Use bottled gas for calibration. Bottled gas has a limited shelf life. Be sure it is fresh.
Section 8: Maintenance

To ensure reliable protection it is important to check and calibrate the H₂S detection system on a regularly scheduled basis. The frequency of these checks will vary depending on conditions such as relative humidity, dirty or dusty environments and exposure to H₂S.

Relative humidity is an important factor in the life expectancy of a sensor. Constant exposure to extremely dry conditions will shorten the sensor life. If possible, sensors that are operated in extremely dry areas should periodically be rotated to more humid environments in order to re-hydrate. A sensor that has been exposed to extremely dry environments and can no longer be spanned during calibration or has low sensitivity can be treated. The sensor should be placed in a moistened sealed bag and put in the refrigerator for 24 to 48 hours. Do not freeze. If this does not restore normal response the sensor must be replaced.

A rain shield/dust cover such as the CCS-1 should be used when the sensor may be exposed to rain, water splash or dust. Be aware that ice and snow build-up could block gas from entering the sensor.

8.1 Sensing element replacement

The sensing element assembly is not intended to be repaired. When calibration can no longer be performed properly, the assembly must be replaced. Spare sensing element assemblies should be kept on-hand for field replacement.

Care should be taken in storing spare sensing elements. For maximum protection against contamination and deterioration, sensing elements should not be removed from the original protective packaging until the time of installation. To ensure maximum storage life, sensing elements should be stored at a temperature between 40 °F and 68 °F (5 °C and 20 °C) and a relative humidity between 15 and 90 percent. A typical refrigerator is a good place for storage. Do not freeze. Storage time should be limited to 6 months or less.

The area must be de-classified or power to the detector must be removed prior to replacing the sensing element in a hazardous area.

To replace the sensing element in the H₂S-XXX-XX detector:

1. Remove power from the detector.
2. Remove the cap from the detector housing.
3. Remove and discard the old sensing element assembly. Check for corrosion or contamination on the terminals inside the sensor enclosure; clean if necessary.
4. Determine the proper orientation for the new assembly, then carefully plug it in.

Notice

Handle the sensing element assembly carefully. To avoid possible damage, observe the normally accepted procedures for handling electrostatic sensitive devices. Refer to 'Electrostatic Sensitive Device Handling Procedure' for further information.
5. Place the cap back on the detector housing. Tighten only until snug; do not over tighten.

6. Re-apply power.

7. Allow time for the sensor to warm-up (approximately one hour for best results), then calibrate. Always calibrate after replacing the sensing element.

NOTICE

The sensing element contains an acid that can leak. If a leakage should occur, handle the assembly carefully to prevent any acid from contacting the skin. If acid should come in contact with the skin, wash the affected area thoroughly with soap and water. Never attempt to open the sensing element.
Section 9: Troubleshooting

Table 9-1 Troubleshooting guide

<table>
<thead>
<tr>
<th>Problem</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No 4 - 20 mA output</td>
<td>1. Check the 10 to 32 power input.</td>
</tr>
<tr>
<td></td>
<td>2. Check that the green LED on the sensor circuit board is on. If off, check wiring, especially the polarity. Also check for proper connection at the sensor terminals in the junction box.</td>
</tr>
<tr>
<td>Fluctuating current output</td>
<td>1. Check that all connections are good.</td>
</tr>
<tr>
<td></td>
<td>2. Check for AC noise interference on the cable. If noise does appear, contact your local distributor for assistance.</td>
</tr>
<tr>
<td>Cannot zero during calibration</td>
<td>1. If used with a transmitter, controller, or display module, check for AC noise on the cable. If noise does appear, contact your local distributor.</td>
</tr>
<tr>
<td></td>
<td>2. Check current output from sensor by opening the loop or checking voltage across series resistor on terminal board. If output from sensor is too low (approx. 2.8 mA or less), replace sensor.</td>
</tr>
<tr>
<td>Cannot span during calibration</td>
<td>1. If the current output from the sensor is low the sensor may have been exposed to an extremely dry environment. Refer to Maintenance to rehydrate.</td>
</tr>
<tr>
<td></td>
<td>2. If output from sensor is too low replace sensor.</td>
</tr>
<tr>
<td>Low sensitivity</td>
<td>1. Sensor may have been exposed to an extremely dry environment. Refer to Maintenance.</td>
</tr>
<tr>
<td></td>
<td>2. Check for a dirt deposit or other obstruction of the flame arrestor. Clean if necessary. Use a rain shield/dust cover if necessary.</td>
</tr>
</tbody>
</table>
Section 10: Spare Parts

- XP-H2S housing
- ST1200-100 ppm sensor
- ST1200-50 ppm sensor
- ST1200-20 ppm sensor
- ST1200-10 ppm sensor
- JB2 junction box
- CB2 connector board
Appendix A: Electrostatic Sensitive Device Handling Procedure

With the trend toward increasingly widespread use of microprocessors and a wide variety of other electrostatic sensitive semiconductor devices, the need for careful handling of equipment containing these devices deserves more attention than it has received in the past.

Electrostatic damage can occur in several ways. The most familiar is by physical contact. Touching an object causes a discharge of electrostatic energy that has built up on the skin. If the charge is of sufficient magnitude, a spark will also be visible. This voltage is often more than enough to damage some electronic components. Some devices can be damaged without any physical contact. Exposure to an electric field can cause damage if the electric field exceeds the dielectric breakdown voltage of the capacitive elements within the device.

In some cases, permanent damage is instantaneous and an immediate malfunction is realized. Often, however, the symptoms are not immediately observed. Performance may be marginal or even seemingly normal for an indefinite period of time, followed by a sudden and mysterious failure.

Damage caused by electrostatic discharge can be virtually eliminated if the equipment is handled only in a static safeguarded work area and if it is transported in a package or container that will render the necessary protection against static electricity. Emerson modules that might be damaged by static electricity are carefully wrapped in a static protective material before being packaged. Foam packaging blocks are also treated with an anti-static agent. If it should ever become necessary to return the module, it is highly recommended that it be carefully packaged in the original carton and static protective wrapping.

Since a static safeguarded work area is usually impractical in most field installations, caution should be exercised to handle the module by its metal shields, taking care not to touch electronic components or terminals.

In general, always exercise all of the accepted and proven precautions that are normally observed when handling electrostatic sensitive devices.

A warning label is placed on the packaging, identifying those units that use electrostatic sensitive semiconductor devices.
Published in Accordance with EIA standard 471
Appendix B: Wire Resistance in Ohms

<table>
<thead>
<tr>
<th>Distance (feet)</th>
<th>AWG #20</th>
<th>AWG #18</th>
<th>AWG #16</th>
<th>AWG #14</th>
<th>AWG #12</th>
<th>AWG #10</th>
<th>AWG #8</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.02</td>
<td>0.64</td>
<td>0.40</td>
<td>0.25</td>
<td>0.16</td>
<td>0.10</td>
<td>0.06</td>
</tr>
<tr>
<td>200</td>
<td>2.03</td>
<td>1.28</td>
<td>0.08</td>
<td>0.51</td>
<td>0.32</td>
<td>0.20</td>
<td>0.13</td>
</tr>
<tr>
<td>300</td>
<td>3.05</td>
<td>1.92</td>
<td>1.20</td>
<td>0.76</td>
<td>0.48</td>
<td>0.30</td>
<td>0.19</td>
</tr>
<tr>
<td>400</td>
<td>4.06</td>
<td>2.55</td>
<td>1.61</td>
<td>1.01</td>
<td>0.64</td>
<td>0.40</td>
<td>0.25</td>
</tr>
<tr>
<td>500</td>
<td>5.08</td>
<td>3.20</td>
<td>2.01</td>
<td>1.26</td>
<td>0.79</td>
<td>0.50</td>
<td>0.31</td>
</tr>
<tr>
<td>600</td>
<td>6.09</td>
<td>3.83</td>
<td>2.41</td>
<td>1.52</td>
<td>0.95</td>
<td>0.60</td>
<td>0.38</td>
</tr>
<tr>
<td>700</td>
<td>7.11</td>
<td>4.47</td>
<td>2.81</td>
<td>1.77</td>
<td>1.11</td>
<td>0.70</td>
<td>0.44</td>
</tr>
<tr>
<td>800</td>
<td>8.12</td>
<td>5.11</td>
<td>3.21</td>
<td>2.02</td>
<td>1.27</td>
<td>0.80</td>
<td>0.50</td>
</tr>
<tr>
<td>900</td>
<td>9.14</td>
<td>5.75</td>
<td>3.61</td>
<td>2.27</td>
<td>1.43</td>
<td>0.90</td>
<td>0.57</td>
</tr>
<tr>
<td>1,000</td>
<td>10.20</td>
<td>6.39</td>
<td>4.02</td>
<td>2.53</td>
<td>1.59</td>
<td>1.09</td>
<td>0.63</td>
</tr>
<tr>
<td>1,250</td>
<td>12.70</td>
<td>7.99</td>
<td>5.03</td>
<td>3.16</td>
<td>1.99</td>
<td>1.25</td>
<td>0.79</td>
</tr>
<tr>
<td>1,500</td>
<td>15.20</td>
<td>9.58</td>
<td>6.02</td>
<td>3.79</td>
<td>2.38</td>
<td>1.50</td>
<td>0.94</td>
</tr>
<tr>
<td>1,750</td>
<td>17.80</td>
<td>11.20</td>
<td>7.03</td>
<td>4.42</td>
<td>2.78</td>
<td>1.75</td>
<td>1.10</td>
</tr>
<tr>
<td>2,000</td>
<td>20.30</td>
<td>12.80</td>
<td>8.03</td>
<td>5.05</td>
<td>3.18</td>
<td>2.00</td>
<td>1.26</td>
</tr>
<tr>
<td>2,250</td>
<td>22.80</td>
<td>14.40</td>
<td>9.03</td>
<td>5.68</td>
<td>3.57</td>
<td>2.25</td>
<td>1.41</td>
</tr>
<tr>
<td>2,500</td>
<td>25.40</td>
<td>16.00</td>
<td>10.00</td>
<td>6.31</td>
<td>3.97</td>
<td>2.50</td>
<td>1.57</td>
</tr>
<tr>
<td>3,000</td>
<td>30.50</td>
<td>19.20</td>
<td>12.00</td>
<td>7.58</td>
<td>4.76</td>
<td>3.00</td>
<td>1.88</td>
</tr>
<tr>
<td>3,500</td>
<td>35.50</td>
<td>22.40</td>
<td>14.10</td>
<td>8.84</td>
<td>5.56</td>
<td>3.50</td>
<td>2.21</td>
</tr>
<tr>
<td>4,000</td>
<td>40.60</td>
<td>25.50</td>
<td>16.10</td>
<td>10.00</td>
<td>6.35</td>
<td>4.00</td>
<td>2.51</td>
</tr>
<tr>
<td>4,500</td>
<td>45.70</td>
<td>28.70</td>
<td>18.10</td>
<td>11.40</td>
<td>7.15</td>
<td>4.50</td>
<td>2.82</td>
</tr>
<tr>
<td>5,000</td>
<td>50.10</td>
<td>32.00</td>
<td>20.10</td>
<td>12.60</td>
<td>7.94</td>
<td>5.00</td>
<td>3.14</td>
</tr>
<tr>
<td>5,500</td>
<td>55.80</td>
<td>35.10</td>
<td>22.10</td>
<td>13.91</td>
<td>8.73</td>
<td>5.50</td>
<td>3.46</td>
</tr>
<tr>
<td>6,000</td>
<td>61.00</td>
<td>38.30</td>
<td>24.10</td>
<td>15.20</td>
<td>9.53</td>
<td>6.00</td>
<td>3.77</td>
</tr>
<tr>
<td>6,500</td>
<td>66.00</td>
<td>41.50</td>
<td>26.10</td>
<td>16.40</td>
<td>10.30</td>
<td>6.50</td>
<td>4.08</td>
</tr>
<tr>
<td>7,000</td>
<td>71.10</td>
<td>44.70</td>
<td>28.10</td>
<td>17.70</td>
<td>11.10</td>
<td>7.00</td>
<td>4.40</td>
</tr>
<tr>
<td>7,500</td>
<td>76.10</td>
<td>47.90</td>
<td>30.10</td>
<td>19.00</td>
<td>12.00</td>
<td>7.49</td>
<td>4.71</td>
</tr>
<tr>
<td>8,000</td>
<td>81.20</td>
<td>51.10</td>
<td>23.10</td>
<td>20.20</td>
<td>12.70</td>
<td>7.99</td>
<td>5.03</td>
</tr>
<tr>
<td>9,000</td>
<td>91.40</td>
<td>57.50</td>
<td>36.10</td>
<td>22.70</td>
<td>14.30</td>
<td>8.99</td>
<td>5.65</td>
</tr>
<tr>
<td>10,000</td>
<td>102.00</td>
<td>63.90</td>
<td>40.20</td>
<td>25.30</td>
<td>15.90</td>
<td>9.99</td>
<td>6.28</td>
</tr>
</tbody>
</table>
NOTICE
Resistance shown is one way. This figure should be doubled when determining closed loop resistance.