Replacement and Calibration of Rosemount 2120 Electronic Cassettes
NOTICE

WARNING

Failure to follow these installation guidelines could result in death or serious injury

- The Rosemount 2120 is a liquid level switch. It must be installed, connected, commissioned, operated, and maintained by suitably qualified personnel only, observing any national and local requirements that may apply
- Ensure the wiring is suitable for the electrical current and the insulation is suitable for the voltage, temperature, and environment
- Use the equipment only as specified. Failure to do so may impair the protection provided by the equipment
- Any substitution of non-recognized parts may jeopardize safety and is under no circumstances allowed

Explosions could result in death or serious injury

- Installation of the 2120 in a hazardous environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Please review the Product Certifications section for any restrictions associated with a safe installation
- Verify that the operating atmosphere of the 2120 is consistent with the appropriate hazardous locations certifications

External surface may be hot

- Care must be taken to avoid possible burns

Process leaks could result in death or serious injury

- Install and tighten process connectors before applying pressure
- Do not attempt to loosen or remove process connectors while the 2120 is in service

Electrical shock could cause death or serious injury

- If the liquid level switch is installed in a high voltage environment and a fault condition or installation error occurs, high voltage may be present on leads and terminals
- Use extreme caution when making contact with the leads and terminals
- Make sure that power to the 2120 is off while making connections
Replacement and calibration of electronic cassettes

When replacing a damaged or faulty cassette, it is necessary to calibrate the replacement cassette to the operating frequency of the fork assembly.

Replacement sequence

If this replacement is taking place in a hazardous area, only qualified personnel should perform the replacement. All work in hazardous areas must be carried out in accordance to national and local codes of practice. Refer to the Rosemount 2120 manual (00809-0100-4030) for product certifications and safety instructions for specific hazardous area installations.

Calibration of this device is complex and it may take several attempts before calibration is successful.

On Intrinsically Safe (I.S.) approved versions of the 2120, it is recommended that replacement and calibration be performed in a non-hazardous (safe) area.

Note

- In I.S. applications, NAMUR cassettes can only be replaced with NAMUR cassettes, and 8/16 mA cassettes can only be replaced by 8/16 mA cassettes.
- Non-I.S. cassettes can be interchanged with other non-I.S. cassettes, but the new label must be fitted and the original part number transferred to the new label (see “Electrical installation” on page 7 for connections to the electronic cassettes).
- Before starting the replacement and calibration procedure, ensure that any controlled process will not be adversely affected.

To replace the cassette, do the following:

1. Isolate and disconnect the power to the Rosemount 2120, and insulate the ends of the wires. On a 2120 with a relay cassette, there may be more than one power source.
2. Remove the cover and disconnect the wires, noting any connections (Figure 1) and the exact mode switch position (Figure 2) on the cassette to be replaced.
3. Remove and retain the two fixing screws from the base of the cassette and unplug the cassette.
4. Plug in the replacement cassette, refit the screws, reconnect the wires, and set the mode switch to “Wet On” with a one second delay (Figure 3).
5. Reconnect the power to the 2120.
6. Proceed to “Calibration sequence” on page 5.

Figure 1. Top-down view of example cassette inside the housing

A. LED
B. Mode Switch and Time Delay
Figure 2. Mode switch and setting on the existing cassette

This is an example of how the existing cassette may look. Here, the switch is set to “Dry On” with a one second delay. Take note of the actual setting.

SETTING IS: ___________________________

Figure 3. Mode switch setting on the replacement cassette

Set the mode switch of the new cassette to “Wet On” with a one second delay.
Calibration sequence

This section describes what is required for calibration. Calibration sequence steps 3 to 13 are *time dependent* and must be carried out within the noted times. The purpose of the time dependency and switching sequence is to prevent an accidental calibration from occurring.

To calibrate the cassette, do the following:

1. Ensure that the forks are dry, and the mode switch is set to “Wet On” with a one second time delay (*Figure 3*).
2. Check that the LED is flashing at a rate of one flash per second.
 - If it is on continuously, proceed to step 8.
3. Apply magnet to the test-point (as shown on *page 6*).
4. After a one second delay, the LED will be lit continuously.
5. Within one second, rotate the mode switch two steps clockwise.
6. After a two second delay, the LED will go out.
7. Within three seconds, rotate the mode switch two steps counter-clockwise.
 - Proceed to step 13.
8. Apply magnet to test point (as shown on *page 6*).
9. After a one second delay, the LED will flash at a rate of one flash per second.
10. Within one second, rotate the mode switch two steps clockwise.
11. After a two second delay, the LED will go out (stop flashing).
12. Within three seconds, rotate the mode switch two steps counter-clockwise.
13. After a two second delay, the LED should flash twice per second.
14. If the LED is flashing twice per second, the calibration has occurred correctly.
 - Remove the magnet from the test-point. After a one second delay, the unit will return to normal operation. Proceed to step 17.
15. If the LED is flashing once per second or it is on continuously, the calibration has failed. Remove the magnet from the test-point, wait ten seconds, and then repeat from step 2.
16. If the LED stays off after the two second delay of step 13, the sensor is not working correctly. Check that the sensor forks are clean and dry. Also, verify there is nothing jamming or touching the sensor. If no fault is found with the sensor, the entire unit should be returned for repair.
17. Set the mode switch to the original setting noted in *Figure 2* and wait five seconds.
18. Replace the cover and check that the system works.
Figure 4. Magnetic test point (metal housing)

Figure 5. Magnetic test point (glass-filled nylon housing)
Electrical installation

- Before use, check that suitable cable glands and blanking plugs are fitted and fully tightened.
- Isolate supply before connecting the switch or removing the electronics.
- The Protective Earth (PE) terminal must be connected to an external earthing system.

Direct load switching electronics cassette (two-wire, red label)

<table>
<thead>
<tr>
<th>OPERATION MODE</th>
<th>Direct Load Switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry On Mode</td>
<td>0.3</td>
</tr>
<tr>
<td>Wet</td>
<td>3</td>
</tr>
<tr>
<td>Wet On Mode</td>
<td>30</td>
</tr>
</tbody>
</table>

WARNING

Isolate Supply Before Removing

High level Dry = ON

LED on continuously

Low level Wet = ON

LED flashes each second

High level Dry = ON

LED on continuously

Low level Wet = ON

LED flashes each second

Specifications

- **R** = External load (must be fitted)
- **U** = 20 - 264 V ~ (ac) (50/60Hz)
- **I_{OFF}** < 4 mA at 20 °C (24 - 230 Vac)
- **I_{OFF}** < 6 mA at -40 to 80 °C (20 - 264 Vac)
- **I_L** = 20 - 500 mA
- **I_{PK}** = 5 A, 40 ms (inrush)

High level Dry = ON

LED on continuously

Low level Wet = ON

LED flashes each second

Specifications

- **R** = External load (must be fitted)
- **U** = 20 - 264 V ~ (ac) (50/60Hz)
- **I_{OFF}** < 4 mA at 20 °C (24 - 230 Vac)
- **I_{OFF}** < 6 mA at -40 to 80 °C (20 - 264 Vac)
- **I_L** = 20 - 500 mA
- **I_{PK}** = 5 A, 40 ms (inrush)
PNP/PLC electronics cassette (three-wire, yellow label)

OPERATION MODE

<table>
<thead>
<tr>
<th>Dry On Mode</th>
<th>Dry On Wet</th>
<th>Wet On Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>Wet</td>
<td>Wet</td>
</tr>
<tr>
<td>0.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

PLC/PNP

Isolate Supply Before Removing

High level Dry = ON

- **High level Dry = ON**
 - **Dry On Mode**
 - Wired as dry contact
 - **Dry On Wet**
 - Wired as wet contact
 - **Wet On Mode**
 - Wired as wet contact

Low level Wet = ON

- **Low level Wet = ON**
 - **Dry On Mode**
 - Wired as dry contact
 - **Dry On Wet**
 - Wired as wet contact
 - **Wet On Mode**
 - Wired as wet contact

LED on continuously

LED flashes each second

LED on continuously

LED flashes each second

PLC (positive input)

PNP dc

- **LED on continuously**
- **LED flashes each second**

U = 20 - 60 V (dc)

- **I < 4 mA + I_L**

I_L (MAX) = 0 - 500 mA

- **I_PK = 5 A, 40 ms (inrush)**

- **U_OUT(ON) = U - 2.5 Vac (20 °C)**
- **U_OUT(ON) = U - 2.75 Vac (-40 to 80 °C)**

- **I_L (OFF) < 100 μA**

- **Fuse 1A(T)**

- **(Ground) PE**
Relay output electronics cassette (DPCO, green label)

Warning

Operation Mode

<table>
<thead>
<tr>
<th>NC</th>
<th>C</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

High level Dry = ON

- LED on continuously
- **Seconds Delay**
 - 0.3
 - 1
 - 3
 - 10
 - 30

Low level Wet = ON

- LED flashes each second
- **Seconds Delay**
 - 0.3
 - 1
 - 3
 - 10
 - 30

Resitive Load

<table>
<thead>
<tr>
<th>(\cos \phi)</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L/R)</td>
<td>0 ms (50/60 Hz)</td>
</tr>
<tr>
<td>(I_{\text{Max}})</td>
<td>5 A</td>
</tr>
<tr>
<td>(U_{\text{Max}})</td>
<td>250 V</td>
</tr>
<tr>
<td>(P_{\text{Max}})</td>
<td>1250 VA</td>
</tr>
<tr>
<td>(I_{\text{Max}})</td>
<td>6 mA</td>
</tr>
<tr>
<td>(U_{\text{Max}})</td>
<td>60 V</td>
</tr>
<tr>
<td>(P_{\text{Max}})</td>
<td>240 W</td>
</tr>
</tbody>
</table>

Inductive Load

<table>
<thead>
<tr>
<th>(\cos \phi)</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L/R)</td>
<td>7 ms</td>
</tr>
<tr>
<td>(I_{\text{Max}})</td>
<td>3.5 A</td>
</tr>
<tr>
<td>(U_{\text{Max}})</td>
<td>250 V</td>
</tr>
<tr>
<td>(P_{\text{Max}})</td>
<td>875 VA</td>
</tr>
<tr>
<td>(I_{\text{Max}})</td>
<td>6 mA</td>
</tr>
<tr>
<td>(U_{\text{Max}})</td>
<td>30 V</td>
</tr>
<tr>
<td>(P_{\text{Max}})</td>
<td>170 W</td>
</tr>
</tbody>
</table>

Electrical Specifications

- Resistive Load:
 - \(\cos \phi = 1 \)
 - \(U_{\text{Max}} = 20 \ldots 264 \text{ V} \) (ac)
 - \(I_{\text{Max}} = 6 \text{ mA} \)
 - \(U_{\text{Max}} = 20 \ldots 60 \text{ V} \) (dc)
- Inductive Load:
 - \(\cos \phi = 0.4 \)
 - \(U_{\text{Max}} = 250 \text{ V} \)
 - \(P_{\text{Max}} = 875 \text{ VA} \)

Isolate Supply Before Removing Warning

- Resitive Load:
 - \(U_{\text{Max}} = 30 \text{ V} \)
 - \(P_{\text{Max}} = 240 \text{ W} \)
- Inductive Load:
 - \(U_{\text{Max}} = 30 \text{ V} \)
 - \(P_{\text{Max}} = 170 \text{ W} \)
NAMUR electronics cassette (light blue label)

Note

- This cassette is suitable for Intrinsically Safe applications and requires a certified isolating barrier. See the Rosemount 2120 Reference Manual (00809-0100-4030) for Intrinsically Safe approvals.
- This electronics cassette is also suitable for non-hazardous (safe) area applications. It can only be interchanged with the 8/16 mA cassette.
- Do not exceed 8 Vdc.
8/16 mA electronics cassette (dark blue label)

Note
- This cassette is suitable for Intrinsically Safe applications and requires a certified isolating barrier. See the Rosemount 2120 Reference Manual (00809-0100-4030) for Intrinsically Safe approvals
- This cassette is also suitable for non-hazardous (safe) area applications. It can only be interchanged with a NAMUR cassette

High level Dry = ON

<table>
<thead>
<tr>
<th>Seconds Delay</th>
<th>Dry On</th>
<th>Wet On</th>
<th>Dry On Mode</th>
<th>Wet On Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

LED on continuously

Low level Wet = ON

<table>
<thead>
<tr>
<th>Seconds Delay</th>
<th>Dry On</th>
<th>Wet On</th>
<th>Dry On Mode</th>
<th>Wet On Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

LED on continuously

Operation Mode

- Dry On Wet On
- Seconds Delay
 - 0.3
 - 1
 - 3
 - 10
 - 30

- Drives 4-20 mA Analog Input
- LED on continuously
- LED flashes each second

8/16 mA

- U = 11 - 30 V (dc)
- $I_{ON} = 15 ... 17$ mA
- $I_{OFF} = 7.5 ... 8.5$ mA

A certified intrinsically safe barrier must be used to meet IS requirements.
Troubleshooting

If there is a malfunction, see Table 1 for information on possible causes.

Table 1. Troubleshooting chart

<table>
<thead>
<tr>
<th>Fault</th>
<th>Symptom/Indication</th>
<th>Action/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not switch</td>
<td>No LED; no power</td>
<td>Check the power supply; (check load on direct load switching electronics model)</td>
</tr>
<tr>
<td></td>
<td>LED flashing</td>
<td>See LED indication</td>
</tr>
<tr>
<td></td>
<td>Fork is damaged</td>
<td>Replace the 2120</td>
</tr>
<tr>
<td></td>
<td>Thick encrustation on the fork</td>
<td>Clean the fork with care</td>
</tr>
<tr>
<td></td>
<td>5 second delay when changing mode/delay</td>
<td>This is normal – wait 5 seconds</td>
</tr>
<tr>
<td>Incorrect switching</td>
<td>Dry = On, Wet = On set incorrectly</td>
<td>Set the correct mode on the electronics cassette</td>
</tr>
<tr>
<td>Faulty switching</td>
<td>Turbulence</td>
<td>Set a longer switching time delay</td>
</tr>
<tr>
<td></td>
<td>Excessive electrical noise</td>
<td>Suppress the cause of the interference</td>
</tr>
<tr>
<td></td>
<td>Cassette has been fitted from another Rosemount 2120</td>
<td>Fit the factory supplied cassette (page 3) and then calibrate (page 5)</td>
</tr>
</tbody>
</table>

LED indication

When the LED is red and flashing, it indicates the 2120 may be uncalibrated, successfully calibrated, has an electrical load problem, or has an internal PCB fault. See Table 2 for further information.

Table 2. LED flash rate

<table>
<thead>
<tr>
<th>LED Flash Rate</th>
<th>Switch Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>Output state is on</td>
</tr>
<tr>
<td>1 every second</td>
<td>Output state is off</td>
</tr>
<tr>
<td>1 every 2 seconds</td>
<td>Uncalibrated – see “Calibration sequence” on page 5</td>
</tr>
<tr>
<td>1 every 4 seconds</td>
<td>Load fault; load current too high; load short circuit</td>
</tr>
<tr>
<td>2 times every second</td>
<td>Indication of successful calibration</td>
</tr>
<tr>
<td>3 times every second</td>
<td>Internal PCB fault (microprocessor, ROM, or RAM)</td>
</tr>
<tr>
<td>Off</td>
<td>Problem (e.g. supply)</td>
</tr>
</tbody>
</table>