Millennium II Multi-Channel Transmitter
Important Instructions

Net Safety Monitoring, Inc (Net Safety) designs, manufactures and tests products to function within specific conditions. Because these products are sophisticated technical instruments, it is important that the owner and operation personnel must strictly adhere both to the information printed on the product nameplate and to all instructions provided in this manual prior to installation, operation, and maintenance.

WARNING

Installing, operating or maintaining a Net Safety Product improperly could lead to serious injury or death from explosion or exposure to dangerous substances. Comply with all information on the product, in this manual, and in any local and national codes that apply to the product. Do not allow untrained personnel to work with this product. Use Net Safety parts and work procedures specified in this manual.
The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, expressed or implied, regarding the products or services described herein or their use or applicability. All sales are governed by Net Safety’s terms and conditions, which are available upon request. We reserve the right to modify or improve the designs or specifications of such products at any time.

Net Safety does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Net Safety products remains solely with the purchaser and end-user.

To the best of Net Safety’s knowledge the information herein is complete and accurate. Net Safety makes no warranties, expressed or implied, including implied warranties of merchantability and fitness for a particular purpose with respect to this manual and, in no event, shall Net Safety be liable for any incidental, punitive, special or consequential damages including, but not limited to, loss of production, loss of profits, loss of revenue or use and costs incurred including without limitation for capital, fuel and power, and claims of third parties.

Product names used herein are for manufacturer or supplier identification only and may be trademarks/registered trademarks of these companies.

Net Safety and the Net Safety logo are registered trademarks of Net Safety Monitoring, Inc. The Emerson logo is a trademark and service mark of the Emerson Electric Company.

Copyright © 2016 by Rosemount, Shakopee, MN.

All rights reserved. No part of this work may be reproduced or copied in any form or by any means - graphic, electronic, or mechanical - without first receiving written permission of Rosemount, Shakopee, MN.
Warranty

1. **Limited Warranty.** Subject to the limitations contained in Section 10 (Limitation of Remedy and Liability) herein, Seller warrants that (a) the licensed firmware embodied in the Goods will execute the programming instructions provided by Seller; (b) that the Goods manufactured by Seller will be free from defects in materials or workmanship under normal use and care; and (c) Services will be performed by trained personnel using proper equipment and instrumentation for the particular Service provided. The foregoing warranties will apply until the expiration of the applicable warranty period. Sensors and detectors are warranted against defective parts and workmanship for 24 months from the date of purchase and other electronic assemblies for 36 months from the date of purchase. Products purchased by Seller from a third party for resale to Buyer (Resale Products) shall carry only the warranty extended by the original manufacturer. Buyer agrees that Seller has no liability for Resale Products beyond making a reasonable commercial effort to arrange for procurement and shipping of the Resale Products. If Buyer discovers any warranty defects and notifies Seller thereof in writing during the applicable warranty period, Seller shall, at its option, (i) correct any errors that are found by Seller in the firmware or Services; (ii) repair or replace FOB point of manufacture that portion of the Goods found by Seller to be defective; or (iii) refund the purchase price of the defective portion of the Goods/Services. All replacements or repairs necessitated by inadequate maintenance; normal wear and usage; unsuitable power sources or environmental conditions; accident; misuse; improper installation; modification; repair; use of unauthorized replacement parts; storage or handling; or any other cause not the fault of Seller, are not covered by this limited warranty and shall be replaced or repaired at Buyer’s sole expense and Seller shall not be obligated to pay any costs or charges incurred by Buyer or any other party except as may be agreed upon in writing in advance by Seller. All costs of dismantling, reinstallation, freight and the time and expenses of Seller’s personnel and representatives for site travel and diagnosis under this limited warranty clause shall be borne by Buyer unless accepted in writing by Seller. Goods repaired and parts replaced by Seller during the warranty period shall be in warranty for the remainder of the original warranty period or 90 days, whichever is longer. This limited warranty is the only warranty made by Seller and can be amended only in a writing signed by an authorized representative of Seller. The limited warranty herein ceases to be effective if Buyer fails to operate and use the Goods sold hereunder in a safe and reasonable manner and in accordance with any written instructions from the manufacturers. THE WARRANTIES AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE. THERE ARE NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, AS TO MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE OR ANY OTHER MATTER WITH RESPECT TO ANY OF THE GOODS OR SERVICES.

2. **Limitation of Remedy and Liability.** Seller shall not be liable for damages caused by delay in performance. The remedies of Buyer set forth in the Agreement are exclusive. In no event, regardless of the form of the claim or cause of action (whether based in contract, infringement, negligence, strict liability, other tort or otherwise), shall Seller’s liability to Buyer and/or Buyer’s customers exceed the price to Buyer of the specific Goods manufactured or Services provided by Seller giving rise to the claim or cause of action. Buyer agrees that in no event shall Seller’s liability to Buyer and/or Buyer’s customers extend to include incidental, consequential or punitive damages. The term “consequential damages” shall include, but not be limited to, loss of anticipated profits, revenue or use and costs incurred including without limitation for capital, fuel and power, and claims of Buyer’s customers.
Contents

Section 1: Introduction .. 1
 1.1 Models covered .. 1
 1.2 Service support ... 1
 1.3 Return of material ... 1
 1.4 Product recycling/disposal .. 1

Section 2: Installation ... 2
 2.1 Unpacking and inspection .. 2
 2.2 Dimensions .. 2
 2.3 Mounting .. 2
 2.3.1 Transmitter orientation options ... 2
 2.3.2 Faceplate rotation ... 3
 2.4 Wiring .. 4
 2.4.1 General requirements .. 4
 2.4.2 Terminal connection ... 5
 2.4.3 Cable choice and guidelines .. 5
 2.4.4 Important wiring guidelines .. 5
 2.4.5 Internal ground screw .. 6
 2.4.6 External ground ... 6
 2.4.7 Seals .. 6
 2.4.8 Analog output, isolated supply, non-isolated supply and jumper configuration 7
 2.4.9 Remotely mounted sensors jumper configuration 8
 2.4.10 Sensor and transmitter terminals ... 8
 2.4.11 Remote reset ... 9
 2.5 Sensor separation/remote mounting of sensor .. 10
 2.5.1 Wiring diagrams ... 11
 2.6 Installation checklist .. 12

Section 3: Operation .. 13
 3.1 Transmitter and faceplate description .. 13
 3.1.1 Display ... 13
 3.1.2 Status LED ... 13
 3.1.3 Current loop measurement (test jacks) ... 14
 3.1.4 Menu buttons and access .. 14
 3.1.4.1 Intrusive access .. 14
 3.1.4.2 Non-Intrusive Access/Magnetic Reed switch Access 14
 3.2 Transmitter power up ... 14

Section 4: Programming .. 15
 4.1 Menu options ... 15
 4.2 Navigating main menu .. 15
 4.3 Calibrate sensor .. 17
 4.4 Enable/Disable channels ... 17
 4.5 Set alarm level .. 17
 4.6 Set relay option ... 18
 4.7 Relay assignment .. 18
 4.8 Alarm mode setting ... 20
 4.9 Select display language ... 20
 4.10 Modbus Setup ... 20
 4.11 Setup current date ... 21
 4.12 Setup current time ... 21
 4.13 View events log ... 21
Table of Contents

Section 5 : Calibration procedure ... 25
 5.1 Full calibration procedure .. 25
 5.2 Status conditions during calibration .. 28

Section 6 : Monitoring and outputs .. 29
 6.1 Analog 4-20mA ... 29
 6.2 HART Communication (Optional) ... 29
 6.3 Relays (Optional) ... 30
 6.3.1 Alarm relay(s) .. 30
 6.3.2 Fault relay ... 30
 6.4 RS-485 Modbus RTU (Optional) .. 31
 6.4.1 Modbus registers ... 32
 6.5 Transmitter output operation .. 33
 6.6 Fault monitoring ... 33
 6.7 Fault conditions ... 34
 6.7.1 Transmitter fault conditions 34
 6.7.2 Sensor fault conditions ... 35

Section 7 : Maintenance .. 36
 7.1 Periodic response check .. 36
 7.2 Troubleshooting ... 36
 7.3 Storage .. 36
 7.4 Spare parts and accessories ... 37

Section 8 : Electrostatic sensitive device ... 39

Section 9 : Wire resistance table ... 40

Section 10 : Specifications ... 41
 10.1 Electrical ... 41
 10.1.1 Operating voltage range ... 41
 10.1.2 Power consumption .. 41
 10.1.3 EMC compliance .. 41
 10.2 Environmental ... 41
 10.2.1 Operating temperature .. 41
 10.2.2 Relative humidity .. 41
 10.2.3 Ingress protection ... 41
 10.3 Mechanical ... 41
 10.3.1 Enclosure material .. 41
 10.3.2 Conduit opening ... 41
 10.3.3 Weight ... 42
 10.4 Warranty .. 42

Section 11 : Certifications ... 43
 11.1 North American .. 43
 11.2 IECEx .. 43
11.3 FC Models

- 11.3.1 North American ... 43
- 11.3.2 IECEx (aluminum) ... 43
- 11.3.3 IECEx (stainless) ... 43

Section 12 : Ordering information

- 12.1 M21 single channel transmitter ... 44
- 12.2 M22 dual channel transmitter ... 45
Section 1: Introduction

1.1 Models covered

A Millennium II gas detection system is composed of a field mounted transmitter and Millennium II series sensors which may be integrally mounted to the transmitter or remotely mounted.

The transmitter is certified for use in hazardous locations and is available as a single or dual sensor system. All operator controls including configuration and calibration can be accessed without opening the enclosure by using other communication devices and the attached magnet to actuate magnetic Reed switches. Available outputs are: conventional 4 to 20 mA analog, Analog/HART, electromechanical relays, or Modbus RTU digital.

1.2 Service support

Technical support for this product can be provided by contacting your local Emerson Process Management representative or by contacting the Technical Support department at +1 866 347 3427 (toll free) or Safety.CSC@Emerson.com.

1.3 Return of material

To expedite the return of this product, proper communication between the customer and the factory is important. Before returning a product, call +1 866 347 3427 (toll free) or e-mail Safety.CSC@Emerson.com for a Return Material Authorization (RMA) number.

On the return of the equipment, include the following information:

1. RMA number provided to you by Rosemount
2. Company name and contact information
3. Ship all equipment, prepaid to:
 Rosemount
 6021 Innovation Boulevard
 Shakopee, MN 55379
4. Mark all packages with the RMA number and type of return (e.g. return for evaluation)

Pack items to protect them from damage and use anti-static bags or aluminum-backed cardboard as protection from electrostatic damage.

All equipment must be shipped prepaid. Collect shipments will not be accepted.

1.4 Product recycling/disposal

Recycling of equipment and packaging should be taken into consideration and disposed of in accordance with local and national legislations/regulations.
Section 2: Installation

2.1 Unpacking and inspection

Carefully remove all of the components from the packaging and verify them against the enclosed packing list. Inspect all components for any obvious damage such as broken or loose parts. If you find any components missing or damaged, notify your local Net Safety representative or the factory immediately.

2.2 Dimensions

The Millennium II transmitter enclosure is available in aluminum (A359) and stainless steel (SS316). Dimensions are provided in inches and [millimeters].

![Figure 2-1 - Dimensions](image)

M20, 1/2" NPT, and 1/2" BSP threads also available

2.3 Mounting

Ensure transmitter and sensor are securely mounted as per local regulations. The transmitter has mounting holes to allow mounting to a wall or pole as desired. Mounting kit hardware is required when mounting the transmitter a pole. Contact your local Net Safety representative for detailed information on the pole mounting kits. The transmitter should be mounted at eye-level and be easily accessible for monitoring and maintenance purposes.

2.3.1 Transmitter orientation options

Depending on the installation and mounting requirements, the transmitter enclosure (housing) may be mounted in different orientations as seen in Figure 2-2. To accommodate the different mounting orientations, the electronics module can be rotated inside the transmitter enclosure.
NOTICE

Ensure the orientation allows proper wiring and adequate wire length inside the transmitter enclosure.

When determining suitable enclosure orientation for specific applications, installers should observe all local regulations and guidelines for mounting enclosures.

Figure 2-2 Different enclosure orientations

![Different enclosure orientations diagram]

2.3.2 Faceplate rotation

WARNING

Before wiring or rotating electronics, ensure that the power to transmitter is switched off. Do not open the transmitter enclosure in a classified area.

Avoid touching electronic components, as they are susceptible to electrostatic discharge (ESD). Refer to Section 8 for more information.

When the transmitter enclosure is mounted in different orientations (B, C, and D) as outlined in Figure 2-2, the electronics module will need to be rotated to ensure the display can be easily read. The electronics module consists of the relay board, faceplate (Display/CPU assembly), and main terminal board. To rotate the electronics module, follow these instructions:

1. Turn off power to transmitter and ensure area is de-classified
2. Remove the enclosure cover
3. Unscrew both the locking knobs and free from two metal standoffs
4. Lift transmitter faceplate from enclosure
5. Disconnect existing wiring
6. Unscrew the two metal standoffs using a ¼"hex tool
7. Carefully remove the electronics module
8. Rotate the electronics module to desired position
9. Align metal standoffs with the mounting holes of the electronics module and enclosure base
10. Insert metal standoffs in the appropriate mounting holes
11. Tighten metal standoffs with ¼” hex tool to secure electronics module
12. Reconnect wiring
13. Replace faceplate, then fit and hand tighten locking knobs to metal standoffs by turning clockwise
14. Replace enclosure cover.

Figure 2-3 Rotating electronics module

2.4 Wiring

2.4.1 General requirements

WARNING

Failure to follow these installation guidelines could result in death or serious injury. Ensure that only qualified personnel perform the installation.

Electrical shock could cause death or serious injury. Use extreme caution when making contact with the leads and terminals.

Do not open the transmitter, sensor, or junction box enclosure when in a classified area or when an explosive atmosphere may be present unless the power to the transmitter has been removed.
Wiring codes and regulations may vary. Wiring must comply with all applicable regulations relating to the installation of electrical equipment in a hazardous area and is the responsibility of the installer. If in doubt, consult a qualified official before wiring the system.

When separating the sensor from the transmitter, the use of shielded cable is highly recommended to meet electromagnetic compatibility (EMC) requirements and to protect against interference caused by extraneous electrical or electromagnetic noise. In applications where the wiring is installed in conduit, the conduit must not be used for wiring to other equipment.

If the 4-20 mA signal is not used, connect a jumper between the 4 – 20 mA terminal and the common terminal to allow analog current levels to be monitored at the test jacks on the faceplate.

In applications where wiring is installed in conduit, conduit must not be used for wiring to any other electrical equipment.

For effective communication, Net Safety limits sensor separation to 2000 feet (600 meters) using 16 AWG wires.

Modbus RS-485 connection 2-wire mode, multipoint serial line available. Up to 247 addresses allowed. When developing a RS-485 chain of devices, the last device in the chain requires an end of line termination resistor (120 Ohms).

2.4.2 Terminal connection

When connecting cable wires, use a small screwdriver to gently press down and hold the spring connector open. Insert the appropriate wire into the open connector hole, releasing the screwdriver to secure the wire as shown in Figure 2-4.

The connector will accommodate wire sizes between 14 and 20 AWG.

Figure 2-4 Terminal connection

2.4.3 Cable choice and guidelines

Radio frequency interference (RFI) can be caused by nearby electrical devices (e.g. transformers or high voltage equipment) as well as handheld communication devices/radios, which when activated, may impede the proper functioning of the transmitter and sensor. Selecting the right instrumentation cable and making proper grounding connections within the junction box will reduce or eliminate interference. Visible symptoms of RFI include inconsistent, incorrect, and erratic LEL and ppm readings.

2.4.4 Important wiring guidelines

Gas detection instruments are an important part of a safety alarm and shutdown system. The system is composed of:
Detection instruments

Customer connected equipment

Wiring

Net Safety designs and manufactures its detection equipment under rigid quality control management systems and makes every effort to design for the harshest of industrial environments. The other components of the system – the customer-connected equipment and wiring – are also important contributors to the overall quality and performance of the safety system.

It is important to implement wiring that ensures the reliability and integrity of the safety system. Field wiring practices and the choice of cable type specified vary from project to project. Poor practices and choices are often found to be the source of unwanted system disruptions. RFI and electromagnetic interference (EMI) are usually very powerful disruptive forces in industrial facilities and these forces act upon the system through the wiring.

The cable used should be a very high quality instrument grade, certified for the application conditions, consisting of a rugged protective outer jacket, an overall electrical shield of fine braided copper or metallic foil, and internal pairs or triads of foil shielded copper wire of suitable gauge for the power conducted over the specified length.

The shields must be electrically continuous from the instrument junction box through other junction boxes and finally to the connected equipment. The shield must be connected to a suitable ground sink as specified in the instrument manual in order to protect the system from electrical disturbances.

In general, communication cables and power cables should not run in parallel for any significant length, and should not be carried in the same cable tray. Through inductance, high currents in power cables can induce significant ‘noise’ in communication cables running parallel alongside power cables.

2.4.5 Internal ground screw

To access enclosure grounding screw, remove the electronics module by following steps 1 through 7 in Section 2.3.2.

2.4.6 External ground

In order to ensure proper operation of the sensor, an external earth ground is recommended. Net Safety recommends that the external ground be connected to the grounding point on the enclosure.

2.4.7 Seals

The use of seals is recommended to further protect the system against water ingestion, and equipment should be installed according to applicable local electrical codes. Seals are especially recommended for installations that use high-pressure or steam cleaning devices in proximity to the transmitter.

- Waterproof and explosionproof conduit seals are recommended to prevent water accumulation within the enclosure
- Seals should be located as close to the device as possible and not more than 18 inches (46 cm) away
- Explosionproof installations may require an additional seal where conduit enters a non-hazardous area; ensure conformity with local wiring codes
- When pouring a seal, use a fiber dam to ensure proper formation of the seal. Seals should never be poured at temperatures below freezing
• The jacket and shielding of the cable should be stripped back to permit the seal to form around the individual wires. This will prevent air particles and water leakage through the inside of the shield and into the enclosure.

• It is recommended that explosionproof drains and conduit breathers be used. In some applications, changes in temperature and barometric pressure can cause breathing which allows moist air to enter and circulate inside the conduit. Joints in the conduit system are seldom tight enough to prevent this breathing.

2.4.8 Analog output, isolated supply, non-isolated supply and jumper configuration

The analog output may be powered from the main instrument power supply or a separate, independent power supply in which case an isolated wiring configuration is necessary.

To set a Non-isolated or Isolated current output, simply move the Jumpers/shorting jacks (JP3 and JP4) to either the non-isolated or isolated current position. For non-isolated current output, ensure pins 3 & 2 at JP3 & JP4 location on the main terminal board are jumped (shorted). Factory standard models ship with jumpers at JP3 & JP4 in the non-isolated current output position.

For Isolated current output, pins 1 & 2 at JP3 & JP4 should be jumped (shorted). Note that JP3 is for configuring channel 1 and JP4 is for configuring channel 2. Jumpers and pins are located next to the power and 4-20 output terminals on the main terminal board. See Figure 2-5 for reference.

Figure 2-5 Non-isolated and isolated current jumpers
2.4.9 Remotely mounted sensors jumper configuration

Sensor separation from the transmitter may extend up to 2000 feet (600 meters) in which case a junction box is required.

When mounting sensor remotely (separating sensor from transmitter), Jumpers JP1 and JP2 should be installed over the pins. Jumpers and pins are located on the main terminal board near the sensor terminals. JP1 is for channel 1 and JP2 is for channel 2. Refer to Figure 2-6.

2.4.10 Sensor and transmitter terminals

Before wiring, ensure power to the unit is switched off. Connect the sensor wires to the sensor terminals of the transmitter and connect the transmitter’s power and output terminals to the wiring leading to the power source/panel. Refer to the configuration tables below for sensor as well as transmitter power and output terminal designations.
Sensor Terminals

<table>
<thead>
<tr>
<th>Sensor wires</th>
<th>Transmitter sensor board terminal designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>+Vdc (from transmitter)</td>
</tr>
<tr>
<td>Red</td>
<td>SigA</td>
</tr>
<tr>
<td>Blue</td>
<td>SigB</td>
</tr>
<tr>
<td>Black</td>
<td>Com</td>
</tr>
<tr>
<td>Green</td>
<td>Earth ground</td>
</tr>
</tbody>
</table>

Transmitter power terminals

<table>
<thead>
<tr>
<th>Transmitter terminal designation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST</td>
<td>Remote Reset</td>
</tr>
<tr>
<td>+Vdc (10.5-32Vdc)</td>
<td>Power (+)</td>
</tr>
<tr>
<td>COM</td>
<td>Power (-)</td>
</tr>
<tr>
<td>4-20 (CH1)</td>
<td>Channel #1 current loop output</td>
</tr>
<tr>
<td>ISO (CH1)</td>
<td>+Vdc isolated 4-20mA power, channel #1</td>
</tr>
<tr>
<td>4-20 (CH2)</td>
<td>Current loop output channel #2</td>
</tr>
<tr>
<td>ISO (CH2)</td>
<td>+Vdc isolated 4-20mA power, channel #2</td>
</tr>
</tbody>
</table>

Figure 2-7 Sensor wiring and terminal connections

2.4.11 Remote reset

If the alarm relays are configured for latching operation it may be desirable to reset latched alarms from a remote location. In this case a normally open, momentary pushbutton switch may be connected across terminals RST and COM.
2.5 Sensor separation/remote mounting of sensor

When it is necessary to mount the sensor remotely (separated from transmitter), by way of junction box and conduit, it is important that the installer follow the necessary requirements and guidelines relating to sensor separation and cable selection. See Figure 2-9 for typical remote mounting of sensor. Also refer to 2.4 for information on wiring guidelines.

When sensors are being mounted remotely, consult the multi-purpose junction box manual (MAN-0081) for wiring instructions. Always ensure that the transmitter is supplying 10.5 - 32 VDC across the sensor power terminals (VDC + and COM) of Net Safety junction box (JB-MPD-A/S).

The maximum distance between the sensor and transmitter is limited by the resistance of the connecting wiring, which is a function of the gauge of the wire being used. For effective communication, Net Safety limits the separation distance between sensor and transmitter to 2000 feet (600 meters) using 16 AWG wire. See Section 9 for information on typical wire gauge and resistance.
2.5.1 Wiring diagrams

Wiring drawings show general ways in wiring the system for analog signal output. Consult qualified personnel on specific wiring requirements.

Figure 2-10 Non-isolated terminal connection
2.6 Installation checklist

Review the following checklist prior to turning the power on to the transmitter after installation has been completed:

- Ensure that the transmitter and sensor are properly and firmly mounted.
- Ensure that stopping plugs are securely tightened on any unused conduit entries.
- Ensure that the transmitter and sensor are not obstructed; transmitter and sensor are accessible and target gas is not inhibited from reaching the sensor.
- Ensure adherence to applicable local guidelines and requirements on wiring and sealing of equipment in hazardous and non-hazardous areas.
- Ensure that proper shielding and grounding practices are adhered to and local codes are being followed.
- Check system operational voltage and conditions; ensuring that they are within the applicable specifications of the transmitter and sensor.
- Verify wiring at all termination and junction points (transmitter, junction box, and power supply).
- Ensure that the transmitter housing cover and sensor cap are secured tightly.
Section 3: Operation

3.1 Transmitter and faceplate description

3.1.1 Display

The Millennium II is equipped with an Organic LED (OLED) display. It allows the user to see the concentration of gas present for each individual channel and the various options offered. The display has a wide temperature rating and will operate well in lowly lit conditions. In order to extend the life of the display, a screen saver is enabled if the menu is not in use. To exit the screen saver mode, move the magnet close to any of the three Reed switch locations (8 o’clock, 6 o’clock or 4 o’clock position).

3.1.2 Status LED

The Status LED can be solid red or green, or flashing red or green to indicate various states of the transmitter and sensor.
3.1.3 **Current loop measurement (test jacks)**

WARNING

Do not open the transmitter, sensor, or junction box enclosure when in a classified area or when an explosive atmosphere may be present unless the power to the transmitter has been removed.

For convenience, a pair of test jacks for each analog output is provided on the front face of the display module. Attach ammeter probes to these jacks to check loop current without opening the circuit to insert the meter.

3.1.4 **Menu buttons and access**

The main menu can be accessed in two ways: Intrusive (opening the enclosure and pressing menu buttons) and non-intrusive (keeping the enclosure closed and using the magnet and reed switches).

3.1.4.1 **Intrusive access**

The menu buttons provide access to the Millennium II’s Main Menu options allowing the user to review and configure existing options under sub menus and perform calibration. There are three visible main menu buttons that are located directly under the display screen. They are designated ‘1’, ‘2’ and ‘3’.

3.1.4.2 **Non-Intrusive Access/Magnetic Reed switch Access**

Accessing the main menu and making a selection can also be done via an attached magnet and Reed switches.

The Reed switches are located in the 8 o’clock, 6 o’clock and 4 o’clock positions on the face plate and indicated by horse shoe shape print magnets. To select a Reed switch, place and hold the magnet close to the transmitter enclosure at 8, 6 or 4 o’clock position.

NOTICE

Menu buttons and reed switches provide the same functions. The term ‘switch’ is used throughout to represent menu buttons and reed switches.

3.2 **Transmitter power up**

After power is applied to the transmitter, a warm-up routine will begin, the duration of which depends on the sensor type. The display will indicate the sensor warming up and the Status LED will flash slow red and the current output will be 3.0 mA. After the warm-up period, the transmitter will enter normal operation and the screen will display: “Channel 1 00 %LEL (or ppm), Channel 2 00 %LEL (or ppm).” For dual channel models either channel can be disabled if not in use. If a channel is disabled, the screen will display “Disabled” for that particular channel. The enabled channel analog output will be to 4.0 mA during normal operation.

A slow flash is defined as the Status LED being ‘ON’ for 50 milliseconds and ‘OFF’ for 1 second, while a fast flash is the LED being ‘ON’ for 250 milliseconds and ‘OFF’ for 250 milliseconds and a very fast flash is the LED ‘ON’ for 50 milliseconds and ‘OFF’ for 50 milliseconds.
Section 4: Programming

4.1 Menu options

The main menu provides access to various functional settings/options, as seen in the list below. Each menu option has a submenu, where configuration is completed.

- Calibrate Sensor
- Enable/Disable Channels
- Set Alarm Level
- Set Relay Option (available on relay models)
- Relay Assignment (available on relay models)
- Alarm Mode setting
- Select Display Language
- Modbus Setup (available on Modbus models)
- Setup Current Date
- Setup Current Time
- View Events Log
- Manual Reset
- Self-test Relay
- Sensor Upper Limit (Range)
- Select Gas Type
- Cal Gas Value
- Serial Number and Firmware version
- Exit

4.2 Navigating main menu

Navigation through the menu options is done by activating menu button 1 or 2. The same function is provided using the magnet to select Reed switch 1 (indicated by printed magnet in the 8’o clock position on the faceplate) or Reed switch 2 (indicated by printed magnet in the 6’o clock position on the faceplate).

1. Enter the main menu, either intrusive or non-intrusive (using the magnet), by selecting/activating any button then select “yes” by using switch 1.

2. The message “Calibrate Sensor?” will be displayed.

3. Activate up-down buttons (switch 1) or (switch 2) to scroll/navigate through main menu options.

4. Select/activate the enter key (switch 3) to display sub menu.

5. To exit the main menu, continue using the navigation keys (up-down keys) and select “Exit” with enter key at each menu stage (sub menu and main menu).

6. The main menu will be exited automatically if no option is selected; it takes fifty (50) seconds to exit to each of the previous options or stage entered. If left untouched, this continues until the main menu is fully exited.
Figure 4-1 Programming flowchart

```
Enter Main Menu?

YES  NO

1

Calibrate Sensor?

1

Enable/Disable Channels?

1

Set Alarm Level?

1

Set Relay Option?

1

Relay Assignment?

1

Alarm Mode Setting

1

Select Display Language?

1

Modbus Setup

1

Setup Current Date?

1

Setup Current Time?

1

View Events Log

1

Manual Reset?

1

Selftest Relay?

1

Sensor Upper Limit (Range)

1

Select Gas Type

1

Cal Gas Value

1

Serial Number and Firmware Version

1

Exit

1
```
4.3 **Calibrate sensor**

This menu function allows the user to perform a calibration on the connected sensor. Refer to Section 5 for the calibration procedure.

4.4 **Enable/Disable channels**

This option allows the Millennium II Transmitter channels to be enabled or disabled. The default value is channel 1 (CH1) enabled for single sensor models (model M21) while channel 2 (CH2) is permanently disabled. Both channels are enabled for two sensor models (model M22).

1. Enter the main menu by selecting/activating any key to get the “enter main menu” prompt, then activate switch 1 to select “yes”.

2. Select the down arrow key (switch 2) with the magnet, and scroll to “Enable/Disable Channel?”

3. Activate the enter key (switch 3) to enter the option. The sub menu options: ‘CH 1 Enabled’ will be highlighted.

4. To disable a channel 1, Activate the enter key (switch 3). “CH1 disabled” will now be highlighted / displayed.

5. To disable channel 2, highlight ‘CH2 Enabled’ use switch 2, then activate the enter key (switch 3) to configure to ‘CH2 disabled’.

6. To exit the main menu, select “Exit” with enter key at each menu stage (sub menu and main menu).

4.5 **Set alarm level**

This option enables the channel low and high alarm levels to be viewed and set-up. Alarm levels (points) for each channel are user determined. Alarm Point 1 and Point 2 for channel 1 does not relate to Alarm Point 1 and Point 2 for channel 2. The channel 2 selection is only available on M22 models.

1. Enter the main menu by selecting/activating any key to get the “enter main menu” prompt, then activate switch 1 to select “yes”.

2. Activate the up key (switch 1) or the down key (switch 2) until “Set Alarm Level?” is highlighted / displayed.

3. Activate switch 3 to enter the “Set Alarm Level” option. Sub menu options 'Set CH1 Level', ‘Set CH2 Level’ and ‘Exit’ will be displayed. ‘Set CH1 Level’ being highlighted.

4. To view channel 1 alarm points, activate switch 3. ‘CH1 Point 1’ and ‘CH1 Point 2’ will be displayed.

5. To view channel 2 alarm points use switch 2, at step 3, highlight ‘Set CH2 Level’, then activate switch 3. ‘CH2 Point 1’ and ‘CH2 Point 2’ will be displayed.

6. To configure channel 1 alarm levels (Point 1 or Point 2), after step 4, use switch 3 to select CH 1 Point 1 (already highlighted) then proceed to step 8, or highlight CH1 Point 2 using switch 2, then activate switch 3 and proceed to step 8.

7. To configure channel 2 alarm levels (Point 1 or Point 2), after step 5, use switch 3 to select CH2 Point 1 then proceed to step 8, or use switch 2 to highlight CH2 Point 2, then activate switch 3 to make a selection. Proceed to step 8.
8. Use switch 1 to increase the existing values representing previously set alarm levels/points and switch 2 to highlight and scroll across values.

9. After setting desired alarm points, select “Exit” at each menu stage (sub menu and main menu).

10. Apply test gas to confirm alarm level settings.

Alarm Point 1 and Alarm Point 2 are values completely under the control of the user. If the user chooses, Alarm Point 1 can be assigned a value corresponding to a high alarm condition and Alarm Point 2 assigned a value corresponding to a low alarm condition. To avoid confusion however, most users may want to assign Alarm Point 1 as the low alarm condition and Alarm point 2 as the high alarm condition.

4.6 Set relay option

This option allows the Alarm relay coils to be configured as energized or de-energized and latching or non-latching.

- Fault relay: The Fault relay is Energized and Non-Latching. This relay is not configurable.
- Alarm relays 1, 2 and 3: Factory set as De-energized and Non-Latching. These relays are configurable.

1. Enter the main menu by activating any key to get the “enter main menu” prompt, then activate switch 1 to select “yes”.

2. Activate the up key (switch 1) or down key (switch 2) until, “Set Relay Options?” is displayed.

3. Activate the enter key (switch 3) to enter the option. The sub menu options are: ‘Fault relay’, ‘Alarm relay 1’, ‘Alarm relay 2’, ‘Alarm relay 3’.

4. Activate the down key (switch 2) or up key (switch 1) to highlight configurable Alarm relays (‘Alarm relay 1’, ‘Alarm relay 2’, ‘Alarm relay 3’).

5. Activate the enter key (switch 3) to configure the desired Alarm relay.

6. ‘Norm. Energized’ or ‘Norm. De-Energized’ will be highlighted at the top of the display screen. To change the Energized or De-Energized setting, activate the enter key (switch 3).

7. To change the Latching or Non-Latching setting, activate the down key (switch 2) to highlight ‘Latching’ or ‘Non-Latching’, then activate the enter key (switch 3).

8. Once the desired relay settings have been made, select “Exit” at each menu stage (sub menu and main menu).

4.7 Relay assignment

This option allows the transmitter two (2) channels (with alarm levels/points) to be configured under the three (3) Alarm relays. When configuring under sub menu Alarm relay 1, “RL1:CH1 (Point 1, Point 2, Disabled)” and “RL1: CH2 (Point 1, Point 2, Disabled)” is displayed. Under sub menu Alarm relay 2, “RL2:CH1 (Point 1, Point 2, Disabled)” and “RL2:CH2 (Point 1, Point 2, Disabled)” is displayed, and under sub menu Alarm relay 3, “RL3:CH1 (Point 1, Point 2, Disabled)” and “RL3:CH2 (Point 1, Point 2, Disabled)” is displayed.

RL1, RL2 and RL3 represents Alarm relays 1, 2 and 3. CH1 and CH2 represent channel 1 and channel 2. Point 1 and Point 2 are Alarm level 1 and Alarm level 2. Alarm levels (points) are user determined and are unique to the specific channel.
Prior to assigning relays, configure the alarm levels (points). See Section ‘4.2.4 Viewing and setting alarm levels (points)’, and then follow the steps and example below to configure the Alarm relays. Also see Table 3, Example and Table 4.

1. Enter the main menu by activating any key to get the “enter main menu” prompt, then activate switch 1 to select “yes”.
2. Activate the up key (switch 1) or down key (switch 2) until “Relay Assignment?” is displayed.
3. Activate the enter key (switch 3) to enter the option. The sub menu: ‘Alarm Relay 1’, ‘Alarm Relay 2’, ‘Alarm Relay 3’ as well as ‘Exit’ will be displayed.
4. Choose the Alarm relay (Alarm relay 1, Alarm relay 2, Alarm relay 3) for configuration, by using the up- down arrow keys.
5. Activate the enter key (switch 3) to make the selection. The relay (RL) and channel (CH) with alarm level setting will be highlighted. The alarm level settings available are: Point 1, Point 2, and Disabled.
6. Under the specific relay with channel, activate the enter key (switch 3) to choose the appropriate setting. See Table below.

<table>
<thead>
<tr>
<th>Channel and alarm points(levels)</th>
<th>ALARM RELAY 1 (RL1) with channel # and Alarm points (levels)</th>
<th>ALARM RELAY 2 (RL2) with channel # and Alarm points (levels)</th>
<th>ALARM RELAY 3 (RL3) with channel # and Alarm points (levels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1 POINT 1 = Alarm level 1 POINT 2 = Alarm level 2</td>
<td>RL1:CH1 Point 1/Point 2/Disabled</td>
<td>RL2:CH1 Point 1/Point 2/Disabled</td>
<td>RL3:CH1 Point 1/Point 2/Disabled</td>
</tr>
<tr>
<td>CH2 POINT 1 = Alarm level 1 POINT 2 = Alarm level 2</td>
<td>RL1:CH2 Point 1/Point 2/Disabled</td>
<td>RL2:CH2 Point 1/Point 2/Disabled</td>
<td>RL3:CH2 Point 1/Point 2/Disabled</td>
</tr>
</tbody>
</table>

7. Once the appropriate settings are chosen, use the up or down arrow key (switch 1) or (switch 2) and switch 3 to exit.

Example: LEL combustible sensor connected to channel 1 and H₂S sensor connected to channel 2.

1. Set Alarm Levels (points): Setup alarm levels for each channel, e.g. Channel 1 point 1 = 20% LEL, Channel 1 point 2 = 40% LEL, Channel 2 point 1 = 10 ppm, and Channel 2 point 2 = 20 ppm. Refer to Section ‘4.2.4: Viewing and setting alarm levels (points)’ when setting alarm levels.
2. Set Relay Options: Each alarm relay can be set up for energized or de-energized and latching or non-latching. Configure alarm relay options as desired. See ‘4.2.5 Setting Relay options’.
3. Relay Assignment: There are (3) alarm relays and (2) channels. Assign alarm relays to channels as desired, e.g.
 - Alarm relay 1 assigned to Channel 1 Point 1 (20% LEL)
 - Alarm relay 2 assigned to Channel 2 Point 1 (10 ppm)
 - Alarm relay 3 assigned to Channel 1 Point 2 (40% LEL)
 - Alarm relay 3 assigned to Channel 2 Point 2 (20 ppm)
4.8 **Alarm mode setting**

Only used on Oxygen (ST341) sensors

This option is available for detecting oxygen levels. The user is allowed to set up two Alarm points/level (normal oxygen level is 20.9 %) under three available Alarm Modes. These Alarm Modes are: Above-Above, Below-Below and Below-Above. The Alarm Mode chosen by the user depends on the particular application/operation. If surrounding air is to be used for calibration, ensure that no contaminants are present. Refer to the Oxygen sensor manual for detailed information.

4.9 **Select display language**

This option allows the display language to be selected. The default language is English. There are also options for Spanish, French, and Portuguese.

1. Enter the main menu by activating any key to get the “enter main menu” prompt then activate switch 1 to select “yes”.
2. Activate the up key (switch 1) or down key (switch 2) until “Select Display Language?” is displayed.
3. Activate the enter key (switch 3). The default language, ‘English’, will be displayed.
4. Locate other languages by activating the enter key (switch 3).
5. Once the desired language is displayed, select “Exit” at each menu stage (sub menu and main menu).

4.10 **Modbus Setup**

This option enables the following Modbus parameters to be set:

- **Addressing**: From 001 (default) to 247.
- **Baud Rate**: 02400 bps, 04800 bps, 09600 bps (default), 19200 bps, and 57600 bps.
- **Frame Format**: EVEN Parity (default), ODD Parity, NO Parity.

1. Enter the main menu by activating any key to get the “enter main menu” prompt, then activate switch 1 to select “yes”.
2. Select the up arrow key (switch 1) or down arrow key (switch 2) until “Modbus Setup” option is displayed.
3. Activate the enter key (switch 3) to display ‘slave address’ (default address: 001).
4. Use the up key (switch 1) to increase the address and the down key (switch 2) to decrease the value. The value range is 001-247.
5. Activate the enter key (switch 3) when the desired value is displayed.
6. After setting the Slave Address, exit to this sub menu option using switch 3.
7. Activate the down key (switch 2) to highlight ‘baud rate’, then activate the enter key (switch 3) to display the current baud rate.
8. Use the up key (switch 1) to increase the baud rate and the down key (switch 2) to decrease it.
9. Activate the enter key (switch 3) when the desired value is displayed.

10. After setting the baud rate, exit this sub menu option using switch 3, and then activate the down arrow key (switch 2) to highlight ‘Parity Bit’.

11. Activate switch 3, then activate the up key (switch 2), or the down key (switch 1) to choose a value.

12. Activate the exit key (switch 3) when the desired value is displayed, then select “Exit” at each menu stage (sub menu and main menu).

4.11 Setup current date

This option allows you to set the current date for event logging. The default date is set at the factory in Mountain Time.

1. Enter the main menu by selecting/activating any key to get the “enter main menu” prompt, then activate switch 1 to select “yes”.

2. Activate the up key (switch 1) or down key (switch 2) until “Setup Current Date?” option is displayed.

3. Activate the enter key (switch 3) to display the sub menu option ‘year’, ‘month’, ‘day’.

4. Activate the up key (switch 1) to change the current year/month/day settings and switch 2 to cycle across ‘year’, ‘month’, ‘day’ values and ‘OK’.

5. After desired setting are made, navigate to “OK?” and activate the enter key (switch 3) to confirm. To exit main menu, select “Exit” at each menu stage (sub menu and main menu).

4.12 Setup current time

This option allows you to set the current time for event logging. The default time is in Mountain Time.

1. Enter the main menu by activating any key to get the “enter main menu” prompt, then activate switch 1 to select “yes”.

2. Activate the up key (switch 1) or down (switch 2) until “Setup Current Time?” option is displayed.

3. Activate the enter key (switch 3) to display the sub menu: hour’, ‘minute’, ‘seconds’.

4. Activate the up arrow key (switch 1) to change the current hour/minute/second settings, then use switch 2 to cycle across ‘hour’, ‘minute’, ‘seconds’ values and ‘OK’.

5. After desired settings are made, navigate to ‘OK’ and activate the enter key (switch 3) to confirm. To exit main menu, select “Exit” at each menu stage (sub menu and main menu).

4.13 View events log

The Millennium II Transmitter has the ability to store up to 980 events. Events can be viewed by navigating through this menu option. The most recent events are shown first.

1. Enter the main menu by activating any key to get the “enter main menu” prompt, then activate switch 1 to select “yes”.

2. Navigate through the main menu using switch1 or switch 2 until “View Event Log?” is displayed.
3. Activate the enter key (switch 3) to display the sub menu. The most recent event will be displayed.

4. Select the up arrow key (switch 1) and the down arrow key (switch 2) to toggle through all past events.

5. After viewing, select “Exit” at each menu stage (sub menu and main menu).

The on-screen Events Format/host includes:

- Channel Number: CH1, CH2, or transmitter: ML2. Events that occurred under these formats will be logged.

- Event Types: There are a total of 11 events that are stored and displayed. See table below for a list of the events, and how they are displayed on the Millennium II screen.

- Date and Time: Each event is date and time stamped.

<table>
<thead>
<tr>
<th>Event Types</th>
<th>Display on Screen</th>
<th>Events Format/host</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power up or Reset</td>
<td>Power UP / RST</td>
<td>ML2</td>
</tr>
<tr>
<td>Communication Fault</td>
<td>Communication Err</td>
<td>CH1 or CH2</td>
</tr>
<tr>
<td>High Level Alarm</td>
<td>High Alarm</td>
<td>CH1 or CH2</td>
</tr>
<tr>
<td>Low Level Alarm</td>
<td>Low Alarm</td>
<td>CH1 or CH2</td>
</tr>
<tr>
<td>Calibration Completed</td>
<td>Cal Complete</td>
<td>CH1 or CH2</td>
</tr>
<tr>
<td>Calibration Zero Failed</td>
<td>Cal Zero fail</td>
<td>CH1 or CH2</td>
</tr>
<tr>
<td>Calibration Span Fail</td>
<td>Cal Span Fail</td>
<td>CH1 or CH2</td>
</tr>
<tr>
<td>Calibration Aborted</td>
<td>Cal Abort</td>
<td>CH1 or CH2</td>
</tr>
<tr>
<td>Sensor Fail</td>
<td>Sensor Fail</td>
<td>CH1 or CH2</td>
</tr>
<tr>
<td>Channel Enabled</td>
<td>Enabled</td>
<td>CH1 or CH2</td>
</tr>
<tr>
<td>Channel Disabled</td>
<td>Disabled</td>
<td>CH1 or CH2</td>
</tr>
</tbody>
</table>

4.14 Manual reset

A Manual Reset is required after a calibration failure or to clear a latched Alarm relay. When a manual reset is done, the transmitter will return to normal operation.

1. Enter the main menu by activating any key to get the “enter main menu” prompt, then activate switch 1 to select “yes”.

2. Activate the up key (switch 1) or down key (switch 2) until “Manual Reset?” option is displayed.

3. Activate the enter key (switch 3) to display the sub menu: ‘Initiate Reset’.

4. Select “yes” using switch 1 to reset.

4.15 Self-test relay

WARNING

When activating the self-test relay function, ensure all external equipment is disabled to prevent
unwanted alarm activation. Enable external equipment once testing is completed.

The Self-test relay option continuously turns relays on and off to ensure that they are functioning properly. The Fault Relay is tested first, automatically followed by tests on Relay 1, 2, and 3. After the relays have been tested, “Relay Test Complete” will be displayed. See steps to initiate relay self-test below.

Proper functioning electromechanical relays have a clicking sound during this test.

1. Enter the main menu by activating any key to get the “enter main menu” prompt, then activate switch 1 to select “yes”.

2. Activate the up arrow key (switch 1) or down arrow key (switch 2) until “Self-test Relay?" option is displayed.

3. Activate the enter key (switch 3) to display the sub menu: ‘Self-Test Relay. Caution, will trip alarm’.

4. Select “yes” using switch 1. ‘Ensure alarm response items are disconnected’ will be displayed.

5. Ensure all external alarm devices are de-activated, and then select “yes” using switch 1.

6. After test is successfully completed, select “Exit”.

4.16 Sensor upper limit (range)

This option is used to set the upper limit (range) of the gas being detected. The upper limit will vary depending on the sensor used and may not be selectable for all sensors.

1. Enter the main menu by activating any key to get the “enter main menu” prompt, then activate switch 1 to select “yes”.

2. Activate the up key (switch 1) or down key (switch 2), until “Sensor Upper Limit (Range)” option is displayed.

3. Activate the enter key (switch 3) to display the sub menu: ‘CH1: range’, ‘CH2: range’.

4. Select the channel (sensor) to be configured and adjust the sensor’s range using the up-down arrow keys (switch 1) or (switch 2). The specific sensor provides the upper limits/ranges.

 If no selections appear when activating the up/down arrow keys at this stage, the specific sensor only has one upper limit/range, which cannot be altered.

5. Activate the enter key (switch 3) when the desired upper limit/range is reached.

6. To exit, select “Exit” at each menu stage (sub menu and main menu).

4.17 Select gas type

“Select Gas Type” option allows the user to select a particular target gas and/or Correction (“K”) Factor in the case of Catalytic Bead sensors (model SC310) or choose the type of LEL gas (gas curve) in the case of IR (model SC311) sensors. See specific sensor manual in relation to this menu option.
4.18 **Calibration gas value**

This option allows the user to select the calibration gas value in the transmitter main menu. Although it is recommended that 50% span gas should be used for calibration, for some sensors, the transmitter will allow tolerance/flexibility in the calibration gas available; 10% to 60% span gas allowed for some sensor types. See specific sensor manual.

1. Enter the main menu by activating any key to get the “enter main menu” prompt, then activate switch 1 to select “yes”.
2. Activate the up key (switch 1) or down key (switch 2), until “Cal. Gas value” option is displayed.
3. Activate the enter key (switch 3). Channel 1 and channel 2 existing calibration gas values will be displayed in three numeric groups: ‘hundreds’, ‘tens’, and ‘ones’. For example: 0 5 0 indicates a calibration gas value of 50% span.
4. Highlight the required channel with calibration gas value using the navigation keys (switch 1) or (switch 2), then select using switch 3. Switch 1 is used to increase/change a value in each numeric group, while switch 2 is used to cycle across the numeric groups.
5. To exit, select “Exit” at each menu stage (sub menu and main menu).

4.19 **Serial number and firmware version**

This option is used when the serial number or firmware version of the Millennium II Transmitter is required.

1. Enter the main menu by activating any key to get the “enter main menu” prompt, then activate switch 1 to select “yes”.
2. Activate the up key (switch 1) or down key (switch 2), until “Serial Number and Firmware Version” option is displayed.
3. Activate the enter key (switch 3). The firmware version and serial number will be displayed.
4. To exit, select “Exit” at each menu stage (sub menu and main menu).

4.20 **Exit**

This option allows the user to exit the menu system and return to the normal operation mode.
Section 5: Calibration procedure

5.1 Full calibration procedure

Prior to attempting calibration read and understand the calibration procedure below. Also see Figure 5-1 for additional reference.

The following calibration procedure should be followed to ensure an accurate correlation between the output signal and the gas concentration. For accurate performance, the Millennium II is calibrated using 50% span gas. The transmitter will however, allow some flexibility in the use of calibration gas with some sensors; calibration gas outside of 50% span (10%–60% span gas) will be allowed on specific sensor models (see specific sensor manual for details). The calibration gas value can be chosen by selecting it under “cal. gas value” in the main menu. A full calibration will take approximately 5 minutes to complete.

⚠️ WARNING ⚠

Air movement, drafts and wind can cause dilution of calibration gas flow which can cause an erroneous calibration and inaccurate performance. To avoid this, use a Calibration Cup attached to the bottom of the sensor. The cup doesn’t have to be removed for normal operation. When the cup is in place, inject calibration gas at a rate of 0.5 – 1.0 liter per minute.

Ensure the transmitter is functioning properly as indicated by the status LED and current output.

1. Enter the main menu by selecting/activating any key to get the “enter main menu” prompt, then activate switch 1 to select “yes”.
2. When “Calibrate Sensor?” is displayed, activate the enter key (switch 3).
3. When “Calibrate Sensor #1?” is highlighted, activate the enter key (switch 3) if this is the sensor to be calibrated.
4. If sensor #2 is to be calibrated, select the down arrow key (switch 2) to scroll to “Calibrate Sensor #2?”
5. Select the desired sensor to be calibrated (1 or 2) by activating the enter key (switch 3).
6. Select “YES” with switch 1 to confirm the selection, and then apply clean air (zero gas) from canister when “Apply Clean Air” is displayed. Ensure no contaminant gases are around if ambient air is being used.
7. Select “Z & Span” using switch 1 for normal (full) calibration. “Setting zero” will be displayed as the sensor is being zeroed.
8. Apply 50% calibration gas (* or %cal. gas value chosen) when prompted.
9. The display will show “Spanning” with the gas value (%LEL or PPM depending on the sensor) as the gas is detected.
10. Remove the calibration gas when “Remove Cal Gas” is displayed.
11. “Cal Complete” will be displayed when calibration is complete.
12. Apply zero gas (clean air) to purge system. This is particularly important when using long tubing.
The “Zero” calibration option is selected if the sensor is only being zeroed (this not a complete calibration)

It does not require the application of span gas, as only the sensor’s zero point is adjusted. Ensure that no contaminants are present, if the surrounding air is to be used for Zeroing. If Zero calibration is needed, at step 7 above, select ‘Zero’ using switch 3).
Figure 5-1 Calibration flowchart

1. Enter Main Menu?
 - YES
 - NO

2. Calibrate Sensor?
 - Calibrate Sensor #1
 - Calibrate Sensor #2
 - Exit

3. Calibrate Sensor #1?
 - YES
 - No

4. Apply Clean Air
 - Z&SPAN
 - Zero

5. Full Calibration
 - Zero Calibration

6. Zero Successful?
 - Yes
 - No

7. Zero Failed
 - Perform a manual reset and repeat calibration procedure

8. Remove air canister (if used) - Zero calibration complete, full calibration continue to next block

9. CH 1: Apply 50% span gas

10. CH 1 Spanning LEL/ppm reading

11. Span Successful?
 - Yes
 - No

12. Span Failed
 - Perform a manual reset and repeat calibration procedure

13. Remove Calibration Gas

14. Calibration Complete

15. Purge calibration lines with clean air from canister, then remove air canister

Note: Calibration process is identical for Channel #2

Note: Some sensor types can be calibrated with 10% to 60% span calibration gas, refer to the applicable sensor manual

Note: Calibration process is identical for Channel #2
5.2 Status conditions during calibration

<table>
<thead>
<tr>
<th>Condition</th>
<th>Current output</th>
<th>LED indication</th>
<th>Relay outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor is zeroing itself</td>
<td>3 mA</td>
<td>Off</td>
<td>Normal state</td>
</tr>
<tr>
<td>Sensor is waiting until it detects application of calibration gas</td>
<td>3.3 mA</td>
<td>Very fast</td>
<td>Normal state</td>
</tr>
<tr>
<td>Sensor waits until gas level stabilizes, then begins spanning</td>
<td>3.3 mA</td>
<td>Very fast</td>
<td>Normal state</td>
</tr>
<tr>
<td>Spanning is complete, user asked to remove calibration gas</td>
<td>3.6 mA</td>
<td>Off</td>
<td>Normal state</td>
</tr>
<tr>
<td>Displayed for four (4) seconds once gas concentration drops to 3%full-scale after user asked to remove calibration gas</td>
<td>3.6 mA</td>
<td>Off</td>
<td>Normal state</td>
</tr>
<tr>
<td>Signal was too unstable to acquire an accurate zero after ninety (90) seconds</td>
<td>3.0/3.3</td>
<td>Solid</td>
<td>Fault state</td>
</tr>
<tr>
<td>Displayed for four (4) seconds if the calibration gas was remove prematurely or if a ninety (90) second time limit has elapsed and the signal was too unstable to acquire accurate data</td>
<td>3.0/3.3</td>
<td>Solid</td>
<td>Fault state</td>
</tr>
</tbody>
</table>
Section 6: Monitoring and outputs

6.1 Analog 4-20mA

A 4-20 mA current output is used to transmit the transmitter and sensor status and fault codes to other devices. This output can be wired for isolated or non-isolated operation. A 4.0 mA output indicates normal operation; the transmitter’s output current range is 4.0 - 20.0 mA. For a full list of output current values and what they indicate, see 6.5.

The Millennium II transmitters offer a variable 4-20 mA analog output. This output will provide gas concentration through the 4-20 mA range, where 4 mA equals zero gas concentration and 20 mA equals the high range of the sensor (e.g. 100% LEL or 100 ppm). Other conditions such as faults and calibration notifications (e.g. apply gas) are indicated in the 0-3.9 mA range. Faults are indicated at either 0 mA or 2.5 mA.

NOTICE

To differentiate between conditions resulting in 2.5 mA, view the Event Log. See Event Log menu option.

6.2 HART Communication (Optional)

The HART protocol is a powerful communication technology enabling users to exploit the full functionality of the Millennium II Transmitter. The HART communication option is only available with the single channel version of the Millennium II Transmitter. The Millennium II Transmitter is a generic device that will work with other universal communication devices.

The HART Communicator may be connected to the single channel Analog/HART model Millennium II Transmitter via the HART Port connector (HPT-001) which provides the necessary interface for communication. The HART Port connector is fitted to one of the ¾” NPT conduit entries and its communication wires fitted to the HART Pins located at J5 near the ribbon cable on the underside of the display/CPU assembly. The HART Communicator probe wires (leads) are then connected to HART Port connector contact points. HART Communication may also be done remotely using a designated Net Safety Multipurpose Junction box (JB-MPH-A/S). See the HART Port connector manual (MAN-0083) for more details. When remote HART Communication is being done, ensure the HART jumper is connected across pins at J5 near ribbon cable on display/CPU assembly. By default the jumper is connected across pins. The HART Communicator can be connected directly in the 4-20 mA signal wiring across a 250 - 600 Ohm resistor. Do not install resistor within transmitter. See Figure 6-1.
6.3 Relays (Optional)

Optional electromechanical relays have Form-C SPDT contacts rated 5 Amps at 30 VDC/250 VAC. There are four physical relays; one Fault and three Alarm relays. These relays have Normally Open and Normally Closed contacts at the output terminals.

6.3.1 Alarm relay(s)

The Millennium II transmitters can be ordered with three (3) programmable alarm relays. These relays will change state from their non-alarm state to an alarm state when gas concentrations, as read by the sensor, reach the programmed alarm points set in the transmitter.

The alarm relays can be programmed to change states on alarm point #1 or alarm point #2 for either channel. They can also be programmed to be energized or de-energized under normal conditions, and then either latching or non-latching.

6.3.2 Fault relay

Millennium II transmitters and sensors complete continual checks for situations that may prevent the transmitter and sensor from providing an expected response to ambient conditions and records these as a fault condition in the message log and the output(s) of the transmitter. When a system fault is detected, the Red Status LED will flash fast (250 milliseconds on, 250 milliseconds off), the analog output will output a 2.5 mA signal, and the fault relay will change states (de-energize to provide a fault condition).
The fault relay is normally energized when no fault conditions are present and is set up for non-latching. The operation of the fault relay is not configurable.

The Millennium II transmitter provides various fault conditions to indicate that the transmitter or connected sensor(s) are not operating as expected. These fault conditions will override any alarm conditions because the sensor may be unable to detect a gas exposure reliably. Examples of fault conditions can range from no detection due to memory or communication errors and sensor failure. Other faults can provide unreliable detection due to sensor drift or sensor nearing the end of its life. When a Millennium II transmitter is in fault mode, immediate action should be taken to determine the source and correct the fault condition.

NOTICE

The fault relay output is not commonly used to imitate an automatic shutdown. The fault output indicates a potential problem with the transmitter not an alarm condition.

6.4 RS-485 Modbus RTU (Optional)

Optional RS-485 Modbus RTU protocol is available. The tables on the following pages give the detailed Modbus registers and the bit values for the transmitter register.

The Millennium II Transmitter utilizes 2-wire Modbus RS-485 multi serial mode. This Modbus solution implements a 2-wire electrical interface in accordance with the EIA/TIA-485 standards. For this MODBUS configuration, it is important that a third wire be used for connecting all the ‘Common’ (COM) in the chain. Also a 120 Ohm line termination is required for the last device in the line. See Figure 6-2. The Instrument Engineer is responsible for calculating line length and adhering to Modbus protocols.

Figure 6-2 Two-wire Modbus configuration
6.4.1 Modbus registers

<table>
<thead>
<tr>
<th>Reg#</th>
<th>Meaning</th>
<th>Readable</th>
<th>Writeable</th>
</tr>
</thead>
<tbody>
<tr>
<td>40001</td>
<td>Concentration value as calculated by sensor (RTUsensor_out), Channel 1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>40002</td>
<td>Sensor status (RTUsensor_stat), Channel 1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>40003</td>
<td>Temperature of sensor element housing in Kelvin (RTU temperature), Channel 1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>40004</td>
<td>RFU, Channel 1, always read as 0x0000</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>40005</td>
<td>RFU, Channel 1, always read as 0x0000</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>40006</td>
<td>Concentration value as calculated by sensor (RTUsensor_out), Channel 2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>40007</td>
<td>Sensor status (RTUsensor_stat), Channel 2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>40008</td>
<td>Temperature of sensor element housing in Kelvin (RTU temperature), Channel 2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>40009</td>
<td>RFU, Channel 2, always read as 0x0000</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>40010</td>
<td>RFU, Channel 2, always read as 0x0000</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>40021</td>
<td>Transmitter Status</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>40091</td>
<td>Initialize Quick calibration, channel 1 to 2</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>40092</td>
<td>Initialize Normal Calibration, channel 1 to 2</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

NOTE: Alarm points can be set up through Modbus registers 40093 to 40096

<table>
<thead>
<tr>
<th>Reg#</th>
<th>Meaning</th>
<th>Readable</th>
<th>Writeable</th>
</tr>
</thead>
<tbody>
<tr>
<td>40093</td>
<td>Channel 1 high alarm limit</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>40094</td>
<td>Channel 1 low alarm limit</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>40095</td>
<td>Channel 2 high alarm limit</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>40096</td>
<td>Channel 2 low alarm limit</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>40101</td>
<td>Reset latch relays</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

RFU – Reserved for future use

** The transmitter Status register (Register 40021) is a bit flag register. The following table shows the detailed meaning of each bit in the register.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000</td>
<td>Normal Sensor operation – no fault or alarm has happened</td>
</tr>
<tr>
<td>0x0001</td>
<td>Channel 1 sensor fault status tripped. Communication Fault, Calibration Fault, etc</td>
</tr>
<tr>
<td>0x0002</td>
<td>Channel 1 Low Alarm tripped</td>
</tr>
<tr>
<td>0x0004</td>
<td>Channel 1 High Alarm tripped</td>
</tr>
<tr>
<td>0x0008</td>
<td>Channel 2 sensor fault status tripped. Communication Fault, Calibration Fault, etc</td>
</tr>
<tr>
<td>0x0010</td>
<td>Channel 2 Low Alarm tripped</td>
</tr>
<tr>
<td>0x0020</td>
<td>Channel 2 High Alarm tripped</td>
</tr>
<tr>
<td>0x0040</td>
<td>Channel 1 needs Calibration</td>
</tr>
<tr>
<td>0x0080</td>
<td>Channel 2 needs Calibration</td>
</tr>
</tbody>
</table>
6.5 Transmitter output operation

The following table outlines the operation of the outputs of the Millennium II transmitter under different conditions. These outputs include the analog output, LED indications, and the relay outputs. For the outputs’ status, refer to the descriptions below the table.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Current output</th>
<th>LED indication</th>
<th>Relay outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Red</td>
<td>Green</td>
</tr>
<tr>
<td>No gas present</td>
<td>4 mA</td>
<td>Off</td>
<td>Slow</td>
</tr>
<tr>
<td>Gas present, concentration below alarm points</td>
<td>4-20 mA depending on gas concentration</td>
<td>Slow</td>
<td>Off</td>
</tr>
<tr>
<td>Gas present, concentration at or above alarm points</td>
<td>4-20 mA depending on gas concentration</td>
<td>Slow</td>
<td>Off</td>
</tr>
<tr>
<td>Fault condition present, no gas present</td>
<td>2.5 mA</td>
<td>Very fast</td>
<td>Off</td>
</tr>
<tr>
<td>Fault condition present, gas present</td>
<td>2.5 mA</td>
<td>Very fast</td>
<td>Off</td>
</tr>
<tr>
<td>Fault condition present, gas above alarm points</td>
<td>2.5 mA</td>
<td>Very fast</td>
<td>Off</td>
</tr>
<tr>
<td>Electrochemical XChem sensors only: Sensor end of life condition present, gas above or below alarm points</td>
<td>2.5 mA for 10 seconds, 4-20 mA for 50 seconds</td>
<td>Very fast</td>
<td>Off</td>
</tr>
</tbody>
</table>

Fault relay: Fault state means that the relay is in the de-energized state. Normal state means that the relay is in the energized state.

LED indications: Flash rates are outlined in the following table:

<table>
<thead>
<tr>
<th>Flash description</th>
<th>On</th>
<th>Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow</td>
<td>50 milliseconds</td>
<td>1 second</td>
</tr>
<tr>
<td>Fast</td>
<td>250 milliseconds</td>
<td>250 milliseconds</td>
</tr>
<tr>
<td>Very fast</td>
<td>50 milliseconds</td>
<td>50 milliseconds</td>
</tr>
</tbody>
</table>

Alarm relay(s): Alarm state means that if the relay is programmed for normally de-energized, the relay will energize to alarm; if the relay is programmed for normally energized, the relay will de-energize to alarm. Normal state is what state that the relay is programmed for (e.g. normally energized or normally de-energized).

6.6 Fault monitoring

Self-testing circuitry continuously checks for problems that could prevent proper response. When power is applied to the Millennium II Transmitter, a microcontroller automatically tests the system to ensure that it is functioning properly. During normal operation, it continuously monitors the signal from the internal sensor source. In addition, a “watchdog” timer is maintained to ensure the program is running correctly. When a system fault is detected, the Status LED will have a Red fast flash and the fault signal will output a 2.5 mA signal. The transmitter’s event log may be viewed in order to distinguish the fault condition. Refer to the Event Log menu option.

WARNING
The fault detection circuitry does not monitor the operation of external response equipment or external wiring to the transmitter. It is important that external equipment and wiring be checked periodically to ensure they are operational.

6.7 Fault conditions

WARNING

Fault conditions will override any alarm conditions because the sensor may be unable to detect a gas exposure reliably, as such, the alarm relay will not provide an output.

Fault conditions provided by an instrumentation device are critical indicators that the device is not operating as expected; therefore, when a fault condition is present, immediate attention to that fault condition is required.

Net Safety strongly recommends that the 2.5 mA analog fault condition and fault relay (if used) be monitored in conjunction with alarm levels on the analog output and the alarm relay, if used.

6.7.1 Transmitter fault conditions

Fault conditions that the transmitter detects are as follows:

<table>
<thead>
<tr>
<th>Fault condition</th>
<th>M21</th>
<th>M22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage less than 8 VDC</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Input voltage more than 33 VDC</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Critical memory fault</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Onboard power supply fault</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>
6.7.2 Sensor fault conditions

Fault conditions that the various Millennium II sensors detect are as follows:

<table>
<thead>
<tr>
<th>Fault condition</th>
<th>SC310</th>
<th>SC311</th>
<th>ST321</th>
<th>ST332</th>
<th>ST340</th>
<th>ST320</th>
<th>ST330</th>
<th>ST341</th>
<th>ST360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero calibration failure</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Span calibration failure</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Low temperature</td>
<td>P</td>
<td></td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High temperature</td>
<td>P</td>
<td></td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low power</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High power</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replace sensor</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Zero drift</td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Signal invalid</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over-range</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Memory fault</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Power supply fault</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Sensor end of life</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor weak signal</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor thermistor fault</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section 7: Maintenance

7.1 Periodic response check

Net Safety Monitoring recommends that a bump test be performed every 90 days to ensure continued functionality and accuracy of the detection system. Full calibration is recommended when the sensor fails to meet acceptable accuracy standards. This involves the application of calibration gas to the sensor, then the observation of the response LEDs, analog output, and external monitoring equipment. Be sure to prevent unwanted response of external monitoring devices and equipment during this procedure. If the Millennium II’s response to calibration gas is within the specified accuracy then it is not necessary to perform a calibration.

Example: When 50% of full scale is applied, the response is expected to be between 11.5 mA (47% of full scale) and 12.5 mA (53% of full scale). An additional consideration is the accuracy tolerance of the calibration gas which may be + or - a few percent. If the calibration gas is + or - 10% of full scale then the reading may be from 10.7 mA (42% of full scale) to 13.3 mA (58% of full scale).

7.2 Troubleshooting

Response to the input should be checked and, if necessary, calibration should be performed whenever the accuracy of this check is not satisfactory. The system should also be checked when sensor or transmitter is added or removed. If problems should develop, first check for faulty wiring, confirm proper voltage to transmitter and attempt a calibration. If problems persist, please contact Net Safety’s Service Department first by phone to try and resolve any issues. If issues cannot be resolved, please follow the procedure on ‘how to return equipment’.

7.3 Storage

The transmitter and its electronic components/parts should be stored in locations free from dust and moisture. The storage temperature should be well within the limits of the certified temperatures of the equipment. See Section 10 for storage temperatures.
7.4 Spare parts and accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4" NPT ATEX certified plug - Aluminum</td>
<td>CP-AL-002</td>
</tr>
<tr>
<td>3/4" NPT ATEX certified plug - Stainless Steel</td>
<td>CP-SS-001</td>
</tr>
<tr>
<td>Aluminum separation kit</td>
<td>JB-MPD-A</td>
</tr>
<tr>
<td>Stainless Steel separation kit</td>
<td>JB-MPD-S</td>
</tr>
<tr>
<td>Magnet assembly</td>
<td>MAGNET-1</td>
</tr>
<tr>
<td>Conduit reducer - 3/4" to M20 - Aluminum</td>
<td>M20R</td>
</tr>
<tr>
<td>Conduit reducer - 3/4" to M20 - Stainless Steel</td>
<td>M20R-SS</td>
</tr>
<tr>
<td>Sun shade kit - Requires UN-MK-1</td>
<td>SSK-2</td>
</tr>
<tr>
<td>1" Pipe Mounted Sun shade kit/rain guard - Includes UN-MK-31</td>
<td>SSK-51</td>
</tr>
<tr>
<td>2" Pipe Mounted Sun shade kit/rain guard - includes UN-MK-32</td>
<td>SSK-52</td>
</tr>
<tr>
<td>3" Pipe Mounted Sun shade kit/rain guard - Includes UN-MK-33</td>
<td>SSK-53</td>
</tr>
<tr>
<td>Single channel transmitter w/analog output</td>
<td>TX-M21-A</td>
</tr>
<tr>
<td>Single channel transmitter w/analog & mech. relay outputs</td>
<td>TX-M21-AR</td>
</tr>
<tr>
<td>Single channel transmitter w/analog &digital Modbus outputs</td>
<td>TX-M21-AD</td>
</tr>
<tr>
<td>Single channel transmitter w/analog, mech. relay &digital Modbus output</td>
<td>TX-M21-ARD</td>
</tr>
<tr>
<td>Single channel transmitter w/analog / Hart communication output</td>
<td>TX-M21-AH</td>
</tr>
<tr>
<td>Single channel transmitter w/analog / Hart communication output for wireless capable transmitters</td>
<td>TX-M21-AH-FC</td>
</tr>
<tr>
<td>Single channel transmitter w/analog /Hart communication & relay output for wireless capable transmitters</td>
<td>TX-M21-AHR</td>
</tr>
<tr>
<td></td>
<td>TX-M21-AHR-FC</td>
</tr>
<tr>
<td>Dual channel transmitter w/analog output</td>
<td>TX-M22-A</td>
</tr>
<tr>
<td>Dual channel transmitter w/analog and mech. relay output</td>
<td>TX-M22-AR</td>
</tr>
<tr>
<td>Dual channel transmitter w/analog &digital Modbus output</td>
<td>TX-M22-AD</td>
</tr>
<tr>
<td>Dual channel transmitter w/analog, relay & digital Modbus output</td>
<td>TX-M22-ARD</td>
</tr>
<tr>
<td>2" Pipe Mounting kit (stainless steel)</td>
<td>UN-MK-1</td>
</tr>
<tr>
<td>1" Pipe Mounting kit - All Millennium II & ECO-SENSE Gas Detectors (stainless steel)</td>
<td>UN-MK-31</td>
</tr>
<tr>
<td>2" Pipe Mounting kit - All Millennium II & ECO-SENSE Gas Detectors (stainless steel)</td>
<td>UN-MK-32</td>
</tr>
<tr>
<td>Description</td>
<td>Part Number</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>3” Pipe Mounting kit - All Millennium II & ECO-SENSE Gas Detectors (stainless steel)</td>
<td>UN-MK-33</td>
</tr>
</tbody>
</table>
Section 8: Electrostatic sensitive device

Definition: Electrostatic discharge (ESD) is the transfer, between bodies, of an electrostatic charge caused by direct contact or induced by an electrostatic field.

The most common cause of ESD is physical contact. Touching an object can cause a discharge of electrostatic energy. If the charge is sufficient and occurs near electronic components, it can damage or destroy those components. In some cases, damage is instantaneous and an immediate malfunction occurs. However, symptoms are not always immediate—performance may be marginal or seemingly normal for an indefinite period of time, followed by a sudden failure.

To eliminate potential ESD damage, review the following guidelines:

- Handle boards by the sides—taking care not to touch electronic components.
- Wear grounded wrist or foot straps, ESD shoes or heel grounders to dissipate unwanted static energy.
- Prior to handling boards, dispel any charge in your body or equipment by touching a grounded metal surface.
- Ensure all components are transported and stored in ESD safe packaging.
- When returning boards, carefully package in the original carton and static protective wrapping.
- Ensure ALL personnel are educated and trained in ESD Control Procedures.

In general, exercise accepted and proven precautions normally observed when handling electrostatic sensitive devices.
Section 9: Wire resistance table

<table>
<thead>
<tr>
<th>Distance Feet (Meters)</th>
<th>AWG #20 0.5 mm²</th>
<th>AWG #18 0.8 mm²</th>
<th>AWG #16 1.0 mm²</th>
<th>AWG #14 2.0 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (30.5)</td>
<td>1.02</td>
<td>0.64</td>
<td>0.40</td>
<td>0.25</td>
</tr>
<tr>
<td>200 (61)</td>
<td>2.03</td>
<td>1.28</td>
<td>0.80</td>
<td>0.51</td>
</tr>
<tr>
<td>300 (91.4)</td>
<td>3.05</td>
<td>1.92</td>
<td>1.20</td>
<td>0.76</td>
</tr>
<tr>
<td>400 (121.9)</td>
<td>4.06</td>
<td>2.55</td>
<td>1.61</td>
<td>1.01</td>
</tr>
<tr>
<td>500 (152.4)</td>
<td>5.08</td>
<td>3.20</td>
<td>2.01</td>
<td>1.26</td>
</tr>
<tr>
<td>600 (182.9)</td>
<td>6.09</td>
<td>3.83</td>
<td>2.41</td>
<td>1.52</td>
</tr>
<tr>
<td>700 (213.4)</td>
<td>7.11</td>
<td>4.47</td>
<td>2.81</td>
<td>1.77</td>
</tr>
<tr>
<td>800 (243.8)</td>
<td>8.12</td>
<td>5.11</td>
<td>3.21</td>
<td>2.02</td>
</tr>
<tr>
<td>900 (274.3)</td>
<td>9.14</td>
<td>5.75</td>
<td>3.61</td>
<td>2.27</td>
</tr>
<tr>
<td>1000 (304.8)</td>
<td>10.20</td>
<td>6.39</td>
<td>4.02</td>
<td>2.53</td>
</tr>
<tr>
<td>1250 (381)</td>
<td>12.70</td>
<td>7.99</td>
<td>5.03</td>
<td>3.16</td>
</tr>
<tr>
<td>1500 (457.2)</td>
<td>15.20</td>
<td>9.58</td>
<td>6.02</td>
<td>3.79</td>
</tr>
<tr>
<td>1750 (533.4)</td>
<td>17.80</td>
<td>11.20</td>
<td>7.03</td>
<td>4.42</td>
</tr>
<tr>
<td>2000 (609.6)</td>
<td>20.30</td>
<td>12.80</td>
<td>8.03</td>
<td>5.05</td>
</tr>
<tr>
<td>2250 (685.8)</td>
<td>22.80</td>
<td>14.40</td>
<td>9.03</td>
<td>5.68</td>
</tr>
<tr>
<td>2500 (762)</td>
<td>25.40</td>
<td>16.00</td>
<td>10.00</td>
<td>6.31</td>
</tr>
<tr>
<td>3000 (914.4)</td>
<td>30.50</td>
<td>19.20</td>
<td>12.00</td>
<td>7.58</td>
</tr>
<tr>
<td>3500 (1066.8)</td>
<td>35.50</td>
<td>22.40</td>
<td>14.10</td>
<td>8.84</td>
</tr>
<tr>
<td>4000 (1219.2)</td>
<td>40.60</td>
<td>25.50</td>
<td>16.10</td>
<td>10.00</td>
</tr>
<tr>
<td>4500 (1371.6)</td>
<td>45.70</td>
<td>28.70</td>
<td>18.10</td>
<td>11.40</td>
</tr>
<tr>
<td>5000 (1524)</td>
<td>50.10</td>
<td>32.00</td>
<td>20.10</td>
<td>12.60</td>
</tr>
<tr>
<td>5500 (1676.4)</td>
<td>55.80</td>
<td>35.10</td>
<td>22.10</td>
<td>13.91</td>
</tr>
<tr>
<td>6000 (1828.8)</td>
<td>61.00</td>
<td>38.30</td>
<td>24.10</td>
<td>15.20</td>
</tr>
<tr>
<td>6500 (1981.2)</td>
<td>66.00</td>
<td>41.50</td>
<td>26.10</td>
<td>16.40</td>
</tr>
<tr>
<td>7000 (2133.6)</td>
<td>71.10</td>
<td>44.70</td>
<td>28.10</td>
<td>17.70</td>
</tr>
<tr>
<td>7500 (2286)</td>
<td>76.10</td>
<td>47.90</td>
<td>30.10</td>
<td>19.00</td>
</tr>
<tr>
<td>8000 (2438.4)</td>
<td>81.20</td>
<td>51.10</td>
<td>32.10</td>
<td>20.20</td>
</tr>
<tr>
<td>9000 (2743.2)</td>
<td>91.40</td>
<td>57.50</td>
<td>36.10</td>
<td>22.70</td>
</tr>
<tr>
<td>10000 (3048)</td>
<td>102.00</td>
<td>63.90</td>
<td>40.20</td>
<td>25.30</td>
</tr>
</tbody>
</table>

Resistance shown is one way. This figure must be doubled when determining closed loop resistance.
Section 10: Specifications

10.1 Electrical

10.1.1 Operating voltage range
10.5 to 32 VDC
18 to 32 VDC (HART versions only)

10.1.2 Power consumption
2.4 W @ 24 VDC (average - varies by sensor types/quantities)

10.1.3 EMC compliance
EN 50270:2006 per EMC directive 2004/108/EC

10.2 Environmental

10.2.1 Operating temperature
-67 °F to +185 °F (-55 °C to +85 °C) - Stainless steel
-58 °F to +185 °F (-50 °C to +85 °C) - Stainless steel – North American explosion-proof certification
-40 °F to +185 °F (-40 °C to +85 °C) - Aluminum

10.2.2 Relative humidity
0 - 95%RH non-condensing

10.2.3 Ingress protection
IP66 (Aluminum)
IP67 (Stainless Steel)
IP64 (with sensors)
Type 4X (transmitter only)

10.3 Mechanical

10.3.1 Enclosure material
Cast Aluminum (A359)
Stainless steel (SS316)

10.3.2 Conduit opening
3/4” NPT (3X)
10.3.3 Weight

Aluminum: 5.5 lbs (2.5 kg)
Stainless Steel: 7.0 lbs (3.2 kg)

10.4 Warranty

3 years
Section 11: Certifications

11.1 North American

Class I, Division 1, Groups BCD T5
Class I, Zone 1, AEx/Ex d IIB+H2 T5
-50 °C ≤ Ta ≤ +85 °C
NEMA Type 4X/IP67
FM6320, ANSI/ISA 12.13.01, CSA 22.2 No. 152:2006

11.2 IECEEx

Ex d IIB+H2 T5 Gb
IECEEx DNV 12.0014 (Aluminum) IP66, controller only
IECEEx FMG 12.0006X (Stainless Steel) IP 67, controller only
IEC 60079-0: 2007-10 & IEC 60079-1: 2007-04

11.3 FC Models

11.3.1 North American

Class I, Division 1, Groups BCD T5
Class I, Zone 1, AEx/Ex d IIB+H2 T5
-50 °C ≤ Ta ≤ +85 °C
NEMA Type 4X/IP67 (transmitter only)
CSA C22.2 No. 152:2006

11.3.2 IECEEx (aluminum)

Ex d IIB+H2 T5 Gb
-40°C ≤ Ta ≤ +85°C
IP66
IECEEx DNV 12.0014

11.3.3 IECEEx (stainless)

Ex d IIB+H2 T5 Gb
-55°C ≤ Ta ≤ +85°C
IP67
IECEEx FMG 12.0006X

Special conditions for safe use:

- Consult the manufacturer if dimensional information on the flameproof joints is necessary.
Section 12: Ordering information

12.1 M21 single channel transmitter

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M21</td>
<td>Millennium II Single Channel Transmitter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Analog Output</td>
</tr>
<tr>
<td>AD</td>
<td>Analog and Digital RS485 Modbus RTU Protocol Outputs</td>
</tr>
<tr>
<td>AH</td>
<td>Analog and HART Protocol Outputs</td>
</tr>
<tr>
<td>AHR</td>
<td>Analog, HART Protocol and Relay Outputs</td>
</tr>
<tr>
<td>AR</td>
<td>Analog and Relay Outputs</td>
</tr>
<tr>
<td>ARD</td>
<td>Analog, Relay and Digital RS485 Modbus RTU Protocol Outputs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Aluminum</td>
</tr>
<tr>
<td>S</td>
<td>Stainless Steel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wireless</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Not Required</td>
</tr>
<tr>
<td>FC</td>
<td>Wireless Ready - THUM Capable (Used Only With AH or AHR Outputs)</td>
</tr>
</tbody>
</table>
M22 dual channel transmitter

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>Millennium II Dual Channel Transmitter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Analog Output</td>
</tr>
<tr>
<td>AD</td>
<td>Analog and Digital RS485 Modbus RTU Protocol Outputs</td>
</tr>
<tr>
<td>AR</td>
<td>Analog and Relay Outputs</td>
</tr>
<tr>
<td>ARD</td>
<td>Analog, Relay and Digital RS485 Modbus RTU Protocol Outputs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Aluminum</td>
</tr>
<tr>
<td>S</td>
<td>Stainless Steel</td>
</tr>
</tbody>
</table>