Installation, Operation and Maintenance Manual VCIOM-01493-EN Rev. 0 May 2022

Keystone OM9 - EPI2 Profibus DPV1 Interface

This page is intentionally left blank

Table of Contents

	Optional Module 9: Profibus DPV1 Interface anal Module 9: Profibus DPV1 Interface
	Operation and Storage ation and Storage
Section 3: Distin	Distinguish Old/New Models nguish Old/New Models
Section 4:	Installation
4.1	Assembling Procedure for Models 63-125 Nm
	Old Version (US or Non-US Market)7
4.2	Assembling Procedure for Models 250-500-1000-2000 Nm Old Version (US or Non-US Market)
4.3	Assembling Procedure for Models 63-125 Nm
	New Version (US or Non-US Market)12
4.4	Assembling Procedure for Models 250-500-1000-2000 Nm
	New Version (US or Non-US Market)15
Section 5:	Communication Features
Comi	nunication Features
Section 6:	EPI2 DPV1 Interface
6.1	On Board Indication
6.2 6.3	Wiring Diagram19Profibus/Hardwired Mode Selection
0.5	
Section 7:	Profibus DP Description
Profit	bus DP Description
	DC 495 Tronomission Made
Section 8:	RS485 Transmission Mode
DC 10	
RS48	5 Transmission Mode
RS48 Section 9:	
Section 9:	5 Transmission Mode

Section 10: Data Exchange During Parameterization

Data Exchange During Parameterization	2	
Dara Exchancie Durinci Paramererization		7
Duta Exchange During rarameterization internet	· ~	-

Section 11: Data Exchange Mode

11.1	Cyclic Communications DPV0	. 28
	11.1.1 Output Data	. 28
	11.1.2 Input Data	
	11.1.3 Positioning Algorithm	
	11.1.4 Diagnostic Message	
11.2	Acyclic Communication DPV1	
	11.2.1 Name Plate	. 37
	11.2.2 General Data	. 38
	11.2.3 Actuator Configuration	. 39

Section 12: Local Settings

12.1	Profibus Address Setting	41
	Profibus Termination On Board Code DE5687R00E	
12.3	Profibus Termination On Board Code DE5687R00G	
	and Subsequent	43

Section 13: GSD File

GSD File	2	14
----------	---	----

Section 14: Bluetooth Communication Module

Bluetooth Communication Module

Section 15: Profibus Certificate

Section 16: Optional Kits

Optional Kits

Section 1: Optional Module 9: Profibus DPV1 Interface

The OM9 Profibus DPV1 interface is an electronic module that allows you to connect the Keystone EPI2 electrical actuator to a Profibus DP network. The module has its own microprocessor and control program. It works as a pure bus interface and does not affect the actuator control integrity. It is installed inside the actuator housing and takes the electrical power from the actuator power supply module.

The RS485 interface is located on the module board. The Profibus network is fully isolated from the actuator electronics. The OM9 Profibus DPV1 is designed to support Profibus DPV0 cyclic communication and acyclic communication as per Profibus DPV1 extension. For details about EPI2 actuator, please refer to Installation, Operation and Maintenance Manual for Keystone EPI2 electric actuator.

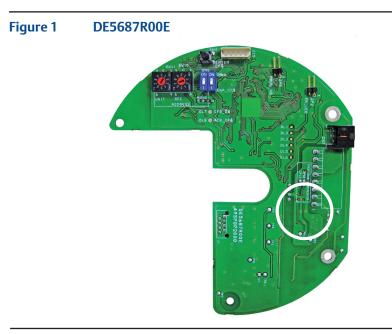
NOTE:

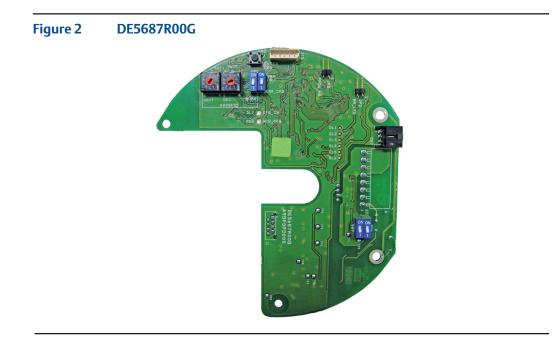
For decommissioning instructions, please refer to the relevant chapter in the EPI2 manual ref. EBPRM-0091.

EPI2 actuator must be electrically isolated before any disassembling or reassembling operations. Before any disassembling or reassembling operations, please follow the relevant paragraph of the basic installation and operating manual (latest revision available) in detail.

The electronic parts of the EPI2 actuators and all option modules can be damaged by a discharge of static electricity. Before you start, touch a grounded metal surface to discharge any static electricity.

A WARNING


It is assumed that the installation, configuration, commissioning, maintenance and repair works are carried out by qualified personnel and checked by responsible specialists.


A WARNING

Repair work, other than operations outlined in this manual, is strictly reserved to qualified Emerson personnel or to personnel authorized by the company itself.

NOTE:

Based on the Wiring Diagram printed on the board (i.e., DE5687R00E or DE5687R00G and subsequent), the board may have a soldered jumper or a dip switch on the Profibus Termination. Please read the manual for the relevant description.

Section 2: Operation and Storage

The module is designed to work and to be stored in the same environment as the actuator.

Section 3: Distinguish Old/New Models

It is important to distinguish between EPI2 old models and the new ones. To install the board on base actuator, in fact, it is necessary to choose the correct mechanical parts from the kit. Furthermore, the meaning of some data exchanged on the Profibus interface depends on model (old or new); differences will be explained in the following paragraphs.

Figures 3 and 4 allow to distinguish old version of EPI2 from the new version (on the labels, the digits of Product Number are boxed); furthermore, the logic boards with heatsink identifies old version models, while logic boards without heatsink identifies new version models.

Figure 4 Label for US market – digit 6 on product coding chart

Torque (Lbs-in)	600 E006 AHW 5000	S/N	144345T001097
secs Supply 10	0-240 VDC/VAC-1ph		Tamb -4
MODULATING S4-5	0% 1200 s/h		NEMA 4,4X & 6 -
2.2 - Nº 139 Clas	s 3221-02 & 3221-82	Certificate r	° 1832436
Manufactur	er: BIFFI ITALIA Fiorer	zuola d'Arda	-29017 (PC) - ITAL
	DO NOT OPEN	WHEN ENERGIZ	ED

Figure 6 Example of EPI2 old version (heatsink not present)

Section 4: Installation

To assemble the OM9 into the EPI2 actuator, proceed as follows:

- Ensure that all the parts received with the OM9 are available as described in paragraph optional kits.
- Using paragraph optional kits, select only mechanical parts (screws and spacers) depending on actuator models.
- Gather the right tools for the assembly and for setting the actuator controls.
- With an Allen wrench of 5 mm, unscrew the cover screws, see Figure 7.

Figure 7

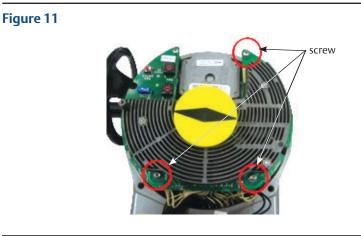
Remove the actuator cover, see Figure 8.

Follow one of the following assembling procedures depending on actuator model.

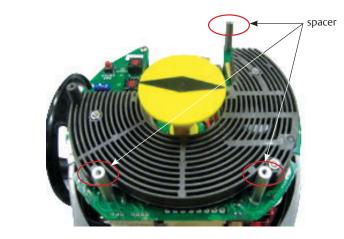
4.1 Assembling Procedure for Models 63-125 Nm Old Version (US or Non-US Market)

• Detect the black cable required for the OM9 which is already included in the basic actuator, see Figure 9.

Figure 9


Figure 10

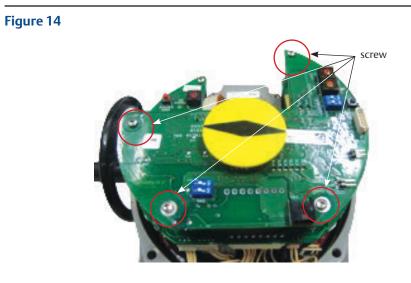
• Connect the flat cable furnished into the kit to connector J1 on OM9, see Figure 10.



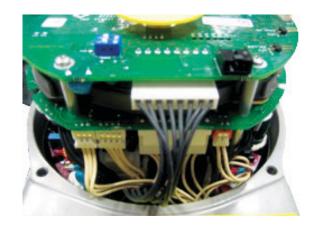
• Unscrew the 3 screws, see Figure 11: 3 pcs M3x10.

• Tighten the 3 metal spacers, see Figure 12.

Figure 12



• Connect OM9 flat cable to connector J8 on the logic board, see Figure 13.

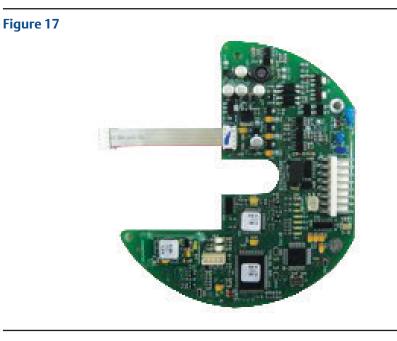


• Place the OM9 card onto the spacer and tighten the 4 screws, see Figure 14.

• Connect the 8-pin connector to connector J3 on OM9, see Figure 15.

Figure 15

4.2


Assembling Procedure for Models 250-500-1000-2000 Nm Old Version (US or Non-US Market)

• Detect the black cable required for the OM9 which is already included in the basic actuator; disassemble local mechanical indicator, see Figure 16.

Figure 16

• Connect the flat cable furnished into the kit to connector J1 on OM9, see Figure 17.

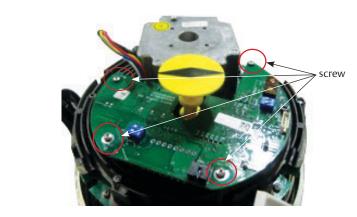

• Connect OM9 flat cable to connector on the logic board, see Figure 18.

Figure 18

• Place the OM9 card onto the heatsink spacers and tighten the 4 screws; assemble local mechanical indicator, see Figure 19.

Figure 19

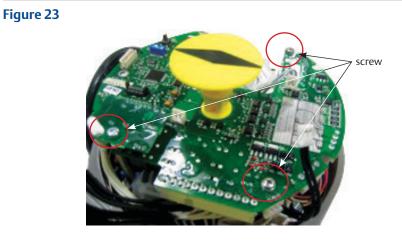
• Connect the 8-pin connector to connector J3 on OM9, see Figure 20.

Figure 20

4.3 Assembling Procedure for Models 63-125 Nm New Version (US or Non-US Market)

• Detect the black cable required for the OM9 which is already included in the basic actuator, see Figure 21.

Figure 21



• Connect the flat cable furnished into the kit to connector J1 on OM9, see Figure 22.

Figure 22

• Unscrew the 3 screws, see Figure 23.

• Tighten the 3 metal spacers; insert the plastic spacer, see Figure 24.

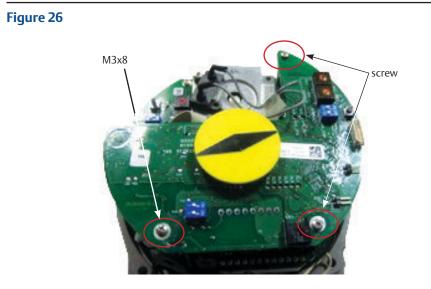

• Connect OM9 flat cable to connector on the logic board, see Figure 25.

Figure 25

Installation

• Place the OM9 card onto the spacers and tighten the 3 screws, see Figure 26.

• Connect the 8-pin connector to connector J3 on OM9, see Figure 27.

4.4 Assembling Procedure for Models 250-500-1000-2000 Nm New Version (US or Non-US Market)

• Detect the black cable required for the OM9 which is already included in the basic actuator; disassemble local mechanical indicator, see Figure 28.

Figure 28

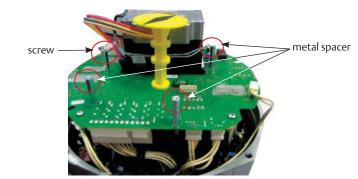

• Connect the flat cable furnished into the kit to connector J1 on OM9, see Figure 29.

Figure 29

• Tighten the 3 metal spacers and unscrew the screw that fixes the motor cable, see Figure 30.

Figure 30

Installation

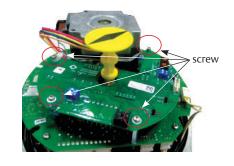

• Disassemble the local mechanical indicator and connect the OM9 flat cable to the connector on the logic board, see Figure 31.

Figure 31

• Place the OM9 card onto the spacers and tighten the 4 screws; assemble the local mechanical indicator, see Figure 32.

Figure 32

Connect the 8-pin connector to connector J3 on OM9, see Figure 33.

Figure 33

NOTE:

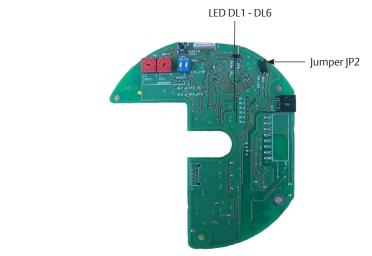
Please note that all the connectors provided with the base actuator and all optional cards are different from each other (in terms of design and number of pins). In no way is it possible to make a wrong connection.

- The OM9 card is now connected.
- Replace the actuator cover and fix it properly.

Section 5: Communication Features

Communication protocol	Profibus DP according to EN 50170					
Network topology	Line (bus) structure. With repeaters, tree structures can also be realized					
Transmission medium	Twisted EN 501		ed copp	er cable a	according	g to
Data rate	9.6 1500 K	19.2 bit/s	45.45	93.75	187.5	500
Cable length without repeater	1200 200 m	1200	1200	1200	1000	400
Approx. cable length with repeater	10 2 Km	10	10	10	6	4
Station type	DPV0 and DPV1 slave					
Device number	32 devices per segment without repeater (max 126, with repeaters)					
Bus access	Token-passing between masters and polling for slaves					
Electrical power	Actuate	or power	ed			
Bus termination	Availab	le on bo	ard via so	oldering	pad	
Temperature	-40 °C,	+85 °C				
EMC protections	EN 50081-2 and EN 50082-2					
Types of operation	Cyclic data exchange, sync mode, freeze mode, fail-safe mode					
Baud rate	Automatic recognition					
Addressing	Configu	urable vi	a on boa	rd rotary	BCD swi	itches

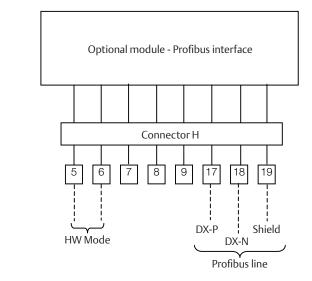
Section 6: EPI2 DPV1 Interface


The module consists of a single PCB that is installed inside the actuator housing. It is connected to the EPI2 base card via a flat cable. The internal wiring connects the Profibus data lines to the actuator terminal board.

6.1 On Board Indication

Six LED's are mounted on the EPI2 DPV1 interface to give the following indications for Field service. LED's indications are active only when jumper JP2 is closed.

DL1 (red)	Internal comm. error:	ON when the internal communication of the interface card is not working properly. OFF when the all communication is correct.
DL2 (red)	Fail-safe action in progress:	ON when a fail-safe action is in progress due to a communication fault on the Profibus line. OFF when the Profibus communication is correct.
DL3 (green)	Slave ready:	ON when the interface is ready to communicate to the Profibus line. OFF when the interface is not ready.
DL4 (green)	Reserved	
DL5 (green)	Profibus:	ON when Profibus communication has been established and the interface has entered in DATA_EX state.
DL6 (green)	Power:	ON when the interface is correctly powered.



6.2 Wiring Diagram

The EPI2 DPV1 interface is connected to the actuator terminal board as shown in Figure 35.

Figure 35

6.3 Profibus/Hardwired Mode Selection

The EPI2 DPV1 interface manages the Profibus/hardwired mode selection by means of the input indicated with HW MODE. The physical input accepts any voltage from 24 - 125 V DC or AC, polarity insensitive.

When no voltage is applied, the actuator is Profibus controlled and it is possible to send commands and read the status by Profibus DP.

When an appropriate voltage is applied to the HW MODE input, the actuator runs under hardwired control. In this condition, the Profibus master can only read the actuator status, while the actuator follows the hardwired Open and Close controls connected to the terminal board.

For further details, please refer to Installation, Operation and Maintenance Manual for Keystone EPI2 electric actuator.

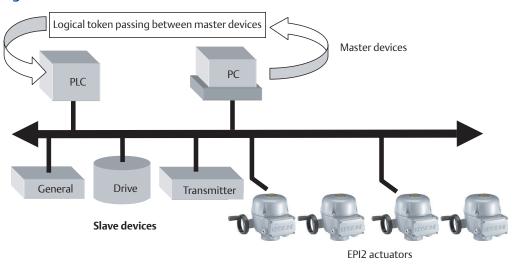
Section 7: Profibus DP Description

Profibus is a vendor-independent, open fieldbus standard used in a wide range of applications in process automation. Vendor independence and openness are ensured by the international standards EN 50170 and EN 50254. The DP communication profile is designed for data exchange at the field level. The central controllers (i.e., PLC) communicate via a serial connection with field devices (as sensors and actuators). Data exchange is mainly cyclic. The central controller (called master) cyclically reads the input information from the field devices (called slaves) and cyclically writes the output information to the slaves. In addition, the Profibus DP provides communication services for parameterization, alarm handling, and monitoring of intelligent field devices. The maximum number of master and slave devices in a bus segment is 32 without repeaters. With repeaters, the number can be extended to 126 on one bus. The maximum cable length depends on the speed of transmission. The higher the speed, the shorter is the length. For instance, with baud rate 93.75 Kb/s, the max cable length is 1,200 m without repeaters.

Mono-master or multi-master system configuration can be provided. Bus access is controlled by a token passing procedure between masters and polling (master-slave procedure) between master and slaves.

DP master class 1 (DPM 1):

This is the central controller that cyclically exchanges information with the field devices Typical devices are PLC, DCS or PC.


DP master class 2 (DPM 2):

These devices are necessary for commissioning, maintenance and diagnostics.

Slave:

Field device, i.e. transmitters, actuators, drives, etc.

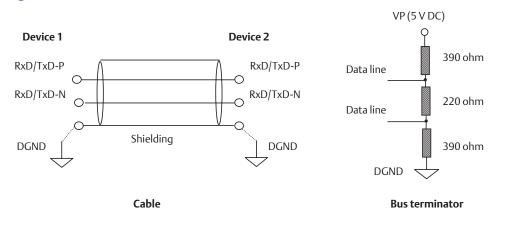
Figure 36 shows a Profibus DP configuration with two master devices and different slave devices.

Figure 36

Section 8: RS485 Transmission Mode

The EPI2 DPV1 interface uses a half duplex, multidrop, serial RS485 communication line. The module communicates with the masters via its RS485 interface and the transmission media consists of a shielded twisted pair cable. Transmission speed from 9.6 kbit/s to 1.5 Mbit/s is available. One unique transmission speed is allowed for all devices on the bus when the system is running. All devices are connected in a bus structure. Up to 32 stations (master and slaves) can be connected in one segment without repeaters. Repeaters can be used to extend the number of devices up to 126 and to link the individual bus segment in order to enlarge the network area. Table 1 shows the relationship between baud rate, segment length and total bus length.

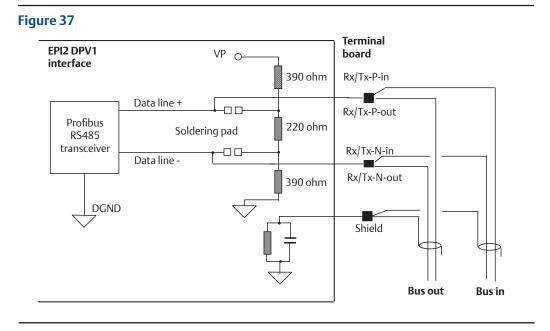
The bus must be terminated by an active bus terminator at the beginning and at the end of each segment. Only two terminators in one bus segment must be provided. To ensure error-free operation, both bus terminators must be powered. The maximum cable length depends on the transmission speed. Cable lengths indicated in Table 1 are based on Type A cable, as specified by the EN 50170, having the following characteristics.


•	Impedance	from 135 - 165 ohm
•	Capacity	< 30 pF/m
•	Loop resistance	110 ohm/km
•	Wire gauge	0.64 mm
•	Conductor area	> 0.34 mm ²

The use of cable of previously used type B is not recommended. The data lines must not be reversed. Use of shielded cable is mandatory for having high system immunity against electromagnetic disturbs. The shield should be connected to ground on both sides. The data lines should be kept separate from all other cables. It should be laid in a separate, conductive and earthed cable trunking. It must be ensured that there are no voltage differences between individual nodes of Profibus DP.

Table 1.

Baud rate, K	Max. segment length (no repeater), m	Max. bus length with 9 repeater, m
9.6 K	1,200	10,000
19.2 K	1,200	10,000
45.45 K	1,200	10,000
93.75 K	1,200	10,000
187.5 K	1,000	6,000
500 K	400	4,000
1500 K	200	2,000

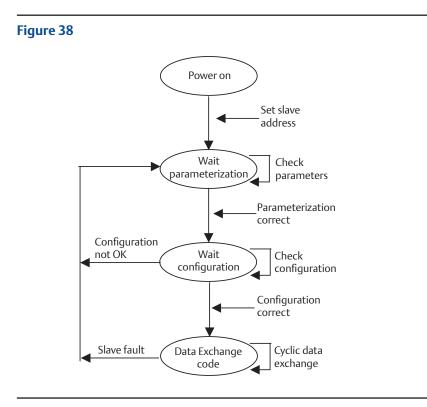

Figure 36

Section 9: EPI2 DPV1 Interface Power-Up

The EPI2 DPV1 interface takes its electrical supply from the actuator power supply module. The RS485 bus transceiver is isolated from the actuator electronics. Also, the voltage supply of the bus termination is isolated. The bus termination is a crucial component to ensure error-free operation; since the Profibus terminations are active circuits, it is important that they remain powered also when a part of the field is powered off. Normal practice recommends to use external terminations available on the market and to power them by a separate, safe power supply. The EPI2 DPV1 interface is equipped with an on-board bus termination that can be used when the actuator is at the beginning or at the end of the bus segment. If the on-board termination is used, it is not possible to use external termination, as well. The bus termination can be connected on the data lines by means of a soldering pad.

Figure 37 shows the typical Profibus wiring. The termination must be linked to the data lines only if the actuator is at the beginning or at the end of the bus segment.

On power-up, the module checks the baud rate and then waits for the "parameterization" telegram from the master. The parameterization message contains user information needed for actuator operation and is listed in Section 10, Data Exchange During Parameterization.


After parameterization, the module waits for the "configuration" telegram from the master. The configuration message contains the number of input and output bytes reserved in the memory of the master device for each slave. Only the number of bytes determined in the configuration is transmitted between master and slave. This information is called "module".

The EPI2 DPV1 board implements the following modules:

- Module 1: 1 byte output; 2 bytes input
- Module 2: 4 byte output; 6 bytes input
- Module 3: 1 byte output; 2 bytes input consistent
- Module 4: 4 byte output; 6 bytes input consistent

Consistent is an attribute that specify the capability of the module to maintains data consistency over the entire data length. In this way, the data will not change during the reading by the Profibus DP-Master. For example, if module 2 is selected, the output telegram consists in 4 bytes, and the input telegram in 6 bytes.

When parameters and configuration are correct, the module enters in 'data exchange mode' and starts with normal operation. The master cyclically sends commands to the slave and read its status. Figure 38 shows the power-up flow diagram of a DP slave.

Section 10: Data Exchange During Parameterization

The following data is sent to the EPI2 DPV1 interface:

Table 2.

Byte	Name	Туре	Range	EU	Default	
0	Reserved DPV1	-	-	-	-	
1	Reserved DPV1	-	-	-	-	
2	Reserved DPV1	-	-	-	-	
			0	Off		
			1	Close		
3	Fail-safe action	1 byte	2	Open	Off	
			3	Stay put		
			4	Go to position		
4	Stanaa farmat	1 huto	0	LSB first	LSB first	
4	Storage format	1 byte	1	MSB first	MSB first	
5	Delay before initiating safe operation	1 byte	0 - 10	seconds	4	
6	Safe position	1 byte	0 - 100	%	50	
7	Dead band	1 byte	3 - 20	Tenth of %	15	
0			0	CW	<u>an</u>	
8	Closing direction	1 byte	1	CCW	CW	
			0	Min.		
9	Opening speed set	1 byte	-	-	7	
			9	Max.		
			0	Min.		
10	Closing speed set	1 byte	-	-	7	
			9	Max.		
			0	Min.		
11	Opening torque set	1 byte	-	-	9	
			9	Max		
			0	Min.		
12	Closing torque set	1 byte	-	-	9	
			9	Max		
13	Open limit	1 huto	0	By torque	Duposition	
15	Open innit	1 byte	1	By position	By position	
14	Close limit	1 byte	1	By torque	Puposition	
14		1 byte	0	By position	By position	
15	LED color co do	1 buts	0	OP green - CL red	Green LED lit in fully open position	
15	LED color code	1 byte	1	OP red - CL green		

NOTE:

*New version of EPI2 only has opening/closing speeds 4, 6 and 8 (see Installation, Operation and Maintenance Manual for Keystone EPI2 electric actuator).

It should be noticed that every time that Profibus communication is established, the parameterization string will be sent to the device writing the parameters to the set up values. The values in parameterization string shall be modified at the Master station.

Byte 0-2 Reserved for DPV1

Byte 3 Storage format

This byte defines the format of the variables that are transmitted on 2 or 4 bytes. The setting of this parameter affects the format of the following data:

Output data:	(if module 2 is selected)	Set point
Input data:	(if module 2 is selected)	Current position
General data:	Slot 1 index 1	Current position
Value:	0: LSB byte is transmitted first	
	(default setting)	
	1: MSB byte is transmitted first	

Byte 4 Fail-safe action

This byte defines the action of the actuator in case of loss of signal. The action takes place only if the local selector is on Remote position and if the bus is operating. When the bus signal restores, the actuator also restores at its normal functioning.

Value:	0: Off - disable (default setting)
	1: Close
	2: Open
	3: Stay put
	4: Go to position indicated in the parameter "safe position"

NOTE:

Fail-safe action is active only if watchdog control is enabled.

Byte 5	Delay befo	Delay before initiating fail safe operation					
	This byte d	This byte defines the delay before execution of the programmed safe action.					
	Value:	minimum	0 s				
		maximum	10 s				

maximum 10 default value: 4 s

Byte 6 Safe position

This byte defines the safe position when "fail-safe action: go to position" is selected.

Value:	minimum	0%
	maximum	100%
	default value:	50%

Byte 7 Dead band

This byte defines in tenth of % the dead band of the positioning function available on the modulating actuator. The movement is inhibited until the difference between current position and requested position (position error) is lower than dead band.

Value:	minimum	3 = 0.3%
	maximum	20 = 2.0%
	default value:	15 = 1.5%

Byte 8	Closing direction						
	This byte defin	es the closing dire	ection of the motor.				
	Value:	0: CW – clockw 1: CCW – count	ise (default value) ær clockwise				
Byte 9	Opening spee	g speed set					
	This byte defir	es the speed of th	e motor when opening.				
	Value:	minimum maximum default value:	0 9 7				
Byte 10	Closing speed	set					
	This byte defir	e motor when closing.					
	Value:	minimum maximum default value:	0 9 7				
Byte 11	Opening torq	Opening torque set					
	This byte defir	es the opening to	rque.				
	Value:	minimum maximum default value:	0 = 40% of nominal torque 9 = 100% of nominal torque 9				
Byte 12	Closing torqu	e set					
	This byte defir	es the closing tor	que.				
	Value:	minimum maximum default value:	0 = 40% of nominal torque 9 = 100% of nominal torque 9				
Byte 13	Open limit						
	This byte defir	es the end of trave	el setting in open direction.				
	Value: 0: by t 1: by p	orque position (default se	etting)				
Byte 14	Close limit						
	This byte defir	es the end of trav	el setting in close direction.				
	Value: 0: by t 1: by p	orque position (default se	etting)				
Byte 15	LED color cod	e					
	,	es the color of the as the optional loc	ELED indicating the fully open and fully cal panel.				
		en: LED = green; C en: LED = red; Clos	ose: LED = red (default setting) e: LED = green				

Section 11: Data Exchange Mode

The following paragraph describes the input and output messages of EPI2 DPV1 interface when working in "data exchange mode" for "cyclic data" and "acyclic data". In all cases, it is called "input signal" if data is sent from actuator to bus, vice-versa, it is called "output signal".

11.1 Cyclic Communications DPV0

11.1.1 Output Data

The structure of cyclic output data is as follows, depending on the module selected:

Table 3.Module 1 or module 3

Byte	b7	b6	b5	b4	b3	b2	b1	Ь0
0	Reserved	Reserved	Reserved	Reserved	Reserved	Stop command	Close command	Open command

Table 4.Module 2 or module 4

Byte	b7	b6	b5	b4	b3	b2	b1	Ь0	
0	Reserved	Reserved	Reserved	Reserved	Reserved	Stop command	Close command	Open command	
1	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Positioner enable	
2	Set point								
3	Set point								

Table 5.

Command	Description	Position	
Open command	When this bit is set to 1, an open command is issued to the actuator. The open command is maintained for all the duration on the movement since the receiving of the bus command until the open limit has been reached. The open command is reset when a stop command is received from the bus.	Associated to output data Module 1/3 or Module 2/4 Byte 0; bit 0	
Close command	When this bit is set to 1, a close command is issued to the actuator. The close command is maintained for all the duration on the movement since the receiving of the bus command until the close limit has been reached. The close command is reset when a stop command is received from bus.	Associated to output data Module 1/3 or Module 2/4 Byte 0; bit 1	
Stop command	When this bit is set to 1, a stop command is issued to the actuator. The stop command received from the bus causes the reset of both open and close command.	Associated to output data Module 1/3 or Module 2/4 Byte 0; bit 2	
Positioner enable	When this bit is set to 1, it enables the on-board positioner. The positioner is enabled as long as this bit is set to 1.	Associated to Module 2/4 Byte 1; bit 0	
Set point	The set point received from the bus is used to produce the open or close commands to the EPI2 actuator as defined in Section 11.1.3, Positioning Algorithm.	Associated to output data Module 2/4 Byte 2 and 3	

11.1.2 Input Data

The structure of the cyclic input data is defined depending on the module selected:

Table 6.Module 1 or module 3

Byte	b7	b6	b5	b4	b3	b2	b1	Ь0
0	Monitor relay	Intermediate position	Motor stopped	Fully closed	Actuator moving	Closing	Opening	Fully open
1	Reserved	Reserved	Reserved	Reserved	Local configuration	Remote	Local	Hardwired mode

Table 7.Module 2 or module 4

Byte	b7	b6	b5	b4	b3	b2	b1	Ь0		
0	Monitor relay	Intermediate position	Motor stopped	Fully closed	Actuator moving	Closing	Opening	Fully open		
1	Reserved	Reserved	Reserved	Reserved	Local configuration	Remote	Local	Hardwired mode		
2				Current	position					
3				Current	position					
4	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Positioner active		
5		Current torque								

Table 8.

Command	Description	Position
Fully open	The fully open indication is set to 1 when the EPI2 actuator is at fully open position. This indication reflects the status of the open limit on the EPI2 actuator.	Associated to input data Module 1/3 or Module 2/4, Byte 0; bit 0
Opening	The opening indication is set to 1 when the EPI2 actuator is moving towards the open direction.	Associated to input data Module 1/3 or Module 2/4, Byte 0; bit 1
Closing	The closing indication is set to 1 when the EPI2 actuator is moving towards the close direction.	Associated to input data Module 1/3 or Module 2/4, Byte 0; bit 2
Actuator moving	This indication is set to 1 when the actuator is moving either in opening or in closing direction.	Associated to input data Module 1/3 or Module 2/4, Byte 0; bit 3
Fully close	The fully close indication is set to 1 when the EPI2 actuator is at fully close position. This indication reflects the status of the close limit on the EPI2 actuator.	Associated to input data Module 1/3 or Module 2/4, Byte 0; bit 4
Motor stopped	This indication is set to 1 when the actuator is not moving and the motor has stopped.	Associated to input data Module 1/3 or Module 2/4, Byte 0; bit 5
Intermediate position	This indication is set to 1 when the valve is on an intermediate position.	Associated to input data Module 1/3 or Module 2/4, Byte 0; bit 6
Monitor relay	This indication is set to 1 when the actuator is available for bus control. Monitor relay indication means that the local selector is on remote position and no alarms are present.	Associated to input data Module 1/3 or Module 2/4, Byte 0; bit 7
Hardwired mode	This indication is set to 1 when the hardwired mode is selected.	Associated to input data Module 1/3 or Module 2/4, Byte 1; bit 0
Local	This indication is set to 1 when the optional local selector is set on local position to enable open/close local command.	Associated to input data Module 1/3 or Module 2/4, Byte 1; bit 1
Remote	This indication is set to 1 when the EPI2 actuator is not equipped with the optional local selector or when local selector is set on remote position to enable remote commands.	Associated to input data Module 1/3 or Module 2/4, Byte 1; bit 2
Local configuration	This indication is set to 1 when a local configuration is in progress.	Associated to input data Module 1/3 or Module 2/4, Byte 1; bit 3
Current position	The current position read from the base card.	Associated to input data Module 2/4, Byte 2 and 3
Positioner active	This indication is set to 1 when the on-board positioner is enabled.	Associated to input data Module 2/4, Byte 4; bit 0
Current torque	The current torque read from the base card.	Associated to input data Module 2/4, Byte 5

11.1.3 Positioning Algorithm

A positioning algorithm (position closed loop control) is implemented on the EPI2 DPV1 interface card. Positioning function compares the position received from the base card with the position request received from the bus. If the difference between "position request and present position" is greater than the "dead band", an open or a close command is sent to the base card. Dead band is configurable via bus from 0.3 to 2.0%.

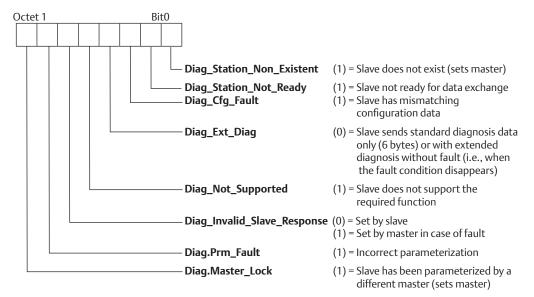
11.1.4 Diagnostic Message

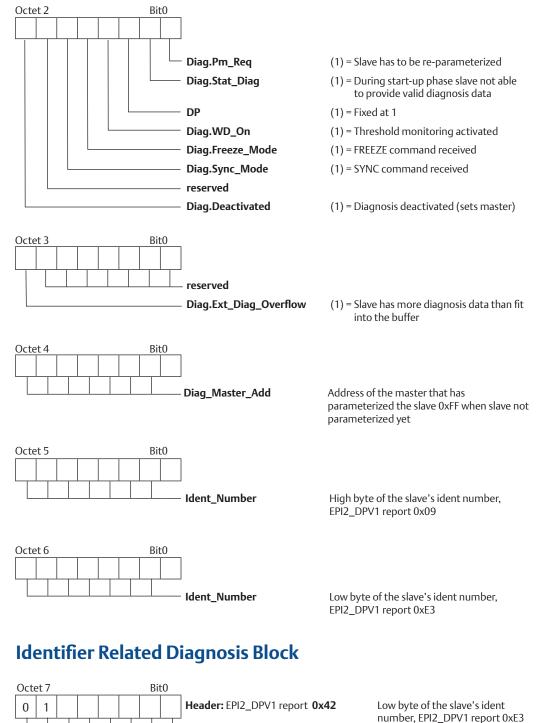
The EPI2 DPV1 interface manages the diagnostic indication coming from the actuator as stated by the Profibus DPV1 standard. When the EPI2 DPV1 interface needs to notify a fault to the master while in data exchange mode, it changes the function code in its response message to "high priority". During the next regular bus cycle, the master, in turn, sends a "Slave_Diag" request that is answered with a "Slave_Diag" response. The availability of specific diagnosis information is notified by Dia.Ext_Diag flag set to 1. Once the master was able to catch the diagnosis information, it returns to the standard cyclic data exchange mode. To notify the termination of the diagnosis incident, the EPI2_DPV1 interface send a "high priority" response. The master answers with a "Slave_Diag" request that is followed by a "Slave_Diag" response with Dia.Ext_Diag flag set to 0.

MASTER

EPI 2_DPV1

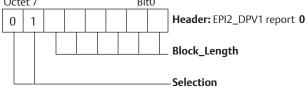
	Data exchange request
Data exchange response	
	Data exchange request
Data exchange response (Function code = high priority)	→
•	Slave_Diag request
Slave-Diag response (Diag Ext-Diag = 1)	→
	Data exchange request
Data exchange response	▶
•	Data exchange request
Data exchange response (Function code = high priority)	▶
•	Slave_Diag request
Slave_Diag response (Diag.Ext_Diag = 0)	▶
•	Data exchange request
Data exchange response	

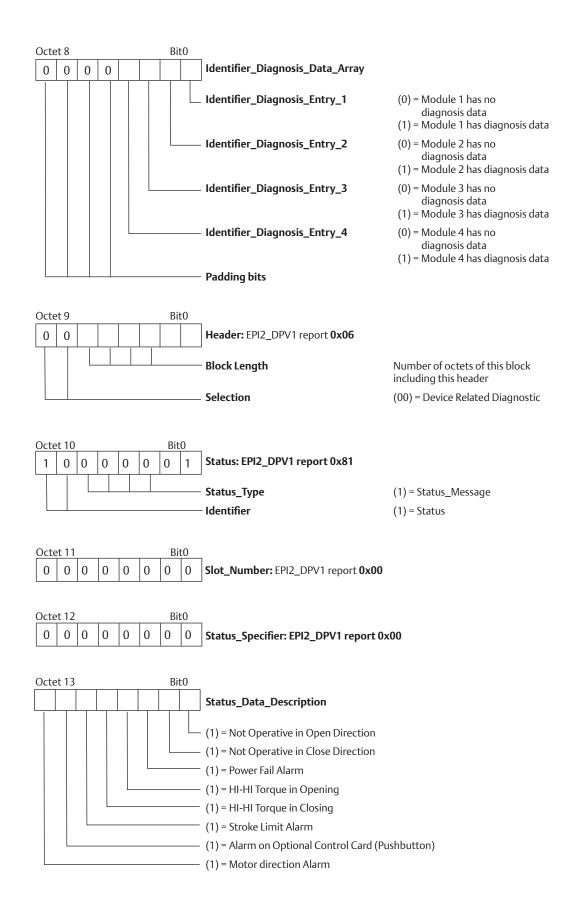

Fault on Fault off The diagnostic message implemented by EPI2_DPV1 has the following structure:

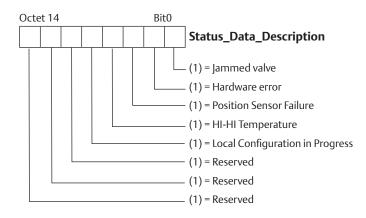

MS LSB	
Octet 1	
Octet 2	
Octet 3	Standard diagnostic block
Octet 4	6 octets
Octet 5	
Octet 6	

Type IRD, length	Identifier related diagnostic block
0000aaaa	2 octets

Type DRD, Length		
Identifier, Status_Type	Device related diagnostic block Status messages 6 octets	
Slot_Number		
Status_Specifier		
b b b b b b b b	_	
b b b b b b b b		


11.1.4.1 Standard Diagnostic Block




Number of octets of this block including this header

(01) = Identifier **Related Diagnostic**

11.1.4.2

The meaning of every diagnosis event listed in the extended diagnostic block is documented in the GSD file where to each bit corresponds a specific text to describe the device related diagnosis. A full Profibus DP compliant master should be able to show the correspondent text in the event of a diagnostic message.

Not Operative in Open direction

This bit is set when the open commands are not available due to current alarm trip in open direction. The diagnostic indication is cleared when the alarm that has generated the fault disappears.

Not Operative in Close direction

This bit is set when the close commands are not available due to current alarm trip in close direction. The diagnostic indication is cleared when the alarm that has generated the fault disappears.

Power Failure Alarm

This bit is set when the main supply is not in the proper range. The diagnostic indication is cleared at the next power-up if the power supply is corrected.

• HI-HI Torque in Opening

This bit is set when the torque has reached the programmed limit while the actuator was moving in opening direction. The diagnostic indication is cleared by a close command.

HI-HI Torque in Closing

This bit is set when the torque has reached the programmed limit while the actuator was moving in closing direction. The diagnostic indication is cleared by an open command.

Stroke Limit Alarm

This bit is set when the current position is behind the open or close limit switches or as a result of an incorrect torque set. The diagnostic indication is cleared when the position returns within the limits or after a successful torque configuration procedure.

Alarm on Optional Local Control (Pushbutton)

This bit is set when the optional local control does not work correctly. The diagnostic indication is cleared when the local control works without problems.

Motor Direction Alarm

This bit is set when the motor drive has recognized an incorrect behavior. The diagnostic indication is cleared by a command in the opposite direction.

Jammed Valve

This bit is set when the actuator detects a jammed valve condition. The diagnostic indication is cleared by a command in the opposite direction.

Hardware Error

This bit is set when the actuator detects a general hardware error. The diagnostic indication is cleared at the next power-up under normal condition.

Position Sensor Failure

This bit is set when the actuator detects that when executing a command, the position sensor is not working properly. The diagnostic indication is cleared by a command in the opposite direction.

HI-HI Temperature

This bit is set when the internal temperature is out from the operational limits. The diagnostic indication is cleared when the internal temperature is within the limits.

Local Configuration in Progress

This bit is set when the actuator detects that a local operator is executing a local configuration. The diagnostic indication is cleared when the local operator finishes the configuration and the actuator returns to normal operations.

11.2 Acyclic Communication DPV1

This paragraph defines the composition of the acyclic communication defined as per Profibus DPV1 standard. The data available on acyclic communication is organized as shown in Tables 9, 10 and 11.

Table 9.Slot 0: Name plate data

Slot	Index	Length	Access	Description
0	0	12 bytes	Read only	Actuator serial number
0	1	12 bytes	Read only	Actuator type
0	2	12 bytes	Read only	Valve tag name
0	3	28 bytes	Read only	Profibus interface

Table 10.Slot 1: General data

Slot	Index	Length	Access	Description
1	0	3 bytes	Read only	General data about current working condition
1	1	3 bytes	Read only	Position and torque
1	2	1 byte	Read only	Temperature

Table 11.

Slot 2: Actuator configuration data

Slot	Index	Length	Access	Description
2	0	4 bytes	Read and write	Torque and speed set
2	1	1 byte	Read and write	Dead band
2	2	6 bytes	Read only	General configuration
2	3	3 bytes	Read only	Fail-safe

11.2.1 Name Plate

Table 12.Slot 0, index 0, length 12 bytes - read only: actuator serial number

Byte	Name	Dim	Range	EU
0-11	Actuator serial number	12 bytes	-	String

Table 13.Slot 0, index 1, length 12 bytes - read only: actuator type

Byte	Name	Dim	Range	EU
0-11	Actuator serial number	12 bytes	-	String

Table 14.Slot 0, index 2, length 12 bytes - read only: valve tag name

Byte	Name	Dim	Range	EU
0-11	Valve tag	12 bytes	-	String

Table 15.Slot 0, index 3, length 28 bytes - read only: Profibus interface

Byte	Name	Dim	Range	EU
0-19	Model name	20 bytes	-	String
20-23	Firmware revision	4 bytes	-	String
24-27	Hardware revision	4 bytes	-	String

11.2.2 General Data

Table 16.Slot 1, index 0, length 3 bytes - read only: general data about current
working condition

Byte	Name	Dim	Range
		0	Fully open position
		1	Opening
		2	Closing
	Durte O	3	Actuator moving
0	Byte 0	4	Fully close
		5	Motor stopped
		6	Intermediate position
		7	Monitor relay
		0	Hardwired mode
		1	Local control
	Byte 1	2	Remote control
1		3	Local configuration
		4	-
		5	-
		6	-
		7	-
		0	Positioner active
		1	-
		2	-
2	Dute 2	3	-
2	Byte 2	4	-
		5	-
		6	-
		7	-

Table 17.Slot 1, index 1, length 3 bytes - read only: position and torque

Byte	Name	Dim	Range	EU
0-1	Current position	2 bytes	0 - 1000	0.1%
2	Current torque	1 byte	0 - 100	%

Table 18.Slot 1, index 2, length 1 byte - read only: temperature

Byte	Name	Dim	Range	EU
0	Internal temperature	1 byte	-128 +127	°C

11.2.3 Actuator Configuration

Byte	Name	Dim	Range	EU
			0	Min.
0	Opening speed set	1 byte	-	-
			9	Max.
			0	Min.
1	Closing speed set	1 byte	-	-
			9	Max.
	Opening torque set	1 byte	0	Min.
2			-	-
			9	Max.
			0	Min.
3	Closing torque set	1 byte	-	-
			9	Max.

Table 19.Slot 2, index 0, length 4 bytes - read and write: torque and speed set

Table 20.Slot 2, index 1, length 1 byte - read and write: dead band

Byte	Name	Dim	Range	EU
0	Dead band	1 byte	3 - 20	Tenth of %

Byte	Name	Dim	Range	EU
0	Storage format	1 byte	0	LSB first
0		1 byte	1	MSB first
1	Closing direction	1 byte	0	CW
		T byte	1	CCW
2	Open limit	1 byte	0	By torque
2		T byte	1	By position
3	Close limit	1 byte	0	By torque
2		T byte	1	By position
	Nominal torque		0	63 Nm
		1 byte	1	125 Nm
4			2	250 Nm
4			3	500 Nm
			4	1000 Nm
			5	2000 Nm
5	LED color code	1 byte	0	OP green - CL red
		Tuyle	1	OP red - CL green

Table 21.Slot 2, index 2, length 6 bytes - read only: general configuration

Table 22.Slot 2, index 3, length 3 bytes - read only: fail-safe

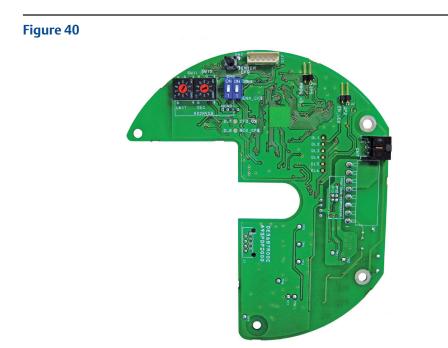
Byte	Name	Dim	Range	EU
	Fail-safe action	1 byte	0	Off
			1	Open
0			2	Close
			3	Stay put
			4	Go to position
1	Delay before initiating safe operation	1 byte	0 - 10	seconds
2	Safe position	1 byte	0 - 100	%

Section 12: Local Settings

The EPI2 DPV1 board is equipped with a set of switches to allow the operator to configure the Profibus address. Furthermore, two soldering pads are available to connect the Profibus termination circuit to be used in case that the external termination is not available.

To perform the local setting on the EPI2 DPV1 board, it is necessary to follow carefully the procedures explained in the Installation, Operation and Maintenance Manual for Keystone EPI2 electric actuator, Section 6, Actuator Settings and Configuration.

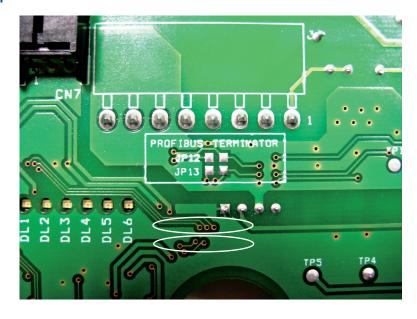

12.1 Profibus Address Setting


Profibus address is configured by means of the switches indicated in the figure and located on the EPI2 DPV1 interface soldering side, directly accessible when the control unit cover is removed. To enter a new Profibus address, the EPI2 actuator needs to be powered.

Configuration procedure:

- Move the dip switch ENA-CFG to the ON position; the CFG_ON LED is turned ON to indicate that the actuator is entered in configuration mode.
- Set the new Profibus address on the rotary switches UNIT and DEC and on the dip switch HUNDR. E.g. address 028 corresponds to:
 - HUNDR. on OFF position
 - DEC. on position 2
 - UNIT on position 8
- Press the push button ENTER to confirm the new settings; if the new address is correct, the ACQ_CFG LED is turned ON.
- Move the dip switch CFG_ENA to the OFF position to exit from configuration mode: the CFG_ON LED is turned OFF and the OM9 Profibus DPV1 restarts with the new address. It is not required to power down and start up the actuator.

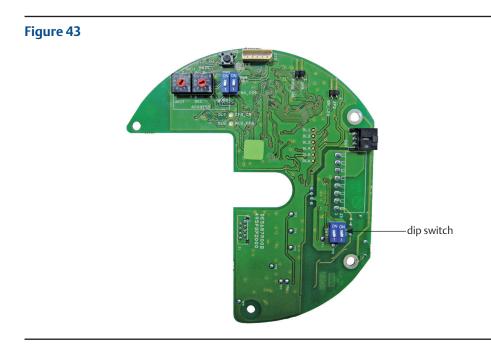
Figure 39



12.2 Profibus Termination On Board Code DE5687R00E

On board termination is located on the side of the EPI2 DPV1 module as shown in Figures 41 and 42. The termination is activated by two soldering paths indicated with JP12 and JP13.

On default, the soldering paths are left open and the termination is not active.


Figure 41

To activate the on board termination, both the soldering paths must be closed as indicated.

Figure 42

12.3 Profibus Termination On Board Code DE5687R00G and Subsequent

On board termination is done through the dip switch located on the board as shown in Figure 43. The termination is activated when the dip switches are in position ON. To remove the termination, please move both the switches to 1.

Section 13: GSD File

```
; GSD-File for F02 EPI2 Biffi Italia s.r.l.
; Author: C.Doglio
; Date: 20.07.05
_____
===
; #Profibus_DP
;
; Prm-Text-Def-List:
;;
Text definition 1
PrmText=1
Text(0)='LSB first'
Text(1)='MSB first'
EndPrmText
;;
Text definition 2
PrmText=2
Text(0)='Off'
Text(1)='Close'
Text(2)='Open'
Text(3)='Stayput'
Text(4)='Go to position'
EndPrmText
;;
Text definition 4
PrmText=4
Text(0)='By Torque'
Text(1)='By Position'
EndPrmText
;;
```

;

Text definition 5 PrmText=5 Text(0)='GREEN lit when OPEN' Text(1)='RED lit when OPEN ' EndPrmText ;Text definition 6 PrmText=6 Text(0)='CW' Text(1)='CCW' EndPrmText ; ; Ext-User-Prm-Data-Def-List: ; ExtUserPrmData=1 'Storage Format' Unsigned8 0 0-1 Prm_Text_Ref=1 EndExtUserPrmData ExtUserPrmData=2 'Fail safe action' Unsigned8 0 0-4 Prm_Text_Ref=2 EndExtUserPrmData ExtUserPrmData=3 'Fail safe delay' Unsigned8 4 0-10 EndExtUserPrmData ExtUserPrmData=4 'Safe position'

Unsigned8 50 0-100 EndExtUserPrmData ExtUserPrmData=5 'Closing direction' Unsigned8 0 0-1 Prm_Text_Ref=6 EndExtUserPrmData ExtUserPrmData=6 'Opening speed set' Unsigned8 7 0-9 EndExtUserPrmData ExtUserPrmData=7 'Closing speed set' Unsigned8 7 0-9 EndExtUserPrmData ExtUserPrmData=8 'Opening Torque set' Unsigned8 9 0-9 EndExtUserPrmData ExtUserPrmData=9 'Closing Torque set' Unsigned8 9 0-9 EndExtUserPrmData ExtUserPrmData=10 'Open limit' Unsigned8 1 0-1 Prm_Text_Ref=4 EndExtUserPrmData ExtUserPrmData=11 'Close limit' Unsigned8 1 0-1 Prm_Text_Ref=4 EndExtUserPrmData ExtUserPrmData=12 'Dead band' Unsigned8 15 3-20 EndExtUserPrmData ExtUserPrmData=13 'LED color code' Unsigned8 0 0-1 Prm_Text_Ref=5 EndExtUserPrmData

;

; Unit definition list: ; GSD_Revision=4 ; Vendor_Name='Biffi Italia srl' Model_Name='F02 EPI2 DPV1' Revision='Release 0.0' Ident_Number=0x09E3 Protocol_Ident=0 Station_Type=0 Hardware_Release='Hardware Release DE5687 rev.0.0' Software_Release='Software Release SW=0.00' ; 9.6_supp=1 19.2_supp=1 45.45_supp=1 93.75_supp=1 187.5_supp=1 500_supp=1 1.5M_supp=1 MaxTsdr_9.6=60 MaxTsdr_19.2=60 MaxTsdr_45.45=60 MaxTsdr_93.75=60 MaxTsdr_187.5=60 MaxTsdr_500=100 MaxTsdr_1.5M=150 ; Implementation_Type='SPC3' Bitmap_Device='F02k_R' Bitmap_Diag='F02k_D' Bitmap_SF='F02_C' ;

; Slave-Specification: ; Freeze_Mode_supp=1 Sync_Mode_supp=1 Auto_Baud_supp=1 Set_Slave_Add_supp=0 Min_Slave_Intervall=1 Max_Diag_Data_Len=16 Slave_Family=0 Fail_Safe=1 ; ; UserPrmData: Length and Preset: ; User_Prm_Data_Len=16 User_Prm_Data=0x00,0x00,0x00,\;0-2 Reserved DPV1 0x00, \; 3- Storage Format 0x00, \;4 -Fail Safe action 0x04, \; 5 -Delay before Fail Safe 0x32, \;6 -Safe position 0x0f, \;7 -Dead band 0x00, \; 8 -Closing direction 0x07, \;9 -Opening speed set 0x07, \; 10 -Closing speed set 0x09, \;11-Opening Torque set 0x09, \;12-Closing Torque set 0x01, \;13-Open limit 0x01, \;14-Close limit 0x00;15-LED color code ;

Max_User_Prm_Data_Len=16

; Ext_User_Prm_Data_Const(0)=0 Ext_User_Prm_Data_Const(1)=0 Ext_User_Prm_Data_Const(2)=0 Ext_User_Prm_Data_Ref(3)=1 Ext_User_Prm_Data_Ref(4)=2 Ext_User_Prm_Data_Ref(5)=3 Ext_User_Prm_Data_Ref(6)=4 Ext_User_Prm_Data_Ref(7)=12 Ext_User_Prm_Data_Ref(8)=5 Ext_User_Prm_Data_Ref(9)=6 Ext_User_Prm_Data_Ref(10)=7 Ext_User_Prm_Data_Ref(11)=8 Ext_User_Prm_Data_Ref(12)=9 Ext_User_Prm_Data_Ref(13)=10 Ext_User_Prm_Data_Ref(14)=11 Ext_User_Prm_Data_Ref(15)=13 ;; Modular_Station=1 Max_Module=1 Max_Input_Len=6 Max_Output_Len=4

Max_Data_Len=10

;

; Slave-Specification: ; DPV1_Slave=1 ; C1_Read_Write_supp=0 C2_Read_Write_supp=1 C2_Max_Data_Len=240 C2_Response_Timeout=100 C2_Read_Write_required=0 C2_Max_Count_Channels=3 Max_Initiate_PDU_Length=72 Diagnostic_Alarm_supp=0 Process_Alarm_supp=0 Pull_Plug_Alarm_supp=0 Status_Alarm_supp=0 Update_Alarm_supp=0 Manufacturer_Specific_Alarm_supp=0 Extra_Alarm_SAP_supp=0 Alarm_Sequence_Mode_Count=0 Alarm_Type_Mode_supp=0 Diagnostic_Alarm_required=0 Process_Alarm_required=0 Pull_Plug_Alarm_required=0 Status_Alarm_required=0 Update_Alarm_required=0 Manufacturer_Specific_Alarm_required=0 DPV1_Data_Types=0 WD_Base_1ms_supp=1 Check_Cfg_Mode=0 ;

;

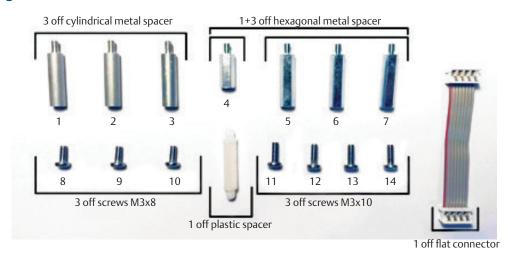
;Device related Diagnosis

Unit_Diag_Bit(24)='Not Operative Open' Unit_Diag_Bit(25)='Not Operative Close' Unit_Diag_Bit(26)='Power Fail Alarm' Unit_Diag_Bit(27)='HI-HI Torque in Opening' Unit_Diag_Bit(28)='HI-HI Torque in Closing' Unit_Diag_Bit(29)='Stroke Limit Alarm' Unit_Diag_Bit(30)='Local Control Alarm' Unit_Diag_Bit(31)='Motor Direction Alarm' Unit_Diag_Bit(32)='Jammed Valve' Unit_Diag_Bit(33)='Hardware Error' Unit_Diag_Bit(34)='Postition Sensor Failure' Unit_Diag_Bit(35)='HI-HI Temperature' Unit_Diag_Bit(36)='Local Configuration in progress' ; ; Module Definition List ; Module='Mod.1: 2 B.In, 1 B.Out' 0x11,0x20 1 EndModule Module='Mod.2: 6 B.In, 4 B.Out' 0x15,0x23 2 EndModule Module='Mod.3: 2 B.In, 1 B.Out - Cons.' 0x91,0x20 3 EndModule Module='Mod.4: 6 B.In, 4 B.Out - Cons.' 0x95,0xa3 4 EndModule

Section 14: Bluetooth Communication Module

The OM9 module is provided with integrated Bluetooth module. In www.biffi.it, you can download AManager program to modify each settings by integrated Bluetooth module. After installation of AManager program, please click on "Operations" button and then click on "Bluetooth Control" button and tick "on". The features and functionalities performed with Bluetooth module are indicated in AManager IOM for PDA (BIFCS-0029) and PC (BIFCS-0028).

Section 15: Profibus Certificate


	Certificate
	Certificate
F	PROFIBUS Nutzerorganisation e.V. grants to
Loc. Caselle	Biffi Italia srl e S. Pietro 420, 29017 Fiorenzuola d'Arda - Piacenza
the C	Certificate No.: Z01111 for the PROFIBUS Slave:
Model Name: Revision: GSD:	F02-PremiTork_DPV1 SW/FW: SW=0.00; HW: DE5687 rev.0.0 F02_09E3.gsd, Release 0.0; GSD_Revision 4
This certificate confi following scope:	firms that the product has successfully passed the certification tests with th
✓ DP-V0 ✓ DP-V1	MS0, Sync, Freeze, Fail_safe MS2
Physical Layer Test Report Number: Authorized Test Labo	PCN066-DPS-01
"Test Specifications f	
	are placed in circulation by October 12, 2011 the certificate is valid for life.
	(Official in Charge)
	(Official in Charge)
	(Official in Charge)

Section 16: Optional Kits

The OM9 kit consists of the following parts, see Figure 44.

- OM9 Profibus DPV1 Interface module
- 3 pcs metal spacers
- 1 pc metal hexagonal spacer 15 mm
- 3 pcs metal hexagonal spacers 25 mm
- 1 plastic spacer
- 1 flat cable with connectors
- 3 screw M3x8
- 4 screws M3x10

Figure 44

This kit allows to assemble optional module OM9 over all different EPI2 models. Depending on models, only some spacers and screws has to be used. Refer to Tables 23 and 24, and Figure 45 to choose the correct mechanical parts.

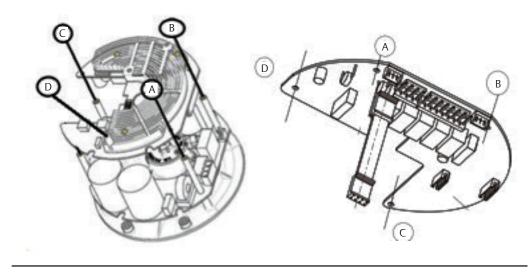

Actuator model	OLD 63-125	OLD 250-2K	NEW 63-125	NEW 250-2K
Product coding chart digit X7X8 1-PHASE	UV - VU	UV - VU	LV - HV	LV - HV
Product coding chart digit X7X8 3-PHASE	31, 32, 33	31, 32, 33	3A, 3B, 3C	3A, 3B, 3C
A	1,11	11	4,8	5,8
В	2,12	12	1,11	6,9
С	3,13	13	2,12	7,10
D	14	14	15	-

Table 23. EPI2 cross reference table non-US market

Actuator model	OLD E006-E013	OLD E025-E171	NEW E006-E013	NEW E025-E171	
Product coding chart digit X7X8 1-PHASE	0 - 4	0 - 4	L-H	L-H	
Product coding chart digit X7X8 3-PHASE	1, 2, 3 1, 2, 3		A, B, C	A, B, C	
A	1,11	11	4,8	5,8	
В	2,12	12	1,11	6,9	
С	3,13	13	2,12	7,10	
D	14	14	15	-	

Table 24.EPI2 cross reference table US market

World Area Configuration Centers (WACC) offer sales support, service, inventory and commissioning to our global customers. Choose the WACC or sales office nearest you:

NORTH & SOUTH AMERICA

MIDDLE EAST & AFRICA

19200 Northwest Freeway Houston TX 77065 USA T +1 281 477 4100

Av. Hollingsworth 325 Iporanga Sorocaba SP 18087-105 Brazil T +55 15 3413 8888

ASIA PACIFIC

No. 9 Gul Road #01-02 Singapore 629361 T +65 6777 8211

No. 1 Lai Yuan Road Wuqing Development Area Tianjin 301700 P. R. China T +86 22 8212 3300 P. O. Box 17033 Jebel Ali Free Zone Dubai T +971 4 811 8100

P. O. Box 10305 Jubail 31961 Saudi Arabia T +966 3 340 8650

24 Angus Crescent Longmeadow Business Estate East P.O. Box 6908 Greenstone 1616 Modderfontein Extension 5 South Africa T +27 11 451 3700

EUROPE

Holland Fasor 6 Székesfehérvár 8000 Hungary T +36 22 53 09 50

Strada Biffi 165 29017 Fiorenzuola d'Arda (PC) Italy T +39 0523 944 411

For complete list of sales and manufacturing sites, please visit www.emerson.com/actuationtechnologieslocations or contact us at info.actuationtechnologies@emerson.com

www.emerson.com

VCIOM-01493-EN ©2022 Emerson. All rights reserved.

The Emerson logo is a trademark and service mark of Emerson Electric Co. KeystoneTM is a mark of one of the Emerson family of companies. All other marks are property of their respective owners.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available upon request. We reserve the right to modify or improve the designs or specifications of such products at any time without notice.

