Rosemount™ 5900

Instruction for Installation, Configuration, and Operation of Proof Test Function with Reference Reflector
Contents

Section 1: Introduction

1.1 Section overview ... 2
1.2 Service support ... 2
1.3 Installation procedure ... 3

Section 2: Installation

2.1 Overview .. 5
2.2 Safety messages ... 5
2.3 Installation considerations .. 6
2.4 Installing the Reference Reflector for Parabolic Antenna 7
 2.4.1 Reference Reflector Kit .. 7
 2.4.2 Tank Geometry - Parabolic Antenna 9
 2.4.3 Installing the Reference Reflector 11
2.5 Installing the Reference Reflector for Array Antenna 18
 2.5.1 Reference Reflector Kit .. 18
 2.5.2 Tank Geometry - Array Antenna 20
 2.5.3 Installing the Reference Reflector 23

Section 3: Configuration of Reference Reflector

3.1 Overview .. 29
3.2 Safety messages ... 29
3.3 Configuration using TankMaster WinSetup 30
 3.3.1 Introduction .. 30
 3.3.2 Considerations .. 30
 3.3.3 Configuration procedure 31
Section 4: Operation

4.1 Overview ...39
4.2 Safety messages ...39
4.3 Proof Test operation ..40
 4.3.1 Proof Test status ..42
4.4 Scheduling ..43
 4.4.1 Pop-up message ...44
4.5 History ...45
4.6 Reports ...46
 4.6.1 Viewing a report ..47
4.7 Removing a Reference Reflector49

Section 5: Service and Troubleshooting

5.1 Safety messages ...51
5.2 Troubleshooting ...52
5.3 Tank Spectrum ...53
Section 1 Introduction

The Rosemount 5900 Radar Level Gauge is designed with functionality that lets you proof test high alarms and verify correct product surface measurement. The 5900 allows you to combine continuous product level monitoring with proof testing at regular intervals. It is based on a dedicated Reference Reflector that introduces a radar echo at a predefined position in the tank.

Figure 1-1. The Rosemount 5900 can be equipped with an optional Reference Reflector that allows proof testing the gauge on a regular basis.
1.1 Section overview

This document is a supplement to the Rosemount 5900S Reference Manual (Document No. 00809-0100-5900).

The sections in this Reference Manual Supplement provide information on installing, operating, and maintaining the Rosemount 5900 Proof Test System. The sections are organized as follows:

Section 1: Introduction gives a brief introduction to the 5900 Proof Test function and the recommended installation procedure.

Section 2: Installation provides instructions on how to install the Reference Reflector on the 5900 with Parabolic Antenna and Array Antenna.

Section 3: Configuration contains instructions on how to calibrate and configure the 5900 Proof Test function.

Section 4: Operation provides instructions for how to use the proof test function.

Section 5: Service and Troubleshooting provides troubleshooting techniques for the most common operating problems.

1.2 Service support

For service support contact the nearest Emerson Process Management/Rosemount Tank Gauging representative. Contact information can be found on the web site www.rosemount-tg.com.
1.3 **Installation procedure**

Follow these steps for a proper installation of the Reference Reflector for Proof Testing a Rosemount 5900 Radar Level Gauge.

1. Review installation considerations.
 - See “Installation considerations” on page 6.

2. Mount the Proof Test Reference Reflector.
 - See “Installing the Reference Reflector for Parabolic Antenna” on page 7 and “Installing the Reference Reflector for Array Antenna” on page 18.

3. Wire the 5900\(^{(1)}\).

4. Ensure covers and cable gland/conduit connections are tight.

5. Configure the 5900 for proof testing.
 - See Section 3: Configuration of Reference Reflector

6. Verify operation.

\(\text{(1)}\) See the Rosemount 5900S Reference manual (Document No. 00809-0100-5900) or the Rosemount 5900C Reference manual (Document No. 00809-0100-5901)
Section 2 Installation

2.1 Overview

The information in this section covers installation of Reference Reflector for proof testing the Rosemount 5900 Radar Level Gauge.

2.2 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operation. Information that raises potential safety issues is indicated by a warning symbol (⚠️). Refer to the following safety messages before performing an operation preceded by this symbol.

⚠️ WARNING

Failure to follow safe installation and servicing guidelines could result in death or serious injury:
Make sure only qualified personnel perform the installation.
Use the equipment only as specified in this manual. Failure to do so may impair the protection provided by the equipment.
Do not perform any service other than those contained in this manual unless you are qualified.

High voltage that may be present on leads could cause electrical shock:
Avoid contact with leads and terminals.
Make sure the main power to the 2460 System Hub is off and the lines to any other external power source are disconnected or not powered while wiring the 2460.

Electrical shock could cause death or serious injury:
Use extreme caution when making contact with the leads and terminals.

⚠️ CAUTION

Handle the wire and assembly with care to avoid permanent bends.
2.3 Installation considerations

Before you start installing the Reference Reflector, ensure that the following items are considered in order to fulfill the installation requirements for the Reference Reflector at the desired position:

- Maximum product level in the tank
- High Alarm position
- Minimum / maximum distance between Gauge Reference Point and Reference Reflector

See “Tank Geometry - Parabolic Antenna” on page 9 and “Tank Geometry - Array Antenna” on page 20 for further information on tank geometry and position of the Reference Reflector.

Note!
The Reference Reflector for Array Antenna may need to be removed to allow product sampling through the Still-pipe.
2.4 Installing the Reference Reflector for Parabolic Antenna

The Reference Reflector is installed under the antenna. It is attached to a wire fixed to the Parabolic Antenna. The Reference Reflector introduces a radar echo that is used for proof testing the 5900 Radar Level Gauge. Proof testing can be performed without the need to open the tank.

2.4.1 Reference Reflector Kit

The Reference Reflector is delivered with all parts needed for proper installation on a Rosemount 5900 with Parabolic Antenna. The Reference Reflector kit includes the following parts:

- Wire assembly
- Weight assembly
- Reference Reflector
- Ring Clamping assembly

Figure 2-1. Wire and weight assembly
Figure 2.2. Reference Reflector

Figure 2.3. Clamping Ring

M6 cylinder nut
M6 screw
Clamping ring

Ø250 mm
Ø200 mm
Ø135 mm
Ø90 mm
2.4.2 Tank Geometry - Parabolic Antenna

Figure 2-4. Tank geometry for 5900 with Parabolic Antenna and Proof Test Reference Reflector.

1. Reference Reflector (RR). Maximum inclination 2.5°.
2. Weight
3. Clamping ring
4. Parabolic antenna

Note
Safety Instrumented System\(^{(1)}\) (SIS)

1. Decide position of SIL High Alarm.

2. Find a position for the Reference Reflector (RR) that fulfills the following requirements:
 a. Minimum 500 mm above SIL High Alarm Limit.
 b. Distance RR - Gauge Reference Point: 600 to 5000 mm.
 c. Minimum 500 mm to maximum product level.

Figure 2-5. Tank geometry for 5900 with Parabolic Antenna and Proof Test Reference Reflector in Safety Instrumented System (SIS).

1. SIL Surface Distance
2. SIL High Alarm Limit
3. Distance RR - Gauge Reference Point: 600 to 5000 mm
4. Minimum distance RR - SIL High Alarm = 500 mm
5. Reference Reflector (RR)

\(^{(1)}\) See the Rosemount 5900 and 2410 Safety Manual (Document No. 00809-0200-5100) for information on how to install and configure the 5900 Radar Level Gauge and 2410 Tank Hub in a Safety Instrumented System.
2.4.3 Installing the Reference Reflector

The length of the wire that holds the Reference Reflector needs to be calculated before the Reference Reflector can be installed in the tank. The wire must be long enough to allow the Reflector to be properly positioned in the tank including the weight that is attached under the Reflector.

⚠️ CAUTION

Handle the wire and assembly with care to avoid permanent bends.

1. Specify the position of the Reference Reflector (RR) and calculate the Reference Reflector Distance (see Figure 2-4 on page 9).

2. Choose the appropriate reflector size. As a result of the radar beam geometry, a smaller reflector can be used further away from the radar gauge. There are four different Reference Reflectors to choose from depending on the Reference Reflector Distance as shown in Table 2-1.

Table 2-1. Reference Reflector size for various distances

<table>
<thead>
<tr>
<th>Reference Reflector Distance (mm)</th>
<th>Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 ≤ RR Distance < 2000</td>
<td>250</td>
</tr>
<tr>
<td>2000 ≤ RR Distance < 3000</td>
<td>200</td>
</tr>
<tr>
<td>3000 ≤ RR Distance < 4000</td>
<td>135</td>
</tr>
<tr>
<td>4000 ≤ RR Distance < 5000</td>
<td>90</td>
</tr>
</tbody>
</table>

3. Mount the appropriate Reference Reflector on the weight.

4. Tighten the M12 nut to a torque value of 18 Nm.
5. Calculate the required Wire Distance. See "Wire Distance calculation" on page 15.

6. Feed the wire through the weight and the Reference Reflector (RR).

7. Position the weight so the calculated Wire Distance is obtained.

8. Tighten the two screws (size M6) to a torque value of 2.5 Nm.

9. Cut the wire. You may leave 0 to 150 mm of the wire below the weight.
10. Mount the clamping ring (see Figure 2-3 on page 8) on the Parabolic Antenna. Ensure that the Reference Reflector is directed towards the center of the tank as illustrated in Figure 2-4 on page 9.

11. Mount the M8 terminal (which holds the weight and Reference Reflector) on the clamping ring.

12. Tighten the M8 nut to the specified torque of 8 Nm.
13. Ensure that:
 - the Reference Reflector is correctly aligned towards the center of the tank
 - inclination of Reference Reflector is less than 2.5°.

Figure 2-6. Align the Reference Reflector
Wire Distance calculation

There are two different connections available for the Parabolic Antenna; the Welded and the Clamped versions. Since the vertical position of the flange will differ slightly for these two connections, you will have to use different formulas for calculating the proper Wire Distance in order to obtain the correct position (Reference Reflector Distance) of the Reference Reflector.

Figure 2-7. Wire Distance

1. Reference Reflector (RR)
2. Weight
Welded tank connection

Use the following formula to calculate the required Wire Distance for the welded connection:

\[\text{Wire Distance} = RR + Ga - W - 194 \text{ (mm)} \]

where

- \(W \) = see [Figure 2-8 on page 16](#)
- \(Ga \) = thickness of the flange gasket (see [Figure 2-8 on page 16](#))
- \(RR \) = Reference Reflector Distance (see [Figure 2-4 on page 9](#))

Figure 2-8. Welded connection

![Figure 2-8. Welded connection](image)
Clamped tank connection

Use the following formula to calculate the required Wire Distance for the clamped connection:

Wire Distance = RR + Ga + T - 243 (mm)

where

T = flange thickness (see Figure 2-9)
Ga = thickness of the flange gasket (see Figure 2-9)
RR = Reference Reflector Distance (see Figure 2-4 on page 9)
2.5 Installing the Reference Reflector for Array Antenna

2.5.1 Reference Reflector Kit

The Reflector is delivered with all parts needed for proper installation on a Rosemount 5900 with Array Antenna. The Reference Reflector kit includes the following parts:

- Wire assembly
- Weight assembly
- Reference Reflector
- Safety Wire
- Flexible Ring

Figure 2-10. Wire and weight assembly
Figure 2-11. Reference Reflector

Open space to allow hand dipping

Note!
The reflector may need to be removed for product sampling through the pipe.

Figure 2-12. Safety Wire

To secure the Reference Reflector during installation in Still-Pipe

Figure 2-13. Flexible Ring

The Flexible Ring provides an attachment point in the Still-Pipe for the wire and weight assembly
2.5.2 Tank Geometry - Array Antenna

Figure 2-14. Tank geometry for 5900 with Array Antenna fixed version and Proof Test Reference Reflector.

1. Array antenna
2. Flexible Ring
3. Bronze Rod
5. Weight

Note!
Figure 2-15. Tank geometry for 5900 with Array Antenna hatched version and Proof Test Reference Reflector.

1. Array antenna
2. Flexible Ring
3. Bronze Rod
5. Weight

Note!
Safety Instrumented System\(^{(1)}\) (SIS)

1. Decide position of SIL High Alarm.

2. Find a position for the Reference Reflector (RR) that fulfills the following requirements:
 a. Minimum 500 mm above SIL High Alarm Limit.
 b. Distance RR - Gauge Reference Point: see Figure 2-16 and Table 2-2.
 c. Minimum 500 mm to maximum product level.

![Figure 2-16. Tank geometry for 5900 with Array Antenna and Proof Test Reference Reflector in SIS system (SIL).](image)

Table 2-2. Tank geometry parameters for Array antenna in Safety Instrumented Systems

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SIL Surface Distance</td>
<td>4</td>
<td>Minimum distance RR - SIL High Alarm Limit: 500 mm</td>
</tr>
<tr>
<td>2</td>
<td>SIL High Alarm Limit</td>
<td>5</td>
<td>Reference Reflector (RR)</td>
</tr>
<tr>
<td>3</td>
<td>Distance RR - Gauge Reference Point. Array antenna 6 inch: 1100 to 8000 mm Array antenna 8 inch: 1400 to 8000 mm</td>
<td></td>
<td>Note! These requirements are applicable for both the fixed and hatched versions of the Array antenna.</td>
</tr>
</tbody>
</table>

\(^{(1)}\) See Rosemount 5900 and 2410 Safety Manual (Document No. 00809-0200-5100) for information on how to install and configure the 5900 Radar Level Gauge and 2410 Tank Hub in a Safety Instrumented System.
2.5.3 Installing the Reference Reflector

You need to calculate the length of the wire that holds the Reference Reflector before the Reference Reflector can be installed in the tank. The wire must be long enough to allow the Reflector to be properly positioned in the tank including the weight that is attached under the Reflector.

⚠️ CAUTION

Handle the wire and assembly with care to avoid permanent bends.

1. Specify the position of the Reference Reflector (RR).
2. Calculate the Reference Reflector Distance. This is the distance from the Gauge Reference Point to the Reference Reflector as illustrated in Figure 2-14 on page 20 and Figure 2-15 on page 21.
4. Tighten the M12 nut to a torque value of 18 Nm.
5. Calculate the Wire Distance as described in “Wire Distance calculation” on page 27.

6. Feed the wire through the weight and Reference Reflector (RR).

7. Position the weight to the correct Wire Distance.

8. Tighten the two screws. Torque=2.5 Nm.

9. Cut the wire 0 to 150 mm below the end of the weight.
10. Install the Flexible Ring at the top of the Still-pipe. The ring can be adjusted to fit a wide range of Still-Pipe inner diameters according to Table 2-3.

11. Ensure that the Flexible Ring fits tightly inside the pipe.

12. Tighten the M6 nut to the specified torque value of 5 Nm.

Table 2-3. The flexible ring fits a wide range of Still-pipe inner diameters

<table>
<thead>
<tr>
<th>Inner diameter (D)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6 inch pipe</td>
<td>8 inch pipe</td>
<td></td>
</tr>
<tr>
<td>154.1 - 162.7 mm</td>
<td>198.5 - 206.4 mm</td>
<td></td>
</tr>
</tbody>
</table>
13. Fasten one end of the Safety Wire to the Bronze Rod and the other end to the tank.

14. Lower the weight and reflector into the Still-pipe to the full length of the wire.

15. Put the wire into the rod attachment through the slot.

16. Lower the Bronze Rod until it stops as illustrated below.

17. Remove the Safety Wire from the Bronze Rod.
Wire Distance calculation

Use the following formulas to calculate the required Wire Distance.

Array Antenna hatch version:

Wire Distance\(=RR - Ga - 362\) (mm)

Array Antenna fix version:

Wire Distance\(=RR - 324\) (mm)

where

- \(Ga\) = thickness of the flange gasket
- \(RR\) = Reference Reflector Distance (see Figure 2-14 on page 20 and Figure 2-15 on page 21)
Section 3 Configuration of Reference Reflector

3.1 Overview

The information in this section covers configuration and calibration of the Reference Reflector for proof testing the Rosemount 5900 Radar Level Gauge.

3.2 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (⚠️). Refer to the following safety messages before performing an operation preceded by this symbol.

⚠️ WARNING

Failure to follow safe installation and servicing guidelines could result in death or serious injury:

Make sure only qualified personnel perform the installation.

Use the equipment only as specified in this manual. Failure to do so may impair the protection provided by the equipment.

Do not perform any service other than those contained in this manual unless you are qualified.
3.3 Configuration using TankMaster WinSetup

3.3.1 Introduction

The Rosemount 5900 is configured by using the TankMaster Winsetup configuration program. WinSetup supports standard configuration of the Rosemount 5900 Radar Level Gauge as well as configuration of the Reference Reflector for Proof Test applications.

See the Raptor System Configuration Manual (Document no. 300510EN) for more information on using the TankMaster WinSetup software to configure a Rosemount Tank Gauging system.

NOTE!
The Proof Test function requires software version 1.87 and higher.

Proof test features

The 5900 Proof Test function in TankMaster Winsetup includes the following functions:

- Configure proof test
- Perform proof test
- View proof test history
- Schedule proof tests

3.3.2 Considerations

The following requirements and recommendations must be considered when using the 5900 Proof Test function:

- **Do not** perform calibration of Proof Test function during activities in the tank, for example when it is filled or emptied.
- **Do not** perform calibration of Proof Test function during extreme environmental conditions.
- Proof Test calibration must be repeated whenever configuration of tank geometry parameters has been changed. This may for example include parameters such as Calibration Distance or Pipe Diameter.
- For Still-Pipes the slots must not be wider than one inch (1”)

3.3.3 Configuration procedure

The Proof Test function needs to be configured prior to any proof test can be performed. This means calibrating the Reference Reflector by specifying the actual position of the reflector and the nominal amplitude of the reflected radar signal. Configuration also includes setting up the approved amplitude range (Min./Max. Amplitude Factor) and allowed deviations from the calibrated reflector position (Tolerance).

Ensure that a standard configuration of the 5900 is performed prior to the Proof Test configuration.

To configure a Rosemount 5900 with Reference Reflector for Proof Test applications do the following:

1. Ensure that the TankMaster WinSetup program is up and running.
2. In the Winsetup workspace, click the right mouse button on the 5900 device icon and choose the Proof Test option.
3. The Proof Test window appears. It lets you perform Proof tests, view previous tests, and schedule future tests.
4. Click the Level Sensor Test button to open the *Level Sensor Test* window:

5. In case no previous Proof Test configuration has been performed, or if the Proof Test calibration has been reset, the status message “⚠ RR Not Calibrated” will be displayed and the *Start Proof Test* button will be disabled.

6. Click the **Configuration** button to open the *Proof Test Configuration* window.

Section 3: Configuration of Reference Reflector

April 2016

Manual Supplement

00809-0200-5900, Rev AA
7. The Proof Test Configuration window lets you specify calibration parameters for the Reference Reflector. It also lets you set up the approved amplitude range and approved deviations from the calibrated reflector position.

8. In the Calibrate Reference Reflector pane, enter the actual position of the Reference Reflector (RR) in the RR Distance field. The RR Distance value will be used by the 5900 as a starting point when searching for the Reference Reflector. A position between 0.5 m and 8.0 m below the Tank Reference Point is allowed depending on the antenna type that is used. See Section 2: Installation for more information.

9. Specify the desired Distance Tolerance value. This is the region around the specified RR Distance within which the 5900 searches for a radar echo when calibrating the Reference Reflector (see Figure 3-1 on page 37). The default value is 0.3 m.

10. Click the Calibrate button.

11. Click “Yes”. Now the 5900 starts searching for the Reference Reflector.
12. When the search is finished, the **Calibrate** window appears showing the distance to the Reference Reflector and the amplitude of the reflected radar signal.

![Calibrate window](image)

13. Verify that the found radar echo originates from the Reference Reflector and not from any other object in the tank. The measured Distance and Amplitude values will be used as reference values when future Proof Tests are performed.

14. For Safety Instrumented Systems (SIL) verify that the amplitude is within the following recommended range:
 - 5900 with Parabolic antenna: 600 to 1200 mV.
 - 5900 with Array antenna (Still-Pipe): 1000 to 3500 mV.

15. Click the Save button to store the current calibration.

![Save calibration](image)

16. In case the product surface is too close to the Reference Reflector during the calibration, a warning message will appear allowing you to choose whether to cancel or to save the calibration data. See **Section 2: Installation** for information on requirements for minimum distance between Reference Reflector and product surface.
17. If calibration failed you may consider the following:

- Check that the actual position of the Reference Reflector (RR) is within the search window given by the calibration parameters **RR Distance** and **Distance Tolerance**.
- Verify that the RR is horizontal within the specifications for maximum inclination (see “Tank Geometry - Parabolic Antenna” on page 9).
- Verify that there are no disturbing objects near the RR that may interfere.

18. Return to the *Proof Test Configuration* window and proceed with configuration of **Reference Reflector Settings**.

19. Normally, the default settings of **Min./Max. Amplitude Factors** and **Tolerance** can be used without any changes. Proof tests must be within these limits in order to be approved. If needed, these settings can be changed.

20. Verify that Reference Reflector Status is OK. RR Status will be OK as long as the actual distance (Echo Distance) and amplitude (Echo Amplitude) are within the specified tolerances as specified in the Reference Reflector Settings pane. Click the Apply button to store the parameters.

21. Specify the desired Default Test Time. This value will be used as the default value in the *Level Sensor Test* window. The actual test time can be changed when running the test.

22. If Reference Reflector Status is OK, click the OK button to close the *Proof Test Configuration* window. Now the 5900 is ready for Proof Testing.
Example

Table 3-1 shows an example of a Proof Test configuration for a 5900 Radar Level Gauge with Reference Reflector. Table 3-2 shows the actual distance and amplitude as measured by the 5900 gauge.

In the example, the measured distance to the Reference Reflector (Echo Distance) is 2.020 m. This is within the approved distance range as shown in Table 3-1. The amplitude of 450 mV (Echo Amplitude) is within the approved amplitude range. See also Figure 3-1 on page 37.

Table 3-1. Configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Amplitude Factor</td>
<td>0.25</td>
</tr>
<tr>
<td>Max. Amplitude Factor</td>
<td>2.5</td>
</tr>
<tr>
<td>Tolerance</td>
<td>0.06 m</td>
</tr>
<tr>
<td>Calibrated Amplitude</td>
<td>400 mV</td>
</tr>
<tr>
<td>Calibrated Distance</td>
<td>2.000 m</td>
</tr>
<tr>
<td>Approved amplitude</td>
<td>100 to 1000 mV</td>
</tr>
<tr>
<td>Approved distance</td>
<td>1.940 to 2.060 m</td>
</tr>
</tbody>
</table>

Table 3-2. Measurement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo Distance</td>
<td>2.020 m</td>
</tr>
<tr>
<td>Echo Amplitude</td>
<td>450 mV</td>
</tr>
</tbody>
</table>

Note

For Safety Instrumented Systems (SIL) the amplitude should be within the recommended range:
- 5900 with Parabolic antenna: 600 to 1200 mV.
- 5900 with Array antenna (Still-Pipe): 1000 to 3500 mV.
Figure 3-1. Proof Test Calibration

Table 3-3. Configuration parameters for a proof test setup

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated Amplitude</td>
<td>Amplitude of the measurement signal that was reflected by the Reference Reflector during calibration.</td>
</tr>
<tr>
<td>Calibrated Distance</td>
<td>Distance to the Reference Reflector measured by the gauge during calibration.</td>
</tr>
<tr>
<td>Distance Tolerance</td>
<td>The region around the specified RR Distance within which the 5900 searches for a radar echo when calibrating the Reference Reflector.</td>
</tr>
<tr>
<td>Approved Amplitude</td>
<td>Approved range of signal amplitudes during a proof test.</td>
</tr>
<tr>
<td>Min./Max. Amplitude</td>
<td>Minimum and maximum amplitude values that will be allowed during a proof test.</td>
</tr>
<tr>
<td>RR Distance</td>
<td>Distance from the Gauge Reference Point to the reference reflector (RR).</td>
</tr>
</tbody>
</table>
Section 4 Operation

Overview

This section contains information on the Light Emitting Diodes (LED) on the front of the Rosemount 2460 System Hub.

4.2 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (⚠️). Refer to the following safety messages before performing an operation preceded by this symbol.

⚠️ WARNING

Failure to follow safe installation and servicing guidelines could result in death or serious injury:

Make sure only qualified personnel perform the installation.

Use the equipment only as specified in this manual. Failure to do so may impair the protection provided by the equipment.

Do not perform any service other than those contained in this manual unless you are qualified.
4.3 **Proof Test operation**

Prior to running a Proof Test you will have to ensure that the Proof Test function is properly calibrated and configured as described in Section 3: Configuration of Reference Reflector.

To run a proof test for a Rosemount 5900 with Reference Reflector do the following:

1. Ensure that the TankMaster WinSetup program is up and running.

2. In the Winsetup workspace, click the right mouse button on the 5900 device icon and choose the **Proof Test** option.

3. The **Proof Test** window appears. It lets you perform various tasks such as performing Proof tests, viewing Proof Test history, and schedule future Proof Tests.

4. To perform a proof test of the Rosemount 5900 Radar Level Gauge; in the Level Sensor (ATG) pane click the **Test** button to open the Level Sensor Test window.
5. The *Level Sensor Test* window lets you start a Proof Test if a proof test configuration is performed. In case the **Start Proof Test** button is disabled you will have to make a calibration of the Reference Reflector first. See Section 3: Configuration of Reference Reflector for more information. The following measurement data is presented:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Distance from the Zero Reference Point to the product surface or the Reference Reflector, respectively</td>
</tr>
<tr>
<td>Ullage</td>
<td>Distance from the Gauge Reference Point to the product surface</td>
</tr>
<tr>
<td>Distance</td>
<td>Distance from the Gauge Reference Point to the Reference Reflector</td>
</tr>
<tr>
<td>Amplitude</td>
<td>Amplitude of the radar signal reflected by the product surface or the Reference Reflector, respectively</td>
</tr>
</tbody>
</table>

6. Specify duration of the test in the **Proof Test Time** field. It can be set to any value between 30 seconds and 60 minutes. The default value is 120 seconds.

7. Enter a **signature**. This is for identification of the person who is responsible for the proof test.

8. Ensure that device status is ok. See different status messages that may appear according to Table 4-1 on page 4-42.

9. Click the **Start Proof Test** button to perform the test for the specified Proof Test Time.
10. Note the Warning that appears when starting the Proof Test. Ensure that the necessary actions are taken in order to maintain safety during the test.

11. When the proof test is finished you will have to fill in a proof test form in order to create a report (see “Proof Test Report” on page 48). A report in PDF format will be created automatically and will be available from the Proof Test History window. See “Viewing a report” on page 47.

4.3.1 Proof Test status

Table 4-1. Proof Test status options

<table>
<thead>
<tr>
<th>Status options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof Test Active</td>
</tr>
<tr>
<td>Test Finished</td>
</tr>
<tr>
<td>Test Ended by User</td>
</tr>
<tr>
<td>RR Not Found</td>
</tr>
<tr>
<td>RR not Calibrated</td>
</tr>
<tr>
<td>Level Surface Too Close</td>
</tr>
<tr>
<td>Proof Test Status not Available</td>
</tr>
</tbody>
</table>

4.4 Scheduling

You may specify a scheduling interval in order to be reminded when it is time for a new Proof Test. There are two reminder options available:

- e-mail
- pop-up window

To specify scheduling options and reminder settings:

1. Open the Proof Test window.

2. Click the Scheduling button.

3. Enter the desired date, time, and scheduling interval.

4. Choose one or both of the reminder options; Pop-up message and E-mail.

5. The More button opens the Email Details window which lets you type a subject line and a message text for the email reminder.
4.4.1 Pop-up message

The *Reminder* pop-up message will appear at the scheduled time.

Figure 4-1. Pop-up message with reminder to perform Proof Test

In case you choose to accept, you will be directed to the *Proof Test* window in order to start the *Proof Test* procedure as described in Section 4: *Proof Test operation* on page 40.

You may choose to skip the test altogether by clicking the “Skip This Test” button, or you may let WinSetup remind you later by choosing one of the options in the Remind In drop-down list: 1 Day, 1 Week, or 1 Month.

Figure 4-2. If Proof Test is skipped you may choose to be reminded later
4.5 History

The Proof Test History function lets you view previously performed proof tests for a device. You can also view tests that were interrupted resulting in no report creation.

Figure 4-3. Proof Test History

Using back and forward buttons, or selecting the test date, you may navigate through the tests. The following information about test parameters will be shown:

- RR Status
- Proof Test Status
- Echo Distance
- Echo Amplitudes
- Date
- Performed By
- Approved By
- Note

Test reports are available by pressing the Show Test Report button, see “Viewing a report” on page 47.
4.6 Reports

When a proof test is finished you will have to fill in a proof test form in order to create a report.

1. When prompted, fill in the proof test report form.

2. Click the Save button to store the proof test form.

3. A report in PDF format will be created automatically. It will be available from the Proof Test History window. See “Viewing a report” on page 47.
4.6.1 Viewing a report

Reports in Adobe Acrobat pdf format are available via the Proof Test History window.

To view a report:

1. In TankMaster WinSetup, click the 5900 icon and choose the Proof Test option to open the Proof Test window.
2. In the Level Sensor (ATG) pane, click the History button.
3. In the Proof Test History window, choose the desired test.

4. Click the Show Test Report button. Acrobat Reader opens and displays a report for the selected proof test as illustrated in Figure 4-4 on page 48.
The report includes device information and device status. There is also information regarding the result of the proof test, for example whether alarms did sound or if emergency shutdown was activated.

Figure 4-4. Proof Test Report
4.7 Removing a Reference Reflector

There may be a situation when you would like to remove the Reference Reflector and disable the Proof Test function. Then you can use the Reset function to remove all Proof Test calibration data. This ensures that there is no data stored in the 5900 database that may interfere with the current measurements.

1. Open the Proof Test window and click the Level Sensor button.
2. In the Level Sensor Test window click the Configuration button.
3. In the Proof Test Configuration window, click the Reset button to open the Reset window.
4. The Reset window shows the current Reference Reflector calibration data for the 5900 Radar Level Gauge.
5. Click the Reset button to clear all calibration data. Status will be changed to Not Calibrated.
5.1 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (⚠️). Refer to the following safety messages before performing an operation preceded by this symbol.

⚠️ WARNING

Failure to follow safe installation and servicing guidelines could result in death or serious injury:
Make sure only qualified personnel perform the installation.
Use the equipment only as specified in this manual. Failure to do so may impair the protection provided by the equipment.
Do not perform any service other than those contained in this manual unless you are qualified.

High voltage that may be present on leads could cause electrical shock:
Avoid contact with leads and terminals.
Make sure the main power to the 2410 Tank Hub is off and the lines to any other external power source are disconnected or not powered while wiring the 2460.
5.2 Troubleshooting

Table 5-1 provides summarized troubleshooting suggestions for the most common operating problems.

Table 5-1. Troubleshooting chart

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
</table>
| Reference Reflector (RR) not found | Incorrect configuration | Check RR Distance
Check Distance Tolerance |
| RR inclination too high | | Adjust the RR and make sure that the RR is horizontal within specified limit see Section 2: Installation. |
| The Reference Reflector is within the Hold Off region | | Check that the reflector is installed according to the instructions in Section 2: Installation. Ensure that it is installed according to the requirements for minimum Reference Reflector Distance. |
| Wrong search window due to using incorrect reference system | | Ensure that distances are measured in the correct reference system as described in “Tank Geometry - Parabolic Antenna” on page 9 and “Tank Geometry - Array Antenna” on page 20. Note for example, that the Gauge Reference Point is located at the flange of the tank nozzle. |
| RR Calibration could not be performed | | See “RR calibration could not be performed”. |
| Proof Test could not be started | Product surface too close to the RR | Make sure that the product surface is below the maximum level that is allowed for RR calibration, see Section 2: Installation. |
| Proof Test was aborted unexpectedly | | |
| RR calibration could not be performed | Write protection is enabled | Disable write protection |
| Reference Reflector does not appear in the Tank Scan\(^1\) window | Tank Signal Mean (TSM) function (near-zone improvement) filters away the Reference Reflector | Enable Peak Labels by checking the box |

\(^1\) See “Tank Spectrum” on page 53
5.3 Tank Spectrum

The Tank Scan function is a useful tool to verify that the 5900 is able to locate the product surface and the Reference Reflector. It lets you locate possible disturbing objects, and you may also check that amplitude thresholds are properly set so that the Reference Reflector echo is not filtered away.

Figure 5-1. Tank spectrum with radar echoes from Reference Reflector and product surface.
To open the Tank Scan window:

1. In the WinSetup workspace, click the right mouse button on the device icon.

2. Choose the Properties option.

3. Select the Advanced tab and click the Tank Scan button.
Index

A
Amplitude Factors ... 35

C
Calibrate button ... 33
Calibrate window ... 34
Clamped tank connection 17
Clamping ring ... 13
Configuration ... 29

D
Distance Tolerance ... 33, 35

F
Flexible Ring .. 25

H
History .. 45

I
Installation .. 5
Introduction .. 1

L
Level Sensor Test window 32

M
Max. Amplitude Factor 35
Min. Amplitude Factor 35

O
Operation ... 39

P
Proof Test Configuration window 33

R
Reference Reflector ... 23
Parabolic Antenna .. 11
Reference Reflector kit 7
Reminder ... 43
RR Distance ... 33, 35

S
Safety Wire ... 26
Scheduling .. 43
Service Support ... 2
Support .. 2

T
Tank Geometry
 Array Antenna ... 20
 Parabolic Antenna 9
Tolerance ... 35

W
Welded tank connection 16
Wire Distance ... 12, 15
Wire Distance Calculation 15, 27
 clamped tank connection 17
 Welded tank connection 16
Manual Supplement
00809-0200-5900, Rev AA
April 2016

Global Headquarters and Europe Regional Office
Tank Gauging
Emerson Process Management
Box 150
(Visiting address: Layoutvägen 1)
SE-435 23 Mölnlycke
+46 31 337 00 00
+46 31 25 30 22
sales.rtg@emerson.com

North America Regional Office
Tank Gauging
Emerson Process Management
6005 Rogerdale Road
Mail Stop NC 136
Houston TX 77072
United States
+1 281 988 4000 or +1 800 722 2865
sales.rtg.hou@emerson.com

Latin America Regional Office
Emerson Process Management
1300 Concord Terrace, Suite 400
Sunrise, FL 33323, USA
+1 954 846 5030
+1 954 846 5121
RFQ.RMD-RCC@EmersonProcess.com

Asia Pacific Regional Office
Emerson Process Management Asia Pacific Pte Ltd
1 Pandan Crescent
Singapore 128461
+65 6777 8211
+65 6777 0947
Specialist-OneLevel.RMT-AP@emerson.com

Middle East and Africa Regional Office
Tank Gauging
Emerson Process Management
P.O Box 20048
Manama
Bahrain
+973 1722 6610
+973 1722 7771
rtgmea.sales@emerson.com

Linkedin.com/company/Emerson-Process-Management
Twitter.com/Rosemount_News
Facebook.com/Rosemount
Youtube.com/user/RosemountMeasurement
Google.com/+RosemountMeasurement

Standard Terms and Conditions of Sale can be found at:
The Emerson logo is a trademark and service mark of Emerson Electric Co.
Rosemount and Rosemount logotype are registered trademarks of Rosemount Inc.
All other marks are the property of their respective owners.
© 2016 Rosemount Inc. All rights reserved.