Rosemount 3150 Series Nuclear Pressure Transmitters Including the Rosemount 3152, 3153, and 3154
This page intentionally left blank
Rosemount 3150 Series Nuclear Pressure Transmitters Including the Rosemount 3152, 3153 and 3154

NOTICE
Read this manual before working with the product. For personal and system safety, and for optimum performance, make sure you thoroughly understand the contents of this manual before installing, using or maintaining this product.

For Assistance:
Within the United States, contact Rosemount Nuclear Instruments, Inc. (Rosemount Nuclear) at 1-952-949-5210.

Outside the United States, contact the nearest Rosemount representative.

Customer Feedback:
Your feedback is important to us, please send comments or suggestions to:
Chan.RNII-CustomerFeedback@Emerson.com

Rosemount Nuclear satisfies all obligations coming from legislation to harmonize product requirements in the European Union
Rosemount Nuclear Instruments, Inc. Warranty and Limitations of Remedy

The warranty and limitations of remedy applicable to this Rosemount equipment are as stated on the reverse side of the current Rosemount quotation and customer acknowledgment forms.

RETURN OF MATERIAL

Authorization for return is required from Rosemount Nuclear prior to shipment. Contact Rosemount Nuclear (1-952-949-5210) for details on obtaining Return Material Authorization (RMA). **Rosemount Nuclear will not accept any returned material without a Return Material Authorization.** Material returned without authorization is subject to return to customer.

Material returned for repair, whether in or out of warranty, should be shipped prepaid to:

Rosemount Nuclear Instruments, Inc.
8200 Market Boulevard
Chanhassen, MN 55317
USA

IMPORTANT

Rosemount 3152, 3153 and 3154 Series Pressure Transmitters are designed for Nuclear Class 1E usage, and have been tested to the standards shown below:

- RCC-E-2002
- KTA 3505-2005

These transmitters are manufactured under a quality system that meets the requirements of 10CFR50 Appendix B, 10CFR Part 21, ISO 9001, NQA-1, KTA 1401, KTA 3507, CSA N285.0, CSA Z299.1 and the applicable portions of IAEA-50-C-Q. During qualification testing, interfaces were defined between the transmitter and its environment that are essential to meeting requirements of the qualification standards listed above. Specifically, to ensure compliance with 10CFR Part 21, the transmitter must comply with the requirements herein and in the applicable Rosemount qualification report(s) throughout its installation, operation and maintenance. It is incumbent upon the user to ensure that Rosemount Nuclear’s component traceability program is continued throughout the life of the transmitter.

To maintain the qualified status of the transmitter, the essential environmental interfaces must not be compromised. Performance of any operations on the transmitter other than those specifically authorized in this manual have the potential for compromising an essential environmental interface. **Where the manual uses the terms requirement, mandatory, must or required, the instructions so referenced must be carefully followed.** Rosemount Nuclear expressly disclaims all responsibility and liability for transmitters for which the foregoing has not been complied with by the user.
Revision Status

Changes from February 2018 (Rev BE) to August 2019 (Rev BF)

<table>
<thead>
<tr>
<th>Page (Rev BE)</th>
<th>Page (Rev BF)</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover, throughout</td>
<td>Cover, throughout</td>
<td>Document revision change from February 2018 to August 2019, Rev BE to Rev BF</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Figure 2-3 updated to show correct polarity.</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Figure 2-5 updated to show straight carbon steel gusset plate and that diamond or square hole patterns are acceptable alternatives.</td>
</tr>
<tr>
<td>54</td>
<td>54</td>
<td>Figure 5-2 updated to show correct polarity.</td>
</tr>
</tbody>
</table>

NOTE

The above Revision Status list summarizes the changes made. Please refer to both manuals for complete comparison details.

NOTE

Revision of the Reference Manual has no impact to form, fit, or function and does not impact transmitter qualification. Updates were made to provide clarity and improve customer experience/usage.
Table of Contents

SECTION 1
Introduction
- Using this Manual... 1

SECTION 2
Installation
- Overview... 3
- Safety Messages.. 3
- General Considerations... 4
- Mechanical Considerations.. 4
 - Process Connections and Interfaces.................................. 5
 - Impulse Piping... 7
 - Mounting Configurations... 8
 - Conduit Connections.. 9
 - Electronics Housing... 10
- Electrical Considerations.. 10
 - Signal Integrity... 13
 - Wiring Connections.. 14
- Installation Procedures... 14
 - Mechanical – Transmitter.. 14
 - Mechanical – Conduit... 18
 - Electrical... 18

SECTION 3
Calibration
- Overview... 23
- Safety Messages.. 23
- Calibration Overview... 24
- Calibration Considerations... 24
- Definitions.. 25
- Span Adjustment Range.. 27
- Zero Adjustment Range.. 27
- Calibration Procedures... 28
 - Span and Zero Adjustment.. 28
 - Zero Based Calibration Procedure (LRV is Zero)............. 28
 - Elevated or Suppressed Zero Calibration Procedure...... 29
 - Coarse Zero Select Jumper Position Selection Procedure.. 33
 - Damping Adjustment.. 35
 - Correction for High Static Line Pressure............................. 36
 - High Static Line Pressure Span Effect on Range Codes 1, 2 and 3 DP Transmitters.. 36
 - High Static Line Pressure Span Correction for Range Code 4 and 5 DP Transmitters.. 36
 - High Static Line Pressure Zero Correction for DP Transmitters (All Ranges)... 42
 - Linearity.. 43
SECTION 4 Operation
Overview... 45
Transmitter Theory of Operation... 46
The Sensor Cell.. 47
Demodulator... 48
Oscillator.. 48
Voltage Regulator... 48
Current Control.. 49
Current Limit.. 49
Reverse Polarity Protection... 49

SECTION 5 Maintenance and Troubleshooting
Overview... 51
Safety Messages.. 51
General Considerations.. 52
Test Terminal... 54
Electronics Assembly Checkout... 54
Sensor Module Checkout.. 55
Disassembly Procedure.. 56
 Process Flange Removal.. 57
 Electronics Housing Disassembly... 57
Reassembly Procedure... 59
 Electronics Housing Reassembly... 59
 Process Flange Reassembly... 63
Post Assembly Tests... 64

SECTION 6 Transmitter Spare Parts
Overview... 69
Safety Messages.. 69
General Considerations.. 71
Spare Parts Storage and Shelf Life.. 71
Impact on Transmitter Qualified Life... 72
Transmitter Spare Parts List... 73
This page intentionally left blank
SECTION 1: Introduction

USING THIS MANUAL

This manual is designed to assist in installing, operating and maintaining the Rosemount 3150 Series Pressure Transmitters. Instructions for the 3152, 3153 and 3154 models are included in this manual. Where differences in instructions between the models exist, they are noted within those instructions. The manual is organized into the following sections:

Section 2: Installation
Provides general, mechanical, and electrical installation considerations.

Section 3: Calibration
Provides transmitter calibration procedures.

Section 4: Operation
Provides a description of how the transmitter operates.

Section 5: Maintenance and Troubleshooting
Provides basic hardware troubleshooting considerations including disassembly and reassembly procedures and post assembly tests.

Section 6: Transmitter Spare Parts
Provides order information for transmitter spare parts.

NOTE
Refer to the applicable Rosemount Qualification/Test Reports, Product Data Sheets and/or Specification Drawing 03153-2003 and Specification Drawing 03154-2003 (applicable to RCC qualified transmitters only) for details on testing, performance specifications, ordering information, and dimensional drawings for each model.

Figure 1-1 shows the standard transmitter nameplate and where transmitter information is stamped onto the nameplate. Nameplate material is stainless steel.
SECTION 2: Installation

Overview ... page 3
Safety Messages .. page 3
General Considerations page 4
Mechanical Considerations page 4
Electrical Considerations page 10
Installation Procedures page 14

OVERVIEW

This section contains the following installation considerations:
- General Considerations
- Mechanical Considerations
 → Process Connections
 → Impulse Piping
 → Mounting Configurations
 → Conduit Connections
 → Electronics Housing
- Electrical Considerations
 → Signal Integrity
 → Wiring Connections
- Installation Procedures
 → Mechanical
 → Electrical

SAFETY MESSAGES

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operation. Refer to the following safety messages before performing an operation preceded by this symbol: ⚠

⚠️ WARNING

Explosions can result in death or injury.
- Do not remove the transmitter covers in explosive environments when the circuit is live.
- Verify that the operating atmosphere of the transmitter is consistent with the appropriate qualification parameters.
GENERAL CONSIDERATIONS

Measurement accuracy depends upon proper installation of the transmitter and its associated impulse piping and valves. Mount the transmitter close to the process and use a minimum of piping to achieve best accuracy. For flow measurement, proper installation of the primary element is also critical to accuracy. Also, consider the need for easy access, personnel safety, practical field calibration and a suitable transmitter environment. Transmitter installation should minimize the effects of temperature gradients and fluctuations, and avoid vibration and shock during normal operation.

MECHANICAL CONSIDERATIONS

This section contains information you should consider when preparing to mount the transmitter. Read this section carefully before proceeding to the mechanical installation procedure. Proper installation is mandatory to assure seismic qualification.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical shock can result in death or serious injury.</td>
</tr>
<tr>
<td>• Avoid contact with the leads and terminals.</td>
</tr>
</tbody>
</table>

Process leaks could result in death or serious injury.
• Install and tighten all four flange bolts before applying pressure.
• Do not attempt to loosen or remove flange bolts while the transmitter is in service.

Replacement equipment or spare parts not approved by Rosemount Nuclear for use could reduce the pressure retaining capabilities of the transmitter and may render the instrument dangerous or adversely impact its qualified status.
• Use only components supplied with the Rosemount 3152, 3153 or 3154 transmitter or designated by Rosemount Nuclear as spare parts for the 3152, 3153 or 3154.

Improper assembly of mounting bracket to traditional process flange can damage sensor module.
• For safe assembly of bracket to transmitter traditional process flange, bolts must break back plane of flange web (i.e. bolt hole), but must not contact module housing. Use only the approved bolts supplied with the bracket.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not attempt to loosen or remove flange bolts while the transmitter is in service.</td>
</tr>
</tbody>
</table>
Mount the Rosemount 3150 Series transmitter to a rigid support (i.e. one with a fundamental mechanical resonant frequency of 40 Hz or greater). Two mounting options are qualified for the transmitter: panel mount or 2-inch pipe mount. A stainless steel panel bracket is provided with the 3154. For the 3152 and 3153 transmitters, the user has the option of specifying either the stamped carbon steel panel bracket or the stainless steel panel bracket.

Refer to Figure 2-5 for qualified mounting configurations for both the panel and pipe mount options.

Orientation with respect to gravity is not critical to qualification. For maximum accuracy, zero the transmitter after installation to cancel any zero shift that may occur due to liquid head effect caused by mounting position.

NOTE
The transmitter is calibrated in an upright position at the factory. Mounting the transmitter in another position may cause the zero point to shift by an amount equivalent to the internal liquid head within the sensor module induced by the varied mounting position. For maximum accuracy, zero the transmitter to cancel this effect per Section 3: Calibration.

Mount the process flanges with sufficient clearance for process connections. For safety reasons, place the drain/vent valves so the process fluid is directed away from possible human contact when the vents are used. Also, consider that access to the vent/drain valve(s) and process connection(s) may be required for plant specific operations (i.e. calibration, draining, etc.).

Process Connections and Interfaces

Process tubing must be installed to prevent any added mechanical stress on the transmitter under seismic conditions. Use stress-relief loops in the process tubing or separately support the process tubing close to the transmitter.

Typical connections on the transmitter flanges are 1/4-18 NPT and 1/4 inch or 3/8 inch Swagelok®. Use your plant-approved, qualified thread sealant when making threaded connections. The end-user is responsible for the qualification of the threaded seal interface on all 1/4-18 NPT interfaces.

Transmitters with flange options including 1/4 inch or 3/8 inch Swagelok® are shipped with front ferrule, rear ferrule and nut. Place these fittings on the tubing with the orientation and relative position shown in Figure 2-1. Use process tubing with 1/4 inch or 3/8 inch outside diameter respectively, and of suitable thickness for the pressure involved.
Assembly
The Swagelok® tube fittings come completely assembled and are ready for immediate use. Do not disassemble them before use because dirt or foreign materials may get into the fitting and cause leaks. Insert the tubing into the Swagelok® tube fitting, make sure the tubing rests firmly on the shoulder of the fitting and the nut is finger tight. Tighten the nut one-and-one-quarter turns. Do not over-tighten.

Re-assembly
To reconnect, insert the tubing with pre-swaged ferrules into the fitting until the front ferrule sits in the fitting. Tighten the nut by hand, then rotate one-quarter turn more or to the originally secured position. Then tighten the nut slightly.

For more detailed information regarding the specifications and use of Swagelok® tube fittings, refer to:

Fittings Catalog MS-01-140
“Gaugeable Tube Fittings and Adapter Fittings”
www.swagelok.com

Drain/Vent Valves
If drain/vent valves are opened to bleed process lines, torque drain/vent valve stems to the value in Table 5-2 in Section 5: Maintenance and Troubleshooting when closing.
Impulse Piping

The piping between the process and the transmitter must accurately transfer the pressure to obtain accurate measurements. There are five possible sources of error: pressure transfer (such as obstruction), leaks, friction loss (particularly if purging is used), trapped gas in a liquid line or liquid in a gas line and density variations between the legs.

The best location for the transmitter in relation to the process pipe depends on the process itself. Use the following guidelines to determine transmitter location and placement of impulse piping:

- Keep impulse piping as short as possible.
- For liquid service, slope the impulse piping at least 1 inch per foot (8 cm per meter) upward from the transmitter toward the process tap (see Figure 2-2 for details).
- For gas service, slope the impulse piping at least 1 inch per foot (8 cm per meter) downward from the transmitter toward the process tap (see Figure 2-2 for details).
- Avoid high points in liquid lines and low points in gas lines.
- Make sure both impulse legs are the same temperature.
- Use impulse piping of large enough diameter to avoid friction effects and blockage.
- Vent all gas from liquid piping legs and internal to transmitter process flange.
- Drain all liquid from gas piping legs and internal to transmitter process flange.
- When using a sealing fluid, fill both piping legs to the same level.
- When purging, make the purge connection close to the process taps and purge through equal lengths of the same size pipe – avoid purging through the transmitter.
- Keep corrosive or hot process material out of direct contact with the transmitter.
- Prevent sediment deposits in the impulse piping.
- Keep the liquid balanced on both legs of the impulse piping.
- Avoid conditions that might allow process fluid to freeze within the process flange.
- Make sure the impulse piping is of adequate strength to be compatible with anticipated pressure.
Mounting Configuration

Refer to Figure 2-2 for examples of the following mounting configurations:

Liquid Flow Measurement

- Place taps to the side of the line to prevent sediment deposits on the process isolators.
- Mount the transmitter beside or below the taps so gases vent into the process lines.

Gas Flow Measurement

- Place taps in the top or side of the line.
- Mount the transmitter beside or above the taps to drain liquid into the process line.

Steam Flow Measurement

- Place taps to the side of the line.
- Mount the transmitter below the taps to ensure that impulse piping will remain filled with condensate.
- Fill impulse lines with water to prevent steam from contacting the transmitter directly and to ensure accurate measurement start-up. Condensate chambers are not typically necessary since the volumetric displacement of the transmitter is negligible.

NOTE
For steam service, do not blow down impulse piping through the transmitter. Flush the lines with the transmitter isolated and refill the lines with water before resuming measurement.

NOTE
The mounting configurations described above and depicted in Figure 2-2 are based on general industry “best practice” recommendations. Where applicable, specific plant approved installation practices should be used.

NOTE
In steam or other elevated temperature services, it is important that temperatures at the process flanges not exceed 250°F (121°C). In vacuum service, these limits are reduced to 220°F (104°C).
Conduit Connections

The conduit connections to the transmitter are threaded. Options available are 1/2-14 NPT, M20 x 1.5, PG 13.5 and G1/2. Housings with M20 x 1.5 threads are marked with “M20 x 1.5”. Two openings are available on the 3152 and 3153 transmitter housings for convenient installation. Close off the unused opening with a compatible thread type stainless steel plug. Use your plant-approved, qualified thread sealant on the conduit connection threads.

IMPORTANT

For all 3152 and 3153 transmitters, install the conduit plug (provided with the transmitter) in the unused conduit opening per the torque values in Table 5-2 in Section 5: Maintenance and Troubleshooting.

The 3154 has one conduit connection.

Use a qualified conduit seal at the conduit entry to prevent moisture from entering the terminal side of the housing during accident conditions. Certain option codes provide a factory-installed, qualified electrical connector. To prevent excessive mechanical stress during seismic disturbances, support the conduit/connector cable near the transmitter. Install the conduit seal in accordance with the manufacturer’s instructions or use the procedure in this section.

NOTE

A Swagelok® rotatable two-piece 90 degree elbow is available in two configurations: fully assembled to a 3150 Series pressure transmitter or in a ready to assemble kit (Spare Parts number 03152-0702-0001; see Manual Supplement 00809-0400-4835 for installation instructions). Please contact Rosemount Nuclear for ordering information.
Electronics Housing

The standard transmitter orientation is shown in dimensional drawings found in this manual (see Figure 2-6). While rotation of the electronics housing in the field is possible with special instructions, it is not recommended. Please contact Rosemount Nuclear prior to any attempt to rotate the electrical housing.

Electrical Considerations

This section contains information you should consider when preparing to make electrical connections to the transmitter. Read this section carefully before proceeding to the electrical installation procedure.

Rosemount 3150 Series transmitters provide a 4-20 mA signal when connected to a suitable dc power source. Figure 2-3 illustrates a typical signal loop consisting of a transmitter, power supply, and various receivers (controller, indicator, computer).

Figure 2-3 – Typical Transmitter Wiring Connection

The power supply versus load limit relationship is shown in Figure 2-4. See qualification reports for additional details. The loop load is the sum of the resistance of the signal leads and the load resistance of the receivers. Any power supply ripple appears in the output signal.
Figure 2-4 – Transmitter Supply Voltage vs. Load

Figure 2-4a – IEEE Qualified and Design Regions (applicable to 3152N, 3153N and 3154N models only)
Figure 2-4b – KTA Qualified and Design Regions (applicable to 3152K and 3154K models only)

Figure 2-4c – RCC-E Qualified and Design Regions (applicable to 3153K and 3154K models only)
Signal Integrity

Signal wiring need not be shielded, but twisted pairs yield the best results. Shielded cable should be used for best results in electrically noisy environments. Do not run signal wiring in conduit or open trays with AC power wiring, or near heavy electrical equipment.

For installations with EMC performance requirements, consult the applicable EMC test reports for additional details regarding recommended practices for electrical wiring per various national and international codes and regulations.

The capacitance sensing element uses alternating current to generate a capacitance signal. This alternating current is developed in an oscillator circuit with a nominal frequency of 110 kHz +/- 11 kHz. This 110 kHz signal is capacitively-coupled to the transmitter case ground through the sensing element. Because of this coupling, a voltage may be imposed across the load, depending on choice of grounding.

This impressed voltage, which is seen as high frequency noise, has no effect on most instruments. Computers with short sampling times in a circuit where the negative transmitter terminal is grounded can detect a significant noise signal. Filter this signal out by using a large capacitor (1 uf) or a 110 kHz LC filter across the load. Signal loops grounded at any other point are negligibly affected by this noise and do not need filtering.

Signal wiring may be ungrounded (floating) or grounded at any one point in the signal loop.

The transmitter case may be grounded or ungrounded. Grounding should be completed in accordance with national and local electrical codes. Transmitter case can be grounded using either the internal or external ground connection.

- **Internal Ground Connection:** The Internal Ground Connection screw is inside the terminal side of the electronics housing (see **Figure 2-8**). The screw is identified by a ground symbol (), and is standard on all 3150 Series transmitters.

- **External Ground Assembly:** The External Ground location is indicated by the ground symbol () on the module (see **Figure 2-6**). An External Ground Assembly kit can be ordered as an option on the 3150 Series transmitter. This kit can also be ordered as a spare part. Please contact Rosemount Nuclear for ordering information.
Wiring Connections
The transmitter terminal block and ground screw terminals are designed to accommodate wire sizes from 24 AWG to 14 AWG. The screw terminals are also compatible with stud size #6 (M3.5) or #8 (M4) crimp terminals. Crimped connections shall be performed in accordance with manufacturers’ recommendations with proper tooling.

Installation Procedures
Installation consists of mounting the transmitter and conduit/connector and making electrical and process connections. The procedures for each operation follow.

Mechanical – Transmitter

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improper assembly of mounting bracket to transmitter traditional process flange can damage sensor module.</td>
</tr>
</tbody>
</table>

For safe assembly of bracket to traditional flange, bolts must break back plane of flange web (i.e. bolt hole), but must not contact module housing. Use only the approved bolts supplied with the bracket.

1. Attach the mounting bracket to the mounting location as follows:

 Panel Mount
 Mount the bracket to a panel or other flat surface (for illustration see Figure 2-5). Please note that the bolts required for this step are customer supplied hardware. Based on qualification tests performed by Rosemount, the bolts listed in Table 2-1 are recommended for the bracket-to-customer interface. Torque each bolt to the value shown in Table 5-2 in Section 5: Maintenance and Troubleshooting.

 Pipe Mount
 Assemble the bracket kit to a 2-inch pipe (for illustration see Figure 2-5). Torque each bolt to the value shown in Table 5-2 in Section 5: Maintenance and Troubleshooting.

2. Attach the transmitter to the mounting bracket (for illustration see Figure 2-5). Use the four 7/16-20 x 3/4-inch bolts with washers supplied with the transmitter. Torque each bolt to the value shown in Table 5-2 in Section 5: Maintenance and Troubleshooting.
Table 2-1 – Recommended Bolts for Bracket-to-Customer Interface

<table>
<thead>
<tr>
<th>Bracket Code (1)</th>
<th>Bracket Type</th>
<th>Recommended Bolt for Bracket-to-Customer Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Bracket Supplied</td>
<td>N/A</td>
</tr>
<tr>
<td>1 (2)</td>
<td>Carbon Steel Panel Bracket</td>
<td>5/16-18 UNC 2A Grade 2</td>
</tr>
<tr>
<td>2 (3)</td>
<td>SST Panel Bracket</td>
<td>3/8-24 UNF 2A Grade 2</td>
</tr>
<tr>
<td>3 (4)</td>
<td>SST 2-inch Pipe Mount Bracket</td>
<td>2-inch pipe U-bolts provided</td>
</tr>
<tr>
<td>5 (2)</td>
<td>Carbon Steel Panel Bracket</td>
<td>5/16-18 UNC 2A Grade 2</td>
</tr>
<tr>
<td>7 (3)</td>
<td>SST Panel Bracket</td>
<td>3/8-24 UNF 2A Grade 2</td>
</tr>
<tr>
<td>8 (4)</td>
<td>SST 2-inch Pipe Mount Bracket</td>
<td>2-inch pipe U-bolts provided</td>
</tr>
</tbody>
</table>

(1) The Bracket Code can be found in the 13th position of the 3152, 3153 and 3154 model strings.
(2) Bracket Codes 1 and 5 are available on 3152 and 3153 transmitters only.
(3) Bracket Codes 2 and 7 are available on 3152, 3153 and 3154 transmitters.
(4) Bracket Codes 3 and 8 are available on 3152, 3153 and 3154 transmitters; this bracket code includes the listed SST panel bracket combined with the 2-inch pipe mount hardware (Rosemount P/N 01154-0044-0003).
Figure 2-5 – Typical Transmitter Mounting Bracket Configuration, Traditional Flange (1)(2)

<table>
<thead>
<tr>
<th>Bracket Options</th>
<th>Carbon Steel Panel Mount</th>
<th>Stainless Steel Panel Mount</th>
<th>Stainless Steel 2-Inch Pipe Mount (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3152 & 3153</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3154</td>
<td>Carbon Steel Panel Mount Bracket is not available for the 3154</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: All dimensions are nominal in inches (millimeters)

(1) Transmitter and bracket orientation with respect to gravity will not impact qualification
(2) Transmitters can alternatively be mounted inside bracket (as shown below) or with process connection positioned adjacent to bracket (not shown)

(3) A pipe-mount kit with three (3) U-bolts (not shown) is also available. The use of a third U-bolt is necessary to meet KTA seismic requirements in installations where the KTA Airplane Crash (APC) value of 8g is applicable. Please consult the applicable Product Data Sheet (PDS) for ordering information.
Figure 2-6 – Transmitter Dimensional Drawings

Figure 2-6a – 3152, 3153 Traditional Flange

![Transmitter Dimensional Drawings](image)

NOTE: All dimensions are nominal in inches (millimeters)

Figure 2-6b – 3154 Traditional Flange

![Transmitter Dimensional Drawings](image)

NOTE: All dimensions are nominal in inches (millimeters)
Mechanical – Conduit Connections

CAUTION

Be careful not to damage the set screw interface between the sensor module and the electronics housing when making conduit connections.

NOTE

Install the conduit seal in accordance with the manufacturer’s instructions or use the following procedure:

1. Seal conduit threads with your plant-approved qualified thread sealant.
2. Install conduit/connector to the manufacturer’s recommended thread engagement or torque level. For electrical connectors, refer to the appropriate manufacturer’s installation manuals. Hold the electronics housing securely to avoid damaging the set screw interface between the sensor module and the electronics housing during conduit installation. The 3154 electronics housing conduit hub has two wrenching flats that allow the housing to be held securely with open end wrench or other suitable tool during conduit installation.
3. Provide separate support for the conduit if necessary.

Electrical

CAUTION

Do not connect signal leads to the ‘TEST’ terminals.

WARNING

Electrical shock can result in death or serious injury. Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

1. Remove the cover from the terminal side of the transmitter.
2. Connect the power leads to the ‘SIGNAL’ terminals on the transmitter terminal block (see Figure 2-7). Avoid contact with the leads and terminals. Do not connect the powered signal wiring to the test terminals, power could damage the test diode. Torque the terminal screws to the value shown in Table 5-2 in Section 5: Maintenance and Troubleshooting or hand-tight. Signal wiring supplies all power to the transmitter. If a 3-wire connector is utilized or loop grounding is required, use the ground screw shown in Figure 2-8.
3. Recheck connections for proper polarity. Position excess wiring inside the housing so it cannot be damaged during cover installation.
4. Carefully replace cover. Take care that electrical wires do not interfere with cover installation or wire damage could occur.

NOTE

Housing covers are pre-lubricated and do not require additional lubrication.
5. Tighten until cover and housing are fully engaged metal-to-metal (see Figure 2-9). Once metal-to-metal contact has been made, it is not necessary to tighten the cover any further.

6. Visually inspect both covers to ensure they are installed metal-to-metal. Visual inspection is sufficient to ensure metal-to-metal contact, however, a gap gauge may be used for verification if desired. When metal-to-metal contact has been made, the acceptable gap between cover and housing will be less than 0.010 inch (see Figures 2-10 and 2-11).

NOTE
Replace the cover o-rings per the steps outlined in **Electronics Housing Reassembly** section if either cover was installed metal-to-metal and then removed.

Figure 2-7 – Terminal Block Assembly

Figure 2-7a – Current Terminal Block Assembly

Figure 2-7b – Former Terminal Block Assembly

(1) Terminal block label artwork was updated for continuous improvement. Both labels shown in Figures 2-7a and 2-7b are valid but the label shown in Figure 2-7a is current.
Figure 2-8 – Internal Ground Screw Location

Figure 2-9 – Electronics Housing Covers Installed Metal-to-Metal

Aluminum Housing (3152, 3153) SST Housing (3152) SST Housing (3154)

Figure 2-10 – Inspection of Metal-to-Metal Installation

Maximum acceptable gap: 0.010 in (0.254 mm) \(^{(1)}\)

Cover O-ring Electronics Housing Cover

Electronics Housing

\(^{(1)}\) If the gap exceeds acceptable limit, it will be possible to insert a 0.010 inch gap gauge at least 0.100 in (2.54 mm).
Figure 2-11 – Acceptable vs. Unacceptable Gap Between Cover and Housing

Figure 2-11a – Acceptable Gap Between Cover and Housing

Figure 2-11b – Unacceptable Gap Between Cover and Housing
This page intentionally left blank
SECTION 3: Calibration

OVERVIEW
This section contains the following transmitter calibration information:

- Calibration Overview
 → Calibration Considerations
 → Definitions
 → Span Adjustment Range
 → Zero Adjustment Range
- Calibration Procedures
 → Span and Zero Adjustment
 ▪ Zero Based Calibration Procedure (LRV is Zero)
 ▪ Elevated or Suppressed Zero Calibration Procedure
 ▪ Coarse Zero Select Jumper Position Selection Procedure
- Damping Adjustment
- Correction for High Static Line Pressure
 → High Static Pressure Span Effect on Range Codes 1, 2 and 3 DP Transmitters
 → High Static Pressure Span Correction for Range Codes 4 and 5 DP Transmitters
 → High Static Line Pressure Zero Correction for DP Transmitters (All Ranges)
- Linearity

SAFETY MESSAGES
Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operation. Refer to the following safety messages before performing an operation preceded by this symbol: "\(^{\text{\footnotesize !}}\)

\textbf{WARNING}
Explosions can result in death or injury.
- Do not remove the transmitter covers in explosive environments when the circuit is live.
- Verify that the operating atmosphere of the transmitter is consistent with the appropriate qualification parameters.

\textbf{WARNING}
Electrical shock can result in death or serious injury.
- Avoid contact with the leads and terminals when the circuit is live.
WARNING

Process leaks could result in death or serious injury.
- Install and tighten all four flange bolts before applying pressure.
- Do not attempt to loosen or remove flange bolts while the transmitter is in service.

WARNING

Replacement equipment or spare parts not approved by Rosemount Nuclear for use could reduce the pressure retaining capabilities of the transmitter and may render the instrument dangerous or adversely impact its qualified status.
- Use only components supplied with the 3152, 3153 or 3154 transmitter or designated by Rosemount Nuclear as spare parts for the 3152, 3153 or 3154.

NOTE

The pressure unit “inches H₂O at 68°F (20°C)” is used throughout this section. For ease of reading this pressure unit will be abbreviated to “inH₂O”.

CALIBRATION OVERVIEW

Calibration Considerations

Review this section to become familiar with the fundamentals of calibrating the Rosemount 3150 Series transmitter. Contact Rosemount Nuclear with questions regarding calibrations that are not explained in this manual.

Rosemount 3150 Series transmitters are factory calibrated to the range shown on the nameplate (see Figure 1-1). This range may be changed within the limits of the transmitter. Zero may also be adjusted to elevate (for all models except absolute pressure reference) or suppress (for all models). Calibrations that have a lower range value below zero are termed zero elevated while calibrations that have a lower range value above zero are termed zero suppressed.

NOTE

Transmitters are factory calibrated at ambient temperature and pressure to the customer’s specified range. If calibration is not specified, transmitters are calibrated 0 to Upper Range Limit (URL).

The zero and span are adjusted during calibration using zero and span adjustment screws. The adjustment screws are accessible externally and are located behind the access cover plate on the side of the electronics housing (see Figure 3-1). Transmitter output increases with clockwise rotation of the adjustment screws. For normal calibration adjustments, the zero adjustment screw has negligible effect on the span and the span adjustment has negligible effect on the zero.
For large amounts of zero adjustment, a coarse zero select jumper is provided. The jumper is located on the electronics assembly, accessible within the electronics housing as shown in Figures 3-1 and 3-2. Models ordered with optional output damping will have a damping adjustment potentiometer located on the amplifier board (see Figure 3-2).

Procedures for calibration, including setting the coarse zero select jumper and optional damping adjustment, are provided later in this section.

Definitions

The following definitions and descriptions are provided to aid in calibration:

DP
Differential pressure between the high pressure “H” and low pressure “L” process inputs, as marked on the transmitter module.

Upper Range Limit (URL)
The highest pressure the transmitter can be adjusted to measure, specified in the model ordering information by pressure range code.

Upper Range Value (URV)
The highest pressure the transmitter is adjusted to measure. This pressure corresponds to the 20mA output point.

Lower Range Value (LRV)
The lowest pressure the transmitter is adjusted to measure. This pressure corresponds to the 4mA output point.

Span = |URV - LRV|

Zero Based Calibration
Calibration where the LRV is zero (see Figure 3-3)

Elevated Zero Calibration
Calibration where the LRV is less than zero (i.e. the LRV is achieved when a positive pressure is applied to the low pressure side of the DP cell or a vacuum is applied to the high pressure side of the DP cell – see Figure 3-3).

Suppressed Zero Calibration
Calibration where the LRV is greater than zero (i.e. the LRV is achieved when a positive pressure is applied to the high pressure side of the DP cell or a vacuum is applied to the low pressure side of the DP cell – see Figure 3-3).
% Zero Offset
= (LRV/URL) X 100
Note: % Zero Offset is used when making coarse zero adjustments and replaces the traditional % Zero Elevation and % Zero Suppression terms. This concept is used due to the limited interaction between zero and span adjustments on the 3150 Series pressure transmitter.

Sign Convention
Positive numbers indicate positive pressure is applied to the high pressure side of the DP cell or a vacuum is applied to the low pressure side of the DP cell. The high pressure side is indicated on the sensor module by an “H”.

Negative numbers indicate positive pressure is applied to the low pressure side of the DP cell or a vacuum is applied to the high pressure side of the DP cell. The low pressure side is indicated on the sensor module by an “L”.

Figure 3-1 – Zero and Span

Figure 3-2 – Electronics Assembly
Span Adjustment Range

For transmitter ranges 2 to 6, the span is continuously adjustable to allow calibration anywhere between the transmitter URL and 1/10 of URL. For example, the span on a Range 2 transmitter can be continuously adjusted between 25 and 250 inH₂O (6.22 kPa and 62.2 kPa).

For Range 1 transmitters, the span is continuously adjustable to allow calibration anywhere between the transmitter URL and 1/5 of URL. For example, the span on a Range 1 transmitter can be continuously adjusted between 5 and 25 inH₂O (1.25 kPa and 6.22 kPa).

Zero Adjustment Range

The transmitter zero can be adjusted to achieve a maximum 90% Zero Offset for suppressed zero calibrations and -100% Zero Offset for elevated zero calibrations. To achieve these levels of zero elevation and zero suppression, the 3150 Series is equipped with a coarse zero select jumper located on the Electronics Assembly in the electronics housing (see Figure 3-2).

A graphical representation of three calibrations is shown in Figure 3-3. Instructions for setting the coarse zero select jumper are provided in the Calibration Procedures section. The zero may be elevated or suppressed with the limitation that no applied pressure within the calibrated range exceeds the URL or LRL. During zero elevation, the transmitter may be calibrated to cross zero, ex. -75 to 75 inH₂O (-18.6 kPa to 18.6 kPa).

Figure 3-3 – Graphical Representation of Elevated Zero, Zero Based, and Suppressed Zero Calibrations for a Range 2 Transmitter
CALIBRATION PROCEDURES

The following calibration procedures describe the recommended steps necessary to calibrate the Rosemount 3150 Series pressure transmitters.

Span and Zero Adjustment

CAUTION
The 3150 Series pressure transmitters contain electronic circuit boards which may be static sensitive.

NOTE
Electronics housing covers do not need to be removed to access the zero and span adjustment screws.

NOTE
The pressure unit “inches H₂O at 68°F (20ºC)” is used throughout this section. For ease of reading this pressure unit will be abbreviated to “inH₂O”.

Zero Based Calibration Procedure (LRV is zero)
The adjustment screws are accessible externally and are located behind the access cover plate on the side of the electronics housing (see Figure 3-1). The transmitter output increases with clockwise rotation of the adjustment screw. The coarse zero select jumper is in the Nominal position for all zero based calibrations.

1. Apply a pressure equal to the LRV to the high side pressure connection and turn Zero adjustment until output reads 4 mA.
2. Apply a pressure equal to the URV to the high side process connection and turn Span adjustment until output reads 20 mA.
3. Check to assure desired outputs are achieved and repeat steps 1 and 2 if necessary.

Figure 3-4 contains an example of calibrating a transmitter with a zero based calibration. Figure 3-4a uses English Units (inH₂O) while Figure 3-4b uses SI Units (kPa).

Figure 3-4 – Zero Based Calibration Example

Range 2 for a calibration of 0 to 100 inH₂O (100 inH₂O span)

1. Adjust the zero: With 0 inH₂O applied to the transmitter, turn the Zero adjustment until the transmitter reads 4 mA.
2. Adjust the span: Apply 100 inH₂O to the transmitter high side connection. Turn the Span adjustment until the transmitter output reads 20 mA.
3. Check to assure desired outputs are achieved and repeat steps 1 and 2 if necessary.
Calibration

Range 2 for a calibration of 0 to 24.9 kPa (24.9 kPa span)

1. Adjust the zero: With 0 kPa applied to the transmitter, turn the Zero adjustment until the transmitter reads 4 mA.
2. Adjust the span: Apply 24.9 kPa to the transmitter high side connection. Turn the Span adjustment until the transmitter output reads 20 mA.
3. Check to assure desired outputs are achieved and repeat steps 1 and 2 if necessary.

Elevated or Suppressed Zero Calibration Procedure

The easiest way to calibrate a 3150 Series pressure transmitter with an elevated or suppressed zero is to perform a zero-based calibration and then elevate or suppress the zero by adjusting the zero adjustment screw and, if necessary, the coarse zero select jumper.

NOTE

For large amounts of elevation or suppression, it may be necessary to reposition the coarse zero select jumper. Procedures for re-positioning the jumper are described in the **Coarse Zero Select Jumper Position Selection Procedure**.

Figures 3-5 and 3-6 contain examples of calibrating a transmitter with an Elevated Zero and Suppressed Zero calibration respectively. **Figures 3-5a and 3-6a** use English units (inH2O) while **Figures 3-5b and 3-6b** use SI units (kPa).
Figure 3-5 – Elevated Zero Calibration Example

Figure 3-5a – Example for Elevated Zero Calibration (English Units)

Range 2 with Zero Elevation for a calibration of –120 to –20 inH2O (100 inH2O span)

1. Calibrate the transmitter to 0 to 100 inH2O as described in the Zero Based Calibration Procedure.
2. Consult Figure 3-8b to help determine typical coarse zero select jumper position. If necessary, reposition jumper using the Coarse Zero Select Jumper Position Selection Procedure.

For this example:
\[
\% \text{ Zero Offset} = \frac{-120 \text{ inH2O}}{250 \text{ inH2O}} \times 100 = -48\%
\]
Position the jumper to the MID ZE position.

3. Apply -120 inH2O to the high side process connection (as marked on the transmitter sensor module) and adjust the zero until the transmitter output reads 4mA. DO NOT USE THE SPAN ADJUSTMENT.

NOTE
Applying 120 inH2O to the low side process connection (as marked on the transmitter module) will give the same result.

4. Apply -20 inH2O to the high side process connection (as marked on the transmitter sensor module). Verify the output reads 20mA. If necessary, adjust the span. Recheck the zero after any span adjustment.

NOTE
Applying 20 inH2O to the low side process connection (as marked on the transmitter module) will give the same result.
Figure 3-5b – Example for Elevated Zero Calibration (SI Units)

<table>
<thead>
<tr>
<th>Range 2 with Zero Elevation for a calibration of –29.9 to –5.0 kPa (24.9 kPa span)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Calibrate the transmitter to 0 to 24.9 kPa as described in the Zero Based Calibration Procedure.</td>
</tr>
<tr>
<td>2. Consult Figure 3-8b to help determine typical coarse zero select jumper position. If necessary, reposition jumper using the Coarse Zero Select Jumper Position Selection Procedure. For this example: % Zero Offset = (-29.9 kPa/62.2 kPa)*100 = -48% Position the jumper to the MID ZE position.</td>
</tr>
<tr>
<td>3. Apply -29.9 kPa to the high side process connection (as marked on the transmitter sensor module) and adjust the zero until the transmitter output reads 4mA. DO NOT USE THE SPAN ADJUSTMENT.</td>
</tr>
<tr>
<td>NOTE Applying 29.9 kPa to the low side process connection (as marked on the transmitter module) will give the same result.</td>
</tr>
<tr>
<td>4. Apply -5.0 kPa to the high side process connection (as marked on the transmitter sensor module). Verify the output reads 20 mA. If necessary, adjust the span. Recheck the zero after any span adjustment. NOTE Applying 5.0 kPa to the low side process connection (as marked on the transmitter module) will give the same result.</td>
</tr>
</tbody>
</table>
Figure 3-6 – Suppressed Zero Calibration Example

Range 2 with Zero Suppression for a calibration of 20 to 120 inH₂O (100 inH₂O span)

1. Calibrate the transmitter to 0 to 100 inH₂O as described in the Zero Based Calibration Procedure.
2. Consult Figure 3-8b to help determine typical coarse zero select jumper position. If necessary, reposition jumper using the Coarse Zero Select Jumper Position Selection Procedure.

For this example:
% Zero Offset = (20 inH₂O /250 inH₂O)*100 = 8%
Position the jumper to the NOMINAL position.

3. Apply 20 inH₂O to the high side process connection, and adjust the zero until the transmitter output reads 4 mA. DO NOT USE THE SPAN ADJUSTMENT.
4. Apply 120 inH₂O to the high side process connection. Verify the output reads 20 mA. If necessary, adjust the span. Recheck the zero after any span adjustment.

Range 2 with Zero Suppression for a calibration of 5,0 to 29,9 kPa (24,9 kPa span)

1. Calibrate the transmitter to 0 to 24,9 kPa as described in the Zero Based Calibration Procedure.
2. Consult Figure 3-8b to help determine typical coarse zero select jumper position. If necessary, reposition jumper using the Coarse Zero Select Jumper Position Selection Procedure.

For this example:
% Zero Offset = (5,0 kPa /62,2 kPa)*100 = 8%
Position the jumper to the NOMINAL position.

3. Apply 5,0 kPa to the high side process connection, and adjust the zero until the transmitter output reads 4 mA. DO NOT USE THE SPAN ADJUSTMENT.
4. Apply 29,9 kPa to the high side process connection. Verify the output reads 20 mA. If necessary, adjust the span. Recheck the zero after any span adjustment.
Coarse Zero Select Jumper Position Selection Procedure

The coarse zero select jumper (see Figure 3-2) is shipped from the factory in either the Nominal position or the position required to obtain the calibration specified when ordered. Changes to the factory calibration may require repositioning of the jumper. To do this, follow the procedure below:

1. Calculate the % zero offset using the following formula:

 \[
 \% \text{ Zero Offset} = \left(\frac{\text{LRV}}{\text{URL}} \right) \times 100
 \]

 Where:

 LRV = Lower Range Value of desired calibration

 URL = Transmitter Upper Range Limit

2. Consult Figures 3-8a or 3-8b to determine typical jumper position.

3. If the jumper requires re-positioning, remove the electronics housing cover opposite the "Field Terminals" label. Remove the jumper by squeezing the sides and pulling out. Reposition the jumper with the arrow pointing to the typical position and carefully push in. Ensure both jumper clips are fully engaged and return to applicable calibration procedure.

If no change is required, return to applicable calibration procedure.

NOTE

Typical jumper positions indicated in Figures 3-8a and 3-8b are approximate. Position jumper as needed to achieve the desired calibration.
Figure 3-7 contains an example of determining the typical position of the coarse zero select jumper. Figure 3-7a uses English Units (inH₂O) while Figure 3-7b uses SI Units (kPa).

Range 2 for a calibration of -175 to -125 inH₂O

LRV = -175 inH₂O
% Zero Offset = (-175 inH₂O /250 inH₂O)*100 = -70%

Per Figure 3-8b, the typical jumper position is MAX ZE.

Range 2 for a calibration of −43,6 to −31,1 kPa

LRV = -43,6 kPa
% Zero Offset = (-43,6 kPa /62,2 kPa)*100 = -70%

Per Figure 3-8b, the typical jumper position is MAX ZE.

NOTE

If you remove either cover during the above procedures, follow the instructions in **Section 5: Maintenance and Troubleshooting** to reinstall the cover.

% Zero Offset values and jumper positions indicated are approximations. Select jumper position as needed to achieve the desired calibration.
Damping Adjustment

The 3150 Series amplifier boards for transmitter output code options B (3152) and T (3153 and 3154) are designed to permit damping of rapid pulsations in the pressure source through adjustment of the single turn damping adjustment potentiometer (see Figure 3-2). When adjusted to the maximum position (clockwise stop), time-constant values of at least 1.20 seconds are available for 3152, 3153, and 3154 transmitters. Transmitters with the electronics damping option are calibrated and shipped with the adjustment set at the counterclockwise stop, giving the minimum time constant.

Damping adjustment should be made with the transmitter calibrated to the intended application calibration. To adjust the damping, turn the damping adjustment potentiometer until the desired time constant is obtained. It is best to set the damping to the shortest possible time constant. Since transmitter calibration is not affected by the damping setting, damping may be adjusted with the transmitter installed on the process.

CAUTION

The damping adjustment potentiometer has positive stops at both ends. Forcing the potentiometer beyond the stops may cause permanent damage and require electronics assembly replacement.

NOTE

If you remove either electronics housing cover during the above procedures, follow the instructions in Section 5: Maintenance and Troubleshooting to reinstall the cover.
Correction for High Static Line Pressure

High Static Line Pressure Span Effect on Range Codes 1, 2, and 3 DP Transmitters

Rosemount 3150 Series Range 1, 2, and 3 differential pressure transmitters do not require correction for high static pressure span effect. The correction for these ranges occurs within the sensor; however, an associated residual uncertainty remains. This uncertainty is stated as the high static line pressure span effect found in the applicable Product Data Sheet.

High Static Line Pressure Span Correction for Range Code 4 and 5 DP Transmitters

Rosemount 3150 Series Range 4 and 5 pressure transmitters experience a systematic span shift when operated at high static line pressure. It is linear and correctable during calibration.

The correction factor for span shift caused by the application of static line pressure is shown in Table 3-1.

Table 3-1 – Range 4 and 5 Correction Factors

<table>
<thead>
<tr>
<th>Range 4 and 5 Span Correction Factor</th>
<th>% Input Reading per 1000 psi (6,90 MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range 4</td>
<td>1.00%</td>
</tr>
<tr>
<td>Range 5</td>
<td>1.25%</td>
</tr>
</tbody>
</table>

Correction factors have an uncertainty of ±0.20% of input reading per 1000 psi (6,90 MPa).

The following illustrates two methods of correcting for the high static pressure span shift. Examples follow each method.

Method 1 for High Static Line Pressure, Ranges 4 and 5

Adjust transmitter output while leaving the input pressure at desired in service differential pressures. Use one of the following formula sets (depending on the pressure units being used to calibrate):

If using English Units (psi):
Corrected output reading at LRV =
4 mA + ((S X P/1000 X LRV)/Span) X 16 mA
Corrected output reading at URV =
20 mA + ((S X P/1000 X URV)/Span) X 16 mA

If using SI Units (MPa):
Corrected output reading at LRV =
4 mA + ((S X P/6,90 X LRV)/Span) X 16 mA
Corrected output reading at URV =
20 mA + ((S X P/6,90 X URV)/Span) X 16 mA

Where:
S = Value from Table 3-1 divided by 100
LRV = Lower Range Value
URV = Upper Range Value
P = Static Line Pressure
Span = Calibrated Span

(1) For Rosemount 3150 Series pressure transmitters with Standard Option Code “P4”, correction for High Static Line Pressure (HSLP) at customer specified line pressure (with no residual HSLP uncertainty) may have been performed at the factory. Please contact Rosemount Nuclear for details.
NOTE
For corrections where the calculated output adjustment exceeds the output high or low adjustment limits, the pressure input adjust procedure described in Method 2 (see pg. 38) is recommended.

Figure 3-9 outlines examples of calculating a High Static Line Pressure Span Correction using Method 1. Figure 3-9a uses English units (psi) while Figure 3-9b uses SI units (MPa).

Figure 3-9 – High Static Line Pressure Span Correction using Method 1 Example

Figure 3-9a – Example for High Static Line Pressure Span Correction using Method 1 (English Units)

Range 4 for a calibration of –10 to 45 psi corrected for 1,500 psi static line pressure:

1. Calculate the corrected output reading at LRV
 \[= 4 \text{ mA} + \left(0.01 \times \frac{1500 \text{ psi}}{1000 \text{ psi}} \times (-10 \text{ psi})\right) \times \frac{16 \text{ mA}}{55 \text{ psi}} \]
 \[= 3.956 \text{ mA} \]

2. Calculate the corrected output reading at URV
 \[= 20 \text{ mA} + \left(0.01 \times \frac{1500 \text{ psi}}{1000 \text{ psi}} \times 45 \text{ psi}\right) \times \frac{16 \text{ mA}}{55 \text{ psi}} \]
 \[= 20.196 \text{ mA} \]

3. At atmospheric static line pressure, apply 10 psi to the low side process connection (-10 psi), and adjust the zero until the transmitter output reads 3.956 mA.

4. Remaining at atmospheric static line pressure, apply 45 psi to the high side process connection and adjust the span until the transmitter output reads 20.196 mA.

5. Check to assure desired outputs are achieved and repeat steps 3 and 4 if necessary.

When the transmitter is exposed to 1,500 psi static line pressure, within specified uncertainties, the output will be 4 mA at -10 psi and 20 mA at 45 psi.
Rosemount 3150 Series

Figure 3-9b – Example for High Static Line Pressure Span Correction using Method 1 (SI Units)

Range 4 for a calibration of −0.07 to 0.31 MPa corrected for 10.34 MPa static line pressure:

1. Calculate the corrected output reading at LRV

 \[\text{Corrected LRV} = 4 \text{ mA} + ((0.01 \times 10.34 \text{ MPa})/6.90 \text{ MPa}) \times (-0.07 \text{ MPa})/0.38 \text{ MPa} \times 16 \text{ mA} = 3.956 \text{ mA} \]

2. Calculate the corrected output reading at URV

 \[\text{Corrected URV} = 20 \text{ mA} + ((0.01 \times 10.34 \text{ MPa})/6.90 \text{ MPa} \times 0.31 \text{ MPa})/0.38 \text{ MPa} \times 16 \text{ mA} = 20.196 \text{ mA} \]

3. At atmospheric static line pressure, apply 0.07 MPa to the low side process connection (-0.07 MPa), and adjust the zero until the transmitter output reads 3.956 mA.

4. Remaining at atmospheric static line pressure, apply 0.31 MPa to the high side process connection and adjust the span until the transmitter output reads 20.196 mA.

5. Check to assure desired outputs are achieved and repeat steps 3 and 4 if necessary.

When the transmitter is exposed to 10.34 MPa static line pressure, within specified uncertainties, the output will be 4 mA at -0.07 MPa and 20 mA at 0.31 MPa.

Method 2 for High Static Line Pressure, Ranges 4 and 5

Adjust transmitter pressure input while leaving the output at 4 mA and 20 mA. Use one of the following formula sets (depending on the pressure units being used to calibrate):

If using English Units (psi):
Corrected LRV pressure input = Desired LRV − ((S X LRV) X (P/1000))
Corrected URV pressure input = Desired URV − ((S X URV) X (P/1000))

If using SI Units (MPa):
Corrected LRV pressure input = Desired LRV − ((S X LRV) X (P/6.90))
Corrected URV pressure input = Desired URV − ((S X URV) X (P/6.90))

Where:
S = Value from Table 3-1 divided by 100
LRV = Lower Range Value
URV = Upper Range Value
P = Static Line Pressure
Span = Calibrated Span
Figures 3-10 and 3-11 outline two examples of calculating a High Static Line Pressure Span Correction using Method 2.

“Example 1” in Figure 3-10 contains a calculation for a Zero Based Calibration Range. Figure 3-10a uses English units (psi) for the calculation while Figure 3-10b uses SI units (MPa).

“Example 2” in Figure 3-11 demonstrates the calculation for a Zero Elevated Calibration Range. “Example 2” can also be followed for Zero Suppressed Calibration Ranges. Figure 3-11a uses English units (psi) while Figure 3-11b uses SI units (MPa).

Range 4 for a calibration of 0 to 45 psi corrected for 1,500 psi static line pressure

1. In this example LRV is 0 psid. Zero differential pressure points require no span correction.
2. Calculate the corrected URV pressure input

 \[\text{URV pressure input} = 45 \text{ psi} - ((0.01 \times 45 \text{ psi}) \times (1500 \text{ psi/1000 psi})) \]

 \[= 44.325 \text{ psi} \]

3. At atmospheric static line pressure, with zero differential pressure applied, adjust the zero until the transmitter output reads 4 mA.
4. Remaining at atmospheric static line pressure, apply 44.325 psi to the high side process connection and adjust the span until the transmitter output reads 20 mA.
5. Check to assure desired outputs are achieved and repeat steps 3 and 4 if necessary.

When the transmitter is exposed to 1,500 psi static line pressure, within specified uncertainties, the output will be 4 mA at 0 psi and 20 mA at 45 psi.
Figure 3-10b – Example 1 for High Static Line Pressure Span Correction using Method 2 (SI Units)

<table>
<thead>
<tr>
<th>Range 4 for a calibration of 0 to 0,31 MPa corrected for 10,34 MPa static line pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In this example LRV is 0 MPa. Zero differential pressure points require no span correction.</td>
</tr>
<tr>
<td>2. Calculate the corrected URV pressure input</td>
</tr>
<tr>
<td>= 0,31 MPa – ((0,01 X 0,31 MPa) X (10,34 MPa/6,90 MPa))</td>
</tr>
<tr>
<td>= 0,305 MPa</td>
</tr>
<tr>
<td>3. At atmospheric static line pressure, with zero differential pressure applied, adjust the zero until the transmitter output reads 4 mA.</td>
</tr>
<tr>
<td>4. Remaining at atmospheric static line pressure, apply 0,305 MPa to the high side process connection and adjust the span until the transmitter output reads 20 mA.</td>
</tr>
<tr>
<td>5. Check to assure desired outputs are achieved and repeat steps 3 and 4 if necessary.</td>
</tr>
</tbody>
</table>

When the transmitter is exposed to 10,34 MPa static line pressure, within specified uncertainties, the output will be 4 mA at 0 MPa and 20 mA at 0,305 MPa.
Calibration

Figure 3-11 – High Static Line
Pressure Span Correction using Method 2; Example 2

Figure 3-11a – Example 2 for High Static Line
Pressure Span Correction using Method 2
(English Units)

Range 5 for a calibration of –250 to 750 psi corrected for 1,500 psi static line pressure

1. Calculate the corrected LRV pressure input

 \[= -250 \text{ psi} - ((0.0125 \times -250 \text{ psi}) \times (1500 \text{ psi/1000 psi})) \]

 \[= -245.31 \text{ psi} \]

2. Calculate the corrected URV pressure input

 \[= 750 \text{ psi} - ((0.0125 \times 750 \text{ psi}) \times (1500 \text{ psi/1000 psi})) \]

 \[= 735.94 \text{ psi} \]

3. At atmospheric static line pressure, apply 245.31 psi to the low side process connection (-245.31 psi) and adjust the zero until the transmitter output reads 4 mA.

4. Remaining at atmospheric static line pressure, apply 735.94 psi to the high side process connection and adjust the span until the transmitter output reads 20 mA.

5. Check to assure desired outputs are achieved and repeat steps 3 and 4 if necessary.

When the transmitter is exposed to 1,500 psi static line pressure, within specified uncertainties, the output will be 4 mA at -250 psi and 20 mA at 750 psi.
High Static Line Pressure Zero Correction for DP Transmitters (All Ranges)

Zero shift with static pressure is not systematic. However, the effect can be eliminated during calibration. To trim out the zero error at high static line pressure, perform the following:

- If the calibrated range includes zero differential pressure (zero-based or zero crossing):
 a. Calibrate the pressure transmitter according to the preceding sections.
 b. Apply atmospheric line pressure to high and low sides (zero differential pressure).
 c. Record the output reading.
 d. Apply the intended line pressure to high and low sides (zero differential pressure).
 e. Adjust the zero to match the reading obtained in step c.

- If the calibrated range does not include zero differential pressure (certain zero elevated or zero suppressed calibrations):
 a. Calibrate the pressure transmitter to the intended span using the Zero Based Calibration Procedure.
 b. Apply atmospheric line pressure to high and low sides (zero differential pressure).
 c. Record the output reading.
d. Apply the intended line pressure to high and low sides (zero differential pressure).
e. Record the output reading.
f. Subtract the reading in step e from the reading in step c. *Note the sign associated with the calculated value, as the sign is maintained for the adjustment in step i.*
g. Calibrate the transmitter to the desired calibration using the *Elevated or Suppressed Zero Calibration Procedure.*
h. For range codes 4 and 5 only, correct for static pressure span effect as described in *Static Pressure Span Correction for Range Code 4 and 5 DP Transmitters.*
i. Apply pressure equal to the LRV (zero line pressure), adjust the zero by the amount calculated in step f.

Figure 3-12 outlines an example of a Zero Correction for High Static Line Pressure for a transmitter with a non-zero based calibration.

If -0.007 mA was calculated in step f and the LRV reads 4.002 mA, adjust the zero until the LRV reads 3.995 mA. DO NOT ADJUST THE SPAN. When static pressure is applied, the output should read 4.002 mA.

Linearity

Linearity is factory optimized and requires no field adjustment.
This page intentionally left blank
SECTION 4: Operation

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>45</td>
</tr>
<tr>
<td>Transmitter Theory of Operation</td>
<td>46</td>
</tr>
<tr>
<td>The Sensor Cell</td>
<td>47</td>
</tr>
<tr>
<td>Demodulator</td>
<td>48</td>
</tr>
<tr>
<td>Oscillator</td>
<td>48</td>
</tr>
<tr>
<td>Voltage Regulator</td>
<td>48</td>
</tr>
<tr>
<td>Current Control</td>
<td>49</td>
</tr>
<tr>
<td>Current Limit</td>
<td>49</td>
</tr>
<tr>
<td>Reverse Polarity Protection</td>
<td>49</td>
</tr>
</tbody>
</table>

OVERVIEW

This section provides a brief description of basic 3150 Series pressure transmitter operations in the following order:

- Transmitter Theory of Operation
- The Sensor Cell
- Demodulator
- Oscillator
- Voltage Regulator
- Current Control
- Current Limit
- Reverse Polarity Protection
TRANSMITTER THEORY OF OPERATION

The block diagram in Figure 4-1 illustrates the operation of the 3150 Series pressure transmitter.

The 3150 Series pressure transmitters have a variable capacitance sensor (see Figure 4-2). Differential capacitance between the sensing diaphragm and the capacitor plates is converted electronically to a 2-wire, 4-20 mA dc signal based on the following formulas:

\[P = k_1 \left(\frac{C_2 - C_1}{C_1 + C_2} \right) \]

Where:

- \(P \) is the process pressure.
- \(k_1 \) is a constant.
- \(C_1 \) is the capacitance between the high-pressure side and the sensing diaphragm.
- \(C_2 \) is the capacitance between the low-pressure side and the sensing diaphragm.

\[fV_{p-p} = \frac{I_{ref}}{C_1 + C_2} \]

Where:

- \(I_{ref} \) is the reference current.
- \(V_{p-p} \) is the peak to peak oscillation voltage.
- \(f \) is the oscillation frequency.

\[I_{diff} = fV_{p-p}(C_2 - C_1) \]

Where:

- \(I_{diff} \) is the difference in current between \(C_1 \) and \(C_2 \).

Therefore:

\[P = constant \times I_{diff} = I_{ref} \left(\frac{C_2 - C_1}{C_2 + C_1} \right) \]
THE SENSOR CELL

Process pressure is transmitted through an isolating diaphragm and silicone oil fill fluid to a sensing diaphragm in the center of the Sensor. The reference pressure is transmitted in a like manner to the other side of the sensing diaphragm. The capacitance plates on both sides of the sensing diaphragm detect the position of the sensing diaphragm. The capacitance between the sensing diaphragm and either capacitor plate ranges from 40 pf to 80 pf depending on input pressure. An oscillator drives the sensor current through the transformer windings at roughly 110 kHz and 20 V

V

p

p.
The demodulator consists of a diode bridge that rectifies the ac signal from the sensor cell to a dc signal. The oscillator driving current, I_{ref} (the sum of the dc currents through two transformer windings), is kept constant by an integrated circuit operational amplifier (op amp). The output of the demodulator is a current directly proportional to pressure, i.e.,

$$I_{\text{diff}} = fV_{p-p}(C_2 - C_1)$$

The diode bridge and temperature compensation circuits are located inside the sensor module.

The oscillator frequency is determined by the capacitance of the sensing element and the inductance of the transformer windings. The sensing element capacitance is variable. Therefore, the frequency is variable about a nominal value of 110 kHz. An operational amplifier acts as a feedback control circuit and controls the oscillator drive voltage such that:

$$fV_{p-p} = \frac{I_{\text{ref}}}{C_1 + C_2}$$

The transmitter uses a zener diode, transistors, associated resistors and capacitors to provide a constant reference voltage of 3.2 Vdc and a regulated voltage of 7.4 Vdc for the oscillator and amplifiers.
CURRENT CONTROL

The current control amplifier consists of two operational amplifiers, two transistors, and associated components. The first amplifier provides an adjustable gain output proportional to the sum of the differential sensor current and a zero adjustment current. This output is supplied to the second amplifier, which controls the current in the 4-20 mA loop proportionally.

CURRENT LIMIT

The current limiter prevents output current from exceeding 30 mA nominal in an overpressure condition. Conversely, minimum output is limited to 3 mA nominal. Both the minimum and maximum current limits may vary slightly depending upon sensor pressure range code and associated calibration.

REVERSE POLARITY PROTECTION

A diode provides reverse polarity protection.
SECTION 5: Maintenance & Troubleshooting

OVERVIEW
This section outlines techniques for checking out the components, a method for disassembly and reassembly, and a troubleshooting guide.

- General Considerations
- Test Terminal
- Electronics Assembly Checkout
- Sensor Module Checkout
- Disassembly Procedure
 → Process Flange Removal
 → Electronics Housing Disassembly
- Reassembly Procedure
 → Electronics Housing Reassembly
 → Process Flange Reassembly
- Post Assembly Tests

SAFETY MESSAGES
Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operation(s). Refer to the following safety messages before performing an operation preceded by this symbol ⚠️

⚠️ WARNING
Explosions can result in death or injury.
- Do not remove the transmitter covers in explosive environments when the circuit is live.
- Verify that the operating atmosphere of the transmitter is consistent with the appropriate qualification parameters.

⚠️ WARNING
Electrical shock can result in death or serious injury.
- Avoid contact with the leads and terminals when the circuit is live.
WARNING
Process leaks could result in death or serious injury.
- Install and tighten all four flange bolts before applying pressure.
- Do not attempt to loosen or remove flange bolts while the transmitter is in service.

WARNING
Residual process fluid may remain after disassembly of process flanges. If this fluid is potentially contaminated, take appropriate safety measures.

WARNING
Replacement equipment or spare parts not approved by Rosemount Nuclear for use could reduce the pressure retaining capabilities of the transmitter and may render the instrument dangerous or adversely impact its qualified status.
- Use only components supplied with the 3152, 3153 or 3154 transmitter or designated by Rosemount Nuclear as spare parts for the 3152, 3153 or 3154.

NOTE
Maintenance of traceability of any replacement parts is the responsibility of the user (see Important Notice at the beginning of this manual preceding Section 1).

GENERAL CONSIDERATIONS
The Rosemount 3150 Series transmitters have no moving parts and require a minimum of scheduled maintenance. Calibration procedures for range adjustments are outlined in Section 3: Calibration. A calibration check should be conducted after inadvertent exposure to overpressure, unless your plant considers this factor separately in the plant error analysis.

NOTE
Transmitters are factory calibrated at ambient temperature and pressure to the customer’s specified range. If calibration is not specified, transmitters are calibrated 0 to Upper Range Limit (URL).

Test terminals are available for in-process checks. For further checks, the transmitter can be divided into two active physical components: the sensor module and the electronics assembly.

An exploded view drawing of the transmitter is provided in Figure 5-1. In the following procedures, numbers in parentheses refer to item numbers in the exploded view.
Figure 5-1 – Parts Drawing, Exploded View

Table 5-1 – 3150 Series Parts List

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DESCRIPTION</th>
<th>ITEM NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electronics Cover</td>
<td>8</td>
<td>Sensor Module</td>
</tr>
<tr>
<td>2</td>
<td>O-ring for Electronics Cover</td>
<td>9</td>
<td>C-rings for Process Flange</td>
</tr>
<tr>
<td>3</td>
<td>Coarse Zero Select Jumper</td>
<td>10</td>
<td>Process Flange</td>
</tr>
<tr>
<td>4</td>
<td>Electronics Assembly (includes set screws)</td>
<td>11</td>
<td>Bolts for Process Flange</td>
</tr>
<tr>
<td>5</td>
<td>Electronics Housing Assembly (includes set screws)</td>
<td>12</td>
<td>Housing Set Screws</td>
</tr>
<tr>
<td>6</td>
<td>Terminal Block Assembly</td>
<td>13</td>
<td>Flange Cap Screws</td>
</tr>
<tr>
<td>7</td>
<td>O-ring for Header</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TEST TERMINAL

A test terminal is provided to allow connection of a current meter without impacting the powered signal loop. As shown in Figure 5-2, the current meter is connected from the positive signal terminal to the loop test terminal. Proper function of the test terminal requires that the internal resistance of the current meter be no more than 10 ohms.

WARNING
Incorrect wiring of the test terminal may result in damage to the transmitter.

Figure 5-2 – Connection of Current Meter to Test Terminals

ELECTRONICS ASSEMBLY CHECKOUT

NOTE
Numbers in parentheses refer to item numbers in Figure 5-1.

NOTE
3150 Series transmitters contain electronic circuit boards which may be static sensitive. Therefore, observe proper ESD precautions/techniques whenever the electronics assemblies are handled and/or uncovered.

The electronics assembly (4) is not field-repairable and must be replaced if defective.

To check the electronics assembly for a malfunction, substitute a spare assembly into the transmitter using the procedures in this section.

To remove the existing electronics assembly, refer to the steps outlined in the Electrical Housing Disassembly section.

To install the new electronics assembly, refer to the steps outlined in Electrical Housing Reassembly section.

If this procedure reveals a malfunctioning assembly, return the defective assembly to Rosemount Nuclear for replacement. See Important **Notice** regarding field repair at the beginning of this manual.
The sensor module (8) is not field-repairable and must be replaced if defective. If no visible defect such as a punctured isolating diaphragm or loss of fill fluid is observed, check the sensing module in the following manner:

1. Remove the electronics assembly (4) from the transmitter per the steps outlined in Electrical Housing Disassembly section. This will allow access to the sensor module pins located at the top of the sensor module.

Refer to Figure 5-3 for the following steps.

Diode Check
Using a digital multimeter with diode test functionality, measure the voltage drop of the sensor diodes between the following sensor module pins (the positive (+) lead should be connected to the first sensor module pin listed):

- A. Pin #3 and Pin #5
 (Should measure approximately 1.2 volts)
- B. Pin #4 and Pin #3
 (Should measure approximately 1.2 volts)
- C. Pin #4 and Pin #5
 (Should measure approximately 2.4 volts)

Resistance Check
Using a low-voltage ohmmeter, check resistance between the following sensor module pins:

- A. Pin #1 and all other Pins
 (All measurements should be >10 mega ohms)
- B. Pin #2 and Pin #5
 (Should measure between 15 kilo ohms and 38 kilo ohms)
- C. All Pins and the module housing
 (All measurements between pins and module housing should be >10 mega ohms)
NOTE
The Sensor Module Checkout procedure does not completely test the sensor module. If electronics assembly replacement does not correct the abnormal condition and no other problems are obvious, replace the sensor module.

![Sensor Module Pin Connection](image)

NOTE
Before removing the transmitter from service:
• Follow all plant safety rules and procedures.
• Isolate and vent the process from the transmitter before removing the transmitter from service.
• Remove all electrical leads and conduit.

WARNING
Residual process fluid may remain after disassembly of process flanges. If this fluid is potentially contaminated, take appropriate safety measures.

NOTE
Numbers in parentheses refer to item numbers in Figure 5-1.

NOTE
3150 Series transmitters contain electronic circuit boards which may be static sensitive. Therefore, observe proper ESD precautions/techniques whenever the electronics assemblies are handled and/or uncovered.

NOTE
Special testing and part replacement are required for reassembly. Read the Process Flange Reassembly procedure (see pg. 60) before attempting disassembly.
Process Flange Removal

1. Remove the transmitter from service before disassembling flanges.
2. Remove the two flange cap screws (13).
3. Detach process flange (10) by removing the four large bolts (11). TAKE CARE NOT TO SCRATCH OR PUNCTURE THE ISOLATING DIAPHRAGMS. Identify the orientation of flange with respect to sensor module for reassembly.
4. Carefully remove the C-rings (9). DO NOT REUSE C-RINGS. TAKE CARE NOT TO SCRATCH THE SEALING SURFACES ON THE PROCESS FLANGE AND SENSOR MODULE.

Electronics Housing Disassembly

WARNING

Remove power from the transmitter before removing either the terminal side or circuit side cover (1).

Electronics Assembly Removal

1. The electronics assembly (4) is accessible by unscrewing the cover (1) on the electronics side. This compartment is not specifically identified by notes on the housing (5), but is located opposite of the side marked “FIELD TERMINALS.”
2. Before removing the electronics assembly, align the zero and span adjustment screws so that their slots are perpendicular to the board, as shown in Figure 5-4.
3. Unscrew the two 6-32 captive screws holding the electronics assembly to the housing and pull the electronics assembly from the housing (see Figure 5-4).
4. Unclip and disconnect the connector plug from the top of the sensor module (8) to completely remove the electronics assembly (see Figure 5-5). To remove connector plug, apply even pressure to both clips and pull the connector body up from the sensor module. DO NOT PULL ON THE CABLE WIRES.

Terminal Block Removal

1. The signal terminals and test terminals are accessible by unscrewing the cover (1) on the terminal side. This compartment is identified by the “FIELD TERMINALS” notes on the sides of the electronics housing (5).
2. The terminal block assembly (6) is removed by removing the two 6-32 screws and pulling the terminal block assembly out of the housing (see Figure 5-6).

IMPORTANT
The Electronics Housing Set Screws (12) are held in place by a thread lock compound (Loctite® 266) applied at the factory during manufacturing. If this interface is damaged, the qualification of the transmitter may become invalid. Prior to any maintenance that requires the housing (5) to be rotated or removed from the sensor module (8), please contact Rosemount Nuclear.
Figure 5-4 – Location of Zero and Span Adjustment Screws and Electronics Assembly Captive Screws

Two 6-32 Screws

Ensure potentiometers and adjustment screws are aligned while removing electronics

Figure 5-5 – Removing Electronics Assembly

Squeeze the two clips and pull up on the connector plug

Connector Plug

Figure 5-6 – Removing Terminal Block Assembly

Two 6-32 Screws
REASSEMBLY PROCEDURE

NOTE
Numbers in parentheses refer to item numbers in Figure 5-1.

NOTE
3150 Series transmitters contain electronic circuit boards which may be static sensitive. Therefore, observe proper ESD precautions/techniques whenever the electronics assemblies are handled and/or exposed.

Electronics Housing Reassembly

The Electronics Housing Set Screws (12) are held in place by a thread lock compound (Loctite® 266) applied at the factory during manufacturing. If this interface is damaged, the qualification of the transmitter may become invalid. The following reassembly instructions assume that the housing-to-module interface is intact. Prior to any maintenance that requires the housing (5) to be rotated or removed from the sensor module (8), please contact Rosemount Nuclear.

Preliminary

1. Replace the cover o-rings (2) whenever removing an electronics housing cover (1). Check the cover o-ring grooves for cleanliness. If chips or dirt are present, clean the seat and mating portion of the cover with alcohol. Lubricate replacement o-ring(s) with Molykote® 55 silicone o-ring grease or your plant-approved equivalent. For reference, the transmitter was qualified using Molykote® 55 silicone o-ring grease (Spare Parts number 03154-5002-0001 or 03154-5002-0002).

2. Ensure filter pins are clean. If necessary, clean with alcohol.

Electronics Assembly Installation

1. Align the zero and span adjustment screws with the potentiometer stems on the board in the electronics assembly (4) as shown in Figure 5-7.

Figure 5-7 – Alignment of Adjustment Screws and Potentiometer Stems
2. Verify connector plug o-ring is in place as shown in Figure 5-8. If connector plug o-ring is missing, please contact Rosemount Nuclear for assistance.

3. Apply a small amount of Molykote® 55 silicone o-ring grease or your plant-approved equivalent to exposed surface of the connector plug o-ring. For reference, the transmitter was qualified using Molykote® 55 silicone o-ring grease (Spare Parts number 03154-5002-0001 or 03154-5002-0002).

NOTE

Use caution when applying silicone o-ring grease to the exposed surface of the connector plug o-ring to avoid getting lubricant on the receptacles at the end of the connector plug.

4. Push the connector plug down over the pins on the top of the sensor module (8) (see Figure 5-9). Ensure that the two clips on the connector plug are fully engaged under the lip of the sensor module (see Figure 5-10).
5. Push the electronics assembly (4) into the electronics housing (5) and fasten with the two 6-32 captive screws. Torque each captive screw to 7in-lbs ± 1 in-lbs (0.8 N-m ±0.1 N-m), or hand-tight (see Figure 5-11).

Terminal Block Assembly

1. Install the terminal block assembly (6) into the "FIELD TERMINALS" side of the electronics housing (5) and torque the two 6-32 screws to 7in-lbs ± 1 in-lbs (0.8 N-m ±0.1 N-m), or hand-tight.
1. Inspect the housing (5) and cover (1) threads for cleanliness. If chips or dirt are present, clean the o-ring seat and mating threads on the housing and cover with a soft brush.

2. Carefully replace each cover, ensuring that each contains a cover o-ring (2) (See Preliminary Section above). Take care that electrical wires do not interfere with cover installation or wire damage could occur.

NOTE
Housing covers are pre-lubricated and do not require additional lubrication.

3. Tighten cover until it makes metal-to-metal contact with the housing (see Figure 2-9 in Section 2: Installation). Once metal-to-metal contact has been made, it is not necessary to tighten the cover any further.

4. Visually inspect both covers to ensure they are installed metal-to-metal. Visual inspection is sufficient to ensure metal-to-metal contact, however, a gap gauge may be used for verification if desired. When metal-to-metal contact has been made, the acceptable gap between cover and housing will be less than 0.010 inch (see Figures 2-10 and 2-11).
Process Flange Reassembly

1. Replace the process c-rings (9) with new c-rings if the flange (10) was removed. Carefully place one c-ring in each of the two weld rings located on the isolating diaphragms of the sensor module (8) as shown in Figure 5-12.

2. Carefully place the process flange on the sensor module. Take care not to disturb the c-rings or damage the isolating diaphragms.

3. With the process flange sitting securely on the sensor module, install two flange cap screws (13) into the flange location shown in Figure 5-13. Install the cap screws finger tight.

4. Place the four bolts (11) through the process flange and screw them on finger-tight.

5. Using a hand torque wrench, evenly seat the flange onto the sensor module by following steps 6 through 9 (see Figure 5-13 to identify the bolts).

6. Alternately tighten the four bolts in the sequence shown in Figure 5-13 to 150 in-lbs ±15 in-lbs (16.9 N-m ± 1.7 N-m)

7. Repeat step 6.

8. Repeat step 6 at 300 in-lbs ± 25 in-lbs (33.9 N-m ± 2.8 N-m)

9. Repeat step 8.

10. Torque the two cap screws in the flange to 33 in-lbs ± 1.7 in-lbs (3.7 N-m ± 0.2 N-m). NOTE: Cap screws must be torqued after bolts, or they will loosen.
Figure 5-13 – Flange Bolt Torqueing Sequence

POST ASSEMBLY TESTS

1. Conduct hydrostatic testing to 150% of maximum working pressure or 2,000 psi (13.79 MPa), whichever is greater. Conduct the testing for a duration of ten minutes minimum, and visually verify that there is no water leakage from the transmitter, including the flange/process connection interface and the flange/sensor module interface.
2. Calibrate the transmitter per Section 3: Calibration in this manual.
3. Clean the “wetted parts” to < 1 ppm chloride content.
Table 5-2 – Torque References

<table>
<thead>
<tr>
<th>ITEM(S) TO BE TORQUED</th>
<th>3152 TORQUE VALUE</th>
<th>3153 TORQUE VALUE</th>
<th>3154 TORQUE VALUE</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Flange</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel Bracket to Mounting Surface Bolts</td>
<td>19 ft-lb (26 N-m)</td>
<td>same</td>
<td>same</td>
<td>±1 ft-lb (1.4 N-m)</td>
</tr>
<tr>
<td>Traditional Flange</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe Bracket to Mounting Pipe Bolts</td>
<td>19 ft-lb (26 N-m)</td>
<td>same</td>
<td>same</td>
<td>±1 ft-lb (1.4 N-m)</td>
</tr>
<tr>
<td>Traditional Flange</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmitter to Bracket Bolts (Both Carbon Steel and SST)</td>
<td>21 ft-lb (29 N-m)</td>
<td>same</td>
<td>same</td>
<td>±1 ft-lb (1.4 N-m)</td>
</tr>
<tr>
<td>Flange Bolts</td>
<td>See Process Flange Reassembly section</td>
<td>same</td>
<td>same</td>
<td>See Process Flange Reassembly section</td>
</tr>
<tr>
<td>Drain/Vent Valve-Stems</td>
<td>7.5 ft-lb (10 N-m)</td>
<td>same</td>
<td>same</td>
<td>±0.5 ft-lb (0.7 N-m)</td>
</tr>
<tr>
<td>Drain/Vent Valve Seats</td>
<td>200 in-lbs (22.6 N-m)</td>
<td>same</td>
<td>same</td>
<td>±1 ft-lb (1.4 N-m)</td>
</tr>
<tr>
<td>Screen Plug</td>
<td>50 in-lbs (5.7 N-m)</td>
<td>same</td>
<td>same</td>
<td>±1 in-lb (0.1 N-m)</td>
</tr>
<tr>
<td>Swagelok® Process Fitting</td>
<td>See installation instructions</td>
<td>same</td>
<td>same</td>
<td>-</td>
</tr>
<tr>
<td>Covers</td>
<td>See installation instructions</td>
<td>same</td>
<td>same</td>
<td>-</td>
</tr>
<tr>
<td>Conduit Plug</td>
<td>200 in-lb (22.6 N-m)</td>
<td>same</td>
<td>N/A</td>
<td>±1 ft-lb (1.4 N-m)</td>
</tr>
<tr>
<td>Conduit Seal Fitting</td>
<td>See Manufacturer’s instructions</td>
<td>same</td>
<td>same</td>
<td>same</td>
</tr>
<tr>
<td>Electrical Connector</td>
<td>See Manufacturer’s instructions</td>
<td>same</td>
<td>same</td>
<td>same</td>
</tr>
<tr>
<td>Terminal Block Mounting Screws</td>
<td>7 in-lbs (0.8 N-m)</td>
<td>same</td>
<td>same</td>
<td>±1 in-lb (0.1 N-m)</td>
</tr>
<tr>
<td>Electronics Assembly Mounting Screws</td>
<td>7 in-lbs (0.8 N-m)</td>
<td>same</td>
<td>same</td>
<td>±1 in-lb (0.1 N-m)</td>
</tr>
<tr>
<td>Internal Ground Screw</td>
<td>7 in-lbs (0.8 N-m)</td>
<td>same</td>
<td>same</td>
<td>±1 in-lb (0.1 N-m)</td>
</tr>
<tr>
<td>External Ground Screw</td>
<td>8.9 in-lbs (1.0 N-m)</td>
<td>same</td>
<td>same</td>
<td>±1 in-lb (0.1 N-m)</td>
</tr>
<tr>
<td>Terminal Screw</td>
<td>7 in-lbs (0.8 N-m)</td>
<td>same</td>
<td>same</td>
<td>±1 in-lb (0.1 N-m)</td>
</tr>
<tr>
<td>SYMPTOM</td>
<td>POTENTIAL SOURCE</td>
<td>CORRECTIVE ACTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Output</td>
<td></td>
<td>Primary Element</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for leaks or blockage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ensure blocking valves are fully open.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for entrapped gas in liquid lines, or liquid in dry lines.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ensure that density of fluid in impulse line is unchanged.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for sediment in transmitter process flanges.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impulse Piping</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for leaks or blockage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ensure blocking valves are fully open.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for entrapped gas in liquid lines, or liquid in dry lines.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ensure that density of fluid in impulse line is unchanged.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for sediment in transmitter process flanges.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transmitter Electronics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Make sure that filter pins and the sensor module connections are clean. If the electronics are still suspect, substitute new electronics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transmitter Electronics Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determine faulty circuit board by trying spare electronics assembly or terminal block assembly. Replace faulty assembly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensor Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: See Sensor Module Checkout section. The sensing element is not field repairable and must be replaced if found to be defective. See Disassembly Procedure for instructions on disassembly. Check for obvious defects (i.e. punctured isolating diaphragm, etc.) and contact Rosemount Nuclear.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check the power supply output voltage at the transmitter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Output or No Output</td>
<td></td>
<td>Primary Element</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check the installation and condition of primary element. Note any changes in process fluid properties that may affect output.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loop Wiring</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAUTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do not use more than 55 volts to check the loop, or damage to the transmitter electronics may result.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for inadequate voltage to the transmitter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the milliamp rating of the power supply against the total current being drawn for all transmitters being powered.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for intermittent shorts, open circuits, or multiple grounds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for proper polarity at the signal terminal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check loop impedance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check wire insulation to detect possible shorts to ground.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impulse Piping</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ensure that the pressure connection is correct.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for leaks or blockage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for entrapped gas in liquid lines, or liquid in dry lines.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for sediment in transmitter process flanges.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ensure that blocking valves are fully open and that bypass valves are tightly closed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ensure that density of fluid in the impulse line is unchanged.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transmitter Electronics Connections</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ensure that calibration adjustments are in allowable range.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for short in sensor leads.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Make sure filter pins are clean, and check the sensor module connections.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If the electronics are still suspect, substitute new electronics.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on Next Page
<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>POTENTIAL SOURCE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Output or No Output</td>
<td>Test Diode Failures</td>
<td>Replace terminal block.</td>
</tr>
<tr>
<td></td>
<td>Transmitter Electronics Failure</td>
<td>Determine faulty circuit board by trying spare electronics assembly or terminal block assembly. Replace faulty assembly.</td>
</tr>
<tr>
<td></td>
<td>Sensor Module</td>
<td>NOTE: See Sensor Module Checkout section. The sensing element is not field repairable and must be replaced if found to be defective. See Disassembly Procedure for instructions on disassembly. Check for obvious defects (i.e. punctured isolating diaphragm, etc.) and contact Rosemount Nuclear.</td>
</tr>
<tr>
<td></td>
<td>Power Supply</td>
<td>Check the power supply output voltage at the transmitter.</td>
</tr>
<tr>
<td>Erratic Output</td>
<td>Impulse Piping and Process Connections</td>
<td>Check for entrapped gas in liquid lines, or liquid in dry lines.</td>
</tr>
<tr>
<td></td>
<td>Transmitter Electronics</td>
<td>• Check for intermittent shorts or open circuits.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Make sure the pins on the jumper, the pins on the filters, and the pins on the sensor module are clean</td>
</tr>
<tr>
<td></td>
<td>Transmitter Electronic Failure</td>
<td>Determine faulty circuit board by trying spare electronics assembly or terminal block assembly. Replace faulty assembly.</td>
</tr>
<tr>
<td></td>
<td>Power Supply</td>
<td>Check power supply output voltage.</td>
</tr>
</tbody>
</table>
This page intentionally left blank
SECTION 6: Transmitter Spare Parts
For 3152, 3153, and 3154 Models

OVERVIEW

This section provides information pertaining to the spare part kits offering for Rosemount model 3152, 3153 and 3154 Transmitters. Techniques for transmitter troubleshooting and methods for disassembly and reassembly are provided in Section 5: Maintenance & Troubleshooting.

- Important Notice
- Spare Parts Storage and Shelf Life
- Impact on Transmitter Qualified Life
- Spare Parts List

SAFETY MESSAGES

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operation(s). Refer to the following safety messages before performing an operation preceded by this symbol: ❗

⚠️ WARNING
Explosions can result in death or injury.
- Do not remove the transmitter covers in explosive environments when the circuit is live.
- Verify that the operating atmosphere of the transmitter is consistent with the appropriate qualification parameters.

⚠️ WARNING
Electrical shock can result in death or serious injury.
- Avoid contact with the leads and terminals when the circuit is live.

⚠️ WARNING
Process leaks could result in death or serious injury.
- Install and tighten all four flange bolts before applying pressure.
- Do not attempt to loosen or remove flange bolts while the transmitter is in service.
WARNING
Residual process fluid may remain after disassembly of process flanges. If this fluid is potentially contaminated, take appropriate safety measures.

WARNING
Replacement equipment or spare parts not approved by Rosemount Nuclear for use could reduce the pressure retaining capabilities of the transmitter and may render the instrument dangerous or adversely impact its qualified status.
- Use only components supplied with the 3152, 3153 or 3154 transmitter or designated by Rosemount Nuclear as spare parts for the 3152, 3153 or 3154.

NOTE
Maintenance of traceability for any replacement part is the responsibility of the user (see Important Notice at the beginning of this manual preceding Section 1).

NOTE
In the event a spare parts kit is needed for on-site transmitter maintenance that is not represented within the transmitter spare parts list, please contact Rosemount Nuclear.
GENERAL CONSIDERATIONS

Because of the nuclear use intended for these parts, certain factors must be considered regarding maintenance of product qualification and component traceability during on-site instrument repair. Rosemount Nuclear rigidly controls the manufacture of each instrument to ensure that published performance specifications are met and qualified configurations are maintained. For parts installed outside of this controlled environment, Rosemount Nuclear is unable to ensure that the specifications are being satisfied. This responsibility is shifted to the end user. The integrity of the instrument as originally assembled is modified.

Replacement of parts has ramifications under 10CFR21, for which the user is responsible. These same regulations also mandate a component traceability program, which the user must undertake for the replacement parts. In view of this, and to maintain the qualification of the product, the user must ensure that all replacement parts are installed in accordance with the Rosemount Nuclear approved installation and calibration procedures herein.

NOTE
Spare parts for Rosemount 3152, 3153 and 3154 models are not hydrostatically tested or nuclear cleaned.

NOTE
The part numbers shown are current at the time of printing of this manual, but may be revised in the future. Parts provided are compatible and interchangeable with those listed on your order as to the form, fit, and function of the part required.

SPARE PARTS STORAGE AND SHELF LIFE

Store all spare transmitters and spare component parts in accordance with ANSI N45.2.2 level B.

Qualified transmitters, spare electronic assemblies, and spare terminal blocks were qualified based on a shelf life of 20 years at an ambient temperature of 90°F (32.2°C).

NOTE
Spare electronic assemblies should be stored in the original packaging as shipped by Rosemount Nuclear.

Spare O-rings: Shelf life is 40 years at an ambient temperature of 90°F (32.2°C).

Lubricants and sealants: The date of the end of shelf life (use by date) is provided with the lubricants and/or sealants, at the time of shipment. The product has a minimum of six months shelf life at the time of shipment.

All other parts: Shelf life is not applicable.
IMPACT ON TRANSMITTER QUALIFIED LIFE

Transmitters were qualified based on an installed life of 20 years at an ambient temperature of 120°F (48.9°C).

The use or installation of spare parts has no effect on overall transmitter qualified life as established in the baseline qualification.
TRANSMITTER SPARE PARTS

Spare parts list for Rosemount 3152, 3153 and 3154 model transmitters.

<table>
<thead>
<tr>
<th>Spare Parts Category (1)</th>
<th>Quantity Required (2)</th>
<th>Item Number (3)</th>
<th>Part Description</th>
<th>Rosemount Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter: Electronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3152N Electronics Assembly, Output Code A</td>
<td>4 1 A</td>
<td>03154-5020-0002</td>
<td>3152N Electronics Assembly, Output Code B</td>
<td>4 1 A</td>
</tr>
<tr>
<td>3153N Electronics Assembly, Output Code R</td>
<td>4 1 A</td>
<td>03154-5020-0004</td>
<td>3153N Electronics Assembly, Output Code T</td>
<td>4 1 A</td>
</tr>
<tr>
<td>3154N Electronics Assembly, Output Code R</td>
<td>4 1 A</td>
<td>03154-5020-0004</td>
<td>3154N Electronics Assembly, Output Code T</td>
<td>4 1 A</td>
</tr>
<tr>
<td>3152K Electronics Assembly, Output Code A</td>
<td>4 1 A</td>
<td>03154-5020-0008</td>
<td>3152K Electronics Assembly, Output Code B</td>
<td>4 1 A</td>
</tr>
<tr>
<td>3154K Electronics Assembly, Output Code R</td>
<td>4 1 A</td>
<td>03154-5020-0006</td>
<td>3154K Electronics Assembly, Output Code T</td>
<td>4 1 A</td>
</tr>
<tr>
<td>3152K Electronics Assembly, Output Code B</td>
<td>4 1 A</td>
<td>03154-5020-0007</td>
<td>3154K Electronics Assembly, Output Code T</td>
<td>4 1 A</td>
</tr>
<tr>
<td>Transmitter: Terminal Blocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal Block, Standard, ALL MODELS</td>
<td>6 1 B</td>
<td>03154-5021-0001</td>
<td>Terminal Block, Transient Protection (4)</td>
<td>6 1 B</td>
</tr>
<tr>
<td>Electronics Housing: Covers & Accessories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics Housing Cover, AL, 3152/3153</td>
<td>1 2</td>
<td>03154-5024-0001</td>
<td>FYI</td>
<td>3153</td>
</tr>
<tr>
<td>Electronics Housing Cover, SST, 3152</td>
<td>1 2</td>
<td>03154-5024-0002</td>
<td>1/2” NPT Conduit Plug, 316L SST</td>
<td>1</td>
</tr>
<tr>
<td>Electronics Housing Cover, SST, 3154</td>
<td>1 2</td>
<td>03154-5024-0003</td>
<td>M20 x 1.5 Conduit Plug, 316L SST</td>
<td>1</td>
</tr>
<tr>
<td>1/2” NPT Conduit Plug, 316L SST</td>
<td>1</td>
<td>03153-5020-0001</td>
<td>NPT conduit Elbow w/Tube Adapter, SST, Female</td>
<td>1</td>
</tr>
<tr>
<td>M20 x 1.5 Conduit Plug, 316L SST</td>
<td>1</td>
<td>03153-5025-0001</td>
<td>External Ground Screw (Qty=1)</td>
<td>1</td>
</tr>
<tr>
<td>Process Flange Accessories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain/Vent Valve Stem and Seat (Qty=2 each)</td>
<td>2</td>
<td>03154-5015-0001</td>
<td>Drain/Vent Valve Stem</td>
<td>2 A</td>
</tr>
<tr>
<td>Drain/Vent Valve Stem</td>
<td>2 A</td>
<td>03154-5015-0002</td>
<td>Metal C-Ring (Qty=1)</td>
<td>9</td>
</tr>
<tr>
<td>Process Connection Plug, 1/4” NPT, SST (Qty=1)</td>
<td>1</td>
<td>03154-5017-0001</td>
<td>Process Connection Plug, 1/4” NPT, SST (Qty=2)</td>
<td>2</td>
</tr>
<tr>
<td>Process Connection Plug, 1/4” NPT, SST (Qty=2)</td>
<td>2</td>
<td>03154-5017-0002</td>
<td>Screen Plug (Qty=1)</td>
<td>1</td>
</tr>
<tr>
<td>Screen Plug (Qty=1)</td>
<td>1</td>
<td>03154-5018-0001</td>
<td>Flange Bolt Kit, Standard</td>
<td>11,13</td>
</tr>
<tr>
<td>Flange Bolt Kit, P9 Option</td>
<td>11,13</td>
<td>1</td>
<td>03154-5019-0002</td>
<td>O-Ring Kits</td>
</tr>
<tr>
<td>Electronics Housing Cover O-ring Kit (Qty=2)</td>
<td>2 1 C</td>
<td>03154-5001-0002</td>
<td>Electronics Housing Cover O-ring Kit (Qty=1)</td>
<td>2 2 C</td>
</tr>
<tr>
<td>Lubricants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molykote® 55 O-ring Lubricant (0.25 oz)</td>
<td></td>
<td></td>
<td></td>
<td>03154-5002-0001</td>
</tr>
<tr>
<td>Molykote® 55 O-ring Lubricant (5.3 oz)</td>
<td></td>
<td></td>
<td></td>
<td>03154-5002-0002</td>
</tr>
<tr>
<td>Lubri-Bond A Cover Lubricant (12 oz)</td>
<td></td>
<td></td>
<td></td>
<td>03154-5003-0001</td>
</tr>
</tbody>
</table>

Continued on Next Page
<table>
<thead>
<tr>
<th>Part Description</th>
<th>Quantity Required</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F0</td>
<td>9,10 1</td>
<td>03154-5022-1001</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F1</td>
<td>9,10 1</td>
<td>03154-5022-2200</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F2</td>
<td>9,10 1</td>
<td>03154-5022-0011</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F3</td>
<td>9,10 1</td>
<td>03154-5022-2211</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F4</td>
<td>9,10 1</td>
<td>03154-5022-1111</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F5</td>
<td>9,10 1</td>
<td>03154-5022-0022</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F6</td>
<td>9,10 1</td>
<td>03154-5022-0033</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F7</td>
<td>9,10 1</td>
<td>03154-5022-2233</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F8</td>
<td>9,10 1</td>
<td>03154-5022-3333</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F0</td>
<td>9,10 1</td>
<td>03154-5032-1001</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F1</td>
<td>9,10 1</td>
<td>03154-5032-0200</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F2</td>
<td>9,10 1</td>
<td>03154-5032-0001</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F3</td>
<td>9,10 1</td>
<td>03154-5032-0201</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F4</td>
<td>9,10 1</td>
<td>03154-5032-0101</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F5</td>
<td>9,10 1</td>
<td>03154-5032-0002</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F6</td>
<td>9,10 1</td>
<td>03154-5032-0003</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F7</td>
<td>9,10 1</td>
<td>03154-5032-0203</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (2) C-rings: Flange Code F8</td>
<td>9,10 1</td>
<td>03154-5032-0303</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (1) C-ring: Flange Code F0</td>
<td>9,10 1</td>
<td>03154-5042-2001</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (1) C-ring: Flange Code F1</td>
<td>9,10 1</td>
<td>03154-5042-0200</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (1) C-ring: Flange Code F2</td>
<td>9,10 1</td>
<td>03154-5042-0001</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (1) C-ring: Flange Code F3</td>
<td>9,10 1</td>
<td>03154-5042-0201</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (1) C-ring: Flange Code F4</td>
<td>9,10 1</td>
<td>03154-5042-0101</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (1) C-ring: Flange Code F5</td>
<td>9,10 1</td>
<td>03154-5042-0002</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (1) C-ring: Flange Code F6</td>
<td>9,10 1</td>
<td>03154-5042-0003</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (1) C-ring: Flange Code F7</td>
<td>9,10 1</td>
<td>03154-5042-0203</td>
</tr>
<tr>
<td>Flange Assembly w/Qty (1) C-ring: Flange Code F8</td>
<td>9,10 1</td>
<td>03154-5042-0303</td>
</tr>
</tbody>
</table>

Rosemount 3150 Series

(1) Rosemount recommends one spare or kit for every 25 transmitters in Category “A”, one spare part or kit for every 50 transmitters in Category “B”, and one spare part or kit for every 5 transmitters in Category “C”.

(2) The quantity stated is sufficient to service one transmitter.

(3) The item number corresponds with Figure 5-1 in Section 5: Maintenance & Troubleshooting of this reference manual.

(4) Terminal Block with Transient Protection is not qualified for use with Rosemount 3153N or 3154N models.

(5) See Transmitter Product Data Sheet for information regarding process flange configuration.