Multi-Port Actuator
WARNING:
Use caution when working on, with, or around valves and actuators. High pressures, forces, voltages, and flammable media can be present.

WARNING
Read this manual in its entirety before installing, operating, or performing maintenance on the MPA valve actuator.

WARNING
Failure to follow instructions for proper electrical wiring, storage, setup, and maintenance may cause serious injury, damage equipment, or void the warranty. Refer to Manual E796 for instructions on storage, electrical hook-up, and maintenance.

Ensure that the installation is carried out in accordance with EN 60079-14 and IEC 60079-14.

Regulatory information:

II 2GD
EEx d IIB T4 or EEx d IIB 120 degrees C (T4)
Tamb-20degrees C to +60 degrees C

Revision N

Copyright © 2013
Emerson Process Management
All rights reserved.

Emerson Process Management
Valve Actuation LLC
13840 Pike Road
1-800-679-1561
(281) 499-1561 FAX (281) 499-8445
Table of Contents

Section 1: Introduction .. 1

Section 2: Features ... 2

Section 3: Mechanical and Electrical Installation 5

Section 4: Wiring ... 6

4.1 Power Wiring .. 6
4.2 Network Wiring .. 6
4.3 Monitor Relay Wiring ... 6
4.4 Local ESD Wiring (Emergency Shutdown) .. 6
4.5 Optional Remote Display Module (RDM) Wiring .. 7

Section 5: Local Display Module ... 8

5.1 Description ... 8
5.2 Operation ... 9
5.3 Local Operation ... 9
5.4 Operational Display ... 9
5.5 Display Blanking .. 10
5.6 Alarms Display .. 10

Section 6: Field Setup Using MPA Config Software 12

6.1 CommSetUp ... 12
6.2 User Setup Menus ... 13
6.3 Selecting New Home Port (HP command using Control Knob setup)........... 14
6.4 Home Port LED Function .. 15
6.5 Home Port Calibration (HC command using Control Knob setup) 15
6.6 Factory SetUp Menus .. 16
6.7 Motor Type ... 16
6.8 Control Screen .. 18

Section 7: Field Setup Using Local Controls 20

7.1 Alarm History Display... 20
7.2 Setup Mode Display Sequence ... 20

Section 8: Field Diagnostics .. 23

8.1 Fd Fault Codes ... 23

Section 9: Remote Network Control 25

9.1 Modbus RTU .. 25
9.2 Foundation Fieldbus (FF) .. 27
9.3 Profinet IO Redundant Networks with Redcom ... 29
9.4 DeviceNet .. 30
Appendix A: EC Declaration of Conformity Certificate 31

Appendix B: Wiring Diagrams 32
 B.1 Three Phase Power .. 32
 B.2 Single Phase Power ... 33
 B.3 24 VDC Power .. 34
Section 1: Introduction

The Multi-Port Actuator is a single turn actuator for control of multi-port flow selectors (MPFS) with 3 to 8 ports. A typical application is oil or gas well selection for well production testing as shown in Figure 1. Typically the MPA is the actuator of a Multi-Port Flow Selector as shown in Figure 2. There are applications in other processes where control of multi-port valves is required.

Figure 1 Typical Well Test Application

![Figure 1](image1.png)

Figure 2 MPA mounted on 6”x16” MPFS

![Figure 2](image2.png)
Section 2: Features

The actuator features several assemblies as shown in Figure 3. Unique features of the actuator are listed below.

- **Figure 3 MPA Features**

Figure 3 shows the actuator with several components highlighted:

- **Low Voltage Interfaces between CPU and TBM**
- **Electrical Enclosure with Motor Starter, Control Transformer, DC Power Supplies, Power Entry, Termination Panel, User Wiring, I/O Interfaces, Torque Encoder**
- **Motor (not shown)**
- **Integral Disconnect**
- **BETTIS 3000 Ft-lb Gearbox Geared for 1.5 RPM**
- **Position Encoder Coupling to MPFS Stem**
- **Local Display Module (LDM) with Display & Status LEDs, Selector & Control Knobs, CPU Module, Network Communications, Position Encoder**

Key Features:

- **MPA uses Bettis’s heavy duty gearbox with capacity of 3000’ lbs Threaded Valve Stem**
 - Wide range of motors available for any voltage and torque
- **Configurable for multi-port flow selectors from 3 to 8 ports**
 - Any port may be selected as home port and any port(s) may be skipped
 - Actuator calibrated at factory for exact match to alignment of flow selector ports
 - Calibration parameters stored in nonvolatile memory and available to DCS
- **12-bit magnetic encoder coupled directly to valve stem for precision position feedback**
 - Provides position measurement resolution of 0.088 degrees
- **BETTIS’s exclusive solid-state motor starter and control software provides precise positioning of flow selector within +1 degree of selected port**
- **High performance microcontroller updates motor control output every 4mS for precision motor control**
- **12-bit magnetic encoder coupled directly to torque pinion for torque feedback**
 - Provides torque measurement resolution of 0.146% of full torque
• MPA supports all network protocols available with all other Bettis actuators
 — Modbus RS485 Bus or E>Net ring available
 — Profibus Redundancy with Redcom
 — Foundation Fieldbus
 — DeviceNet
 — Ethernet Modbus TCP/IP
• I/O and alarm monitoring include:
 — Integral circuit breaker/disconnect
 — Motor overload and motor thermal
 — Loss of control voltage
 — Encoder failure
 — Stall detection and alarming (detects mechanical faults)
 — 3-Phase monitoring and phase correction to insure correct motor rotation
 — ESD to send selector to home port (also goes to home port on fault)
 — Monitor relay for hardwired relay contact status on fault
• Four models support five 8-port MPFS (Also see motor type, Table 4)

Table 1. Four models support five 8-port MPFS

<table>
<thead>
<tr>
<th>Model</th>
<th>MPFS</th>
<th>Capacity</th>
<th>RPM</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lb/Ft</td>
<td>Nm</td>
<td>1Ph</td>
</tr>
<tr>
<td>MPA 150</td>
<td>2x4</td>
<td>150</td>
<td>203</td>
<td>1.0</td>
</tr>
<tr>
<td>MPA 650</td>
<td>3x6</td>
<td>650</td>
<td>881</td>
<td>0.7</td>
</tr>
<tr>
<td>MPA 800</td>
<td>4x8 & 4x10</td>
<td>800</td>
<td>1085</td>
<td>0.6</td>
</tr>
<tr>
<td>MPA1500</td>
<td>6x16</td>
<td>1500</td>
<td>2034</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Note: Accuracy based on worst case tests at 38% of maximum torque.

• MPA includes local display module (LDM) standard
 — Uses rugged, high visibility LED display for port number, torque, and alarms (also displays setup menus and setup parameters)
 — Multiple color LEDs display
 — Port position within 1° of port
 — Port position within 2° of port
 — Motor running
 — Over torque
 — Position within 0.25° of home port
 — Local mode
 — Off mode | Combined detection logic for two selector switches
 — Remote mode |
 — Includes Local Off Remote selector switch
 — Local control knob for Port selection and Jog control when enabled by User
Section 2: Features

Remote display module (RDM) option available

- RDM displays identical information and performs identical control as LDM
- BETTIS's patented combined switch logic allows detection of selector switch position on LDM and RDM
- Allows remote control up to 4,000 feet (1,220 meters) away
- Alarming includes loss of communication with RDM

Figure 5 MPA with Remote Display Module (RDM)
Section 3: Mechanical and Electrical Installation

Do not connect power until you have gone through the following checklist

1. Does the information given on the nameplate correspond with the application?
2. Have all wire terminations and the equipotential bonding system been connected correctly?
3. EEx d applications: are the cable entries, plugs and adaptors EEx d approved?
4. Are all cable entries of the correct internal diameter providing a good seal around the cable?
5. Do the ambient and process temperatures correspond to the ratings on the nameplate as shown below?
Section 4: Wiring

All user wiring terminations are made inside the Electrical Enclosure shown in Figure 3 on Page 2. Refer to wiring diagram located at the back of this manual for wiring connections. High voltage power connections are made to the disconnect/circuit breaker located inside the electrical enclosure. All low voltage connections, including network wiring, are made to the Termination Board Module (TBM) located inside the electrical enclosure. Use conduit and seals in accordance with National Electric Code (NEC) and local codes for all wiring entering the electrical enclosure.

4.1 Power Wiring

Connect power voltage leads to the circuit breaker located in the main electrical enclosure. Power wires must enter the electrical enclosure at the conduit entry on the lower right side of the enclosure to prevent water from entering. The controller provides automatic phase correction in case three-phase power is connected in the wrong phase rotation.

4.2 Network Wiring

If a single bus network connection, such as Foundation Fieldbus, is being made, connect to Network Port A at TBM terminals 24 (-) and 25 (+). If the cable is shielded, connect shield to TBM terminal 23. If redundant or repeater network connections such as Bettis E>Net are being made, connect the second network to Network Port B at TBM terminals 23 (+) and 24 (-). Connect cable shield of Port B to TBM terminal 25. Cable shields are isolated from earth in the actuator. Connect shields to only one earth ground point in the network, normally the host location.

4.3 Monitor Relay Wiring

The Monitor Relay is used for hard-wiring an indication of availability of the actuator for remote control. When the selector switch is placed in the Remote mode and if there are no alarms present that prevent operation, the Monitor Relay is energized. If an alarm occurs or the selector switch is moved from the Remote position, the relay is de-energized. The Monitor Relay is a Form C relay with both normally open (N.O.) and normally closed (N.C.) contacts. Wire to either TBM terminals 31 and 32 if N.O. contacts are desired. Wire to TBM terminals 32 and 33 if N.C. contacts are desired. The relay is shown on the wiring diagram in the de-energized state, meaning that the actuator is not available for remote control.

4.4 Local ESD Wiring (Emergency Shutdown)

Remove jumper between TBM terminals 27 and 28. Connect Normally Closed (N.C.) dry contacts to terminals 27 and 28. When the contacts open, ESD is activated, causing the actuator to go to Home Port. The actuator will remain at the Home Port until the ESD contacts are closed and a new command is received from either Local or Remote control. The ESD circuit is a closed loop failsafe circuit. If the circuit is opened for any reason, broken wire, bad contact, 24VDC power supply failure, etc., the ESD function is activated. The closed loop circuit is powered by 24VDC from the actuator.
4.5 Optional Remote Display Module (RDM) Wiring

Connect twisted pair RS485 cable from the RDM to TBM terminals 18 (-) and 19 (+). If the RDM is being powered from the actuator 12VDC supply, wire the power wires from the RDM to TBM terminals 16 (-) and 17 (+). The RDM is polarity protected, preventing damage, but will not operate if polarity is reversed.
Section 5: Local Display Module

5.1 Description

Contains microprocessor controller, position encoder, and network interface. This is the main controller used to setup and operate the actuator.

This module displays operating parameters, port position, torque, and alarms. It also provides a means to configure the actuator by using the local controls.

To use the Local Control and Selector Knobs refer to Table 2.

NOTE:
Actuator moves in only the counterclockwise direction.

<table>
<thead>
<tr>
<th>Selector Knob (right)</th>
<th>Rotate</th>
<th>Function</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF (Stop)</td>
<td>[return position]</td>
<td>Stop movement</td>
<td>Prevents motor operation.</td>
</tr>
<tr>
<td>REMOTE (Auto)</td>
<td>Clockwise</td>
<td>Remote control</td>
<td>Allows control from remote location.</td>
</tr>
<tr>
<td>LOCAL (Hand)</td>
<td>Counter-clockwise</td>
<td>Hand Operation</td>
<td>Allows control from local control knob or the control knob of the RDM, if connected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control Knob (left)</th>
<th>Rotate</th>
<th>Function</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring return</td>
<td>Neutral position</td>
<td>No operation</td>
<td>Releases a local command when Local control is used.</td>
</tr>
<tr>
<td>PORT (up)</td>
<td>Clockwise</td>
<td>Local command to go to next port</td>
<td>Commands actuator to move to the next port. Momentary knob control.</td>
</tr>
<tr>
<td>Jog (dn)</td>
<td>Counter-clockwise</td>
<td>Local command to micro-step</td>
<td>Commands actuator to move only while knob is being held, i.e. maintained knob control.</td>
</tr>
</tbody>
</table>
5.2 Operation

Place the “Selector Knob” in the desired operating position

1. LOCAL – hands on operation at the actuator by manipulation of Control Knob.
2. REMOTE – used within the context of plant operation, i.e. Remote Control Panel, PLC, DCS, etc. See wiring diagram for typical user wiring for remote control.
3. OFF (Stop) – to prevent local or remote operation.

5.3 Local Operation

Place the “Selector Knob” in the “Local” position. If a remote display is connected, the remote selector switch must not be in the “Off” position. Verify that the selector “L” amber light is on. The actuator may now be operated using the port and jog Control Knobs. Jog control is normally disabled and must be enabled in the setup menu.

To jog or micro-step the actuator toward the next port, rotate the control knob in the counterclockwise direction. Jog to position and release when the desired position is reached. When using jog for calibrating the actuator, always stop short of the desired port and use the hand wheel to complete accurate positioning to center of the port.

To move only to the next port, momentarily rotate the control knob in the clockwise direction to the Port position and release.

To Stop or prevent actuator movement, move Selector knob to the OFF (Stop) position.

5.4 Operational Display

Operational indicators for RUN / ALARM / PORT position use long lasting LED’s. Run torque and port position are shown on the digital readout during normal operation. Torque in percent of maximum is displayed as a 2-digit number only while the motor is running. Port position is displayed as a single digit when the motor stops. If the actuator stops between two ports, the two corresponding port numbers will alternate. Torque less than 10% is displayed as 0% because torque between 0 and 10% cannot be accurately measured.
1. **RUN LED** flashes Green while the actuator is moving to the next port and flashes Red while running within 2° of the selected port position.

2. **PORT LED** flashes Green when the actuator is within 2° and outside 1° prior to the setpoint of the selected port. The port LED flashes Red when within 2° and outside 1° beyond the setpoint. The port LED illuminates steady Green while within 1° of the selected port position.

3. **ALARM (Yellow) LED** flashes when any alarm is present, otherwise it remains off.

4. **OVER TORQUE** alarm condition is indicated when a torque alarm occurs in mid-travel. The over torque LED will flash so long as the over torque condition exists.

5. **HOME PORT LED** will light when the actuator is within 0.25° of the user selected Home Port position.

Selector switch LEDs are also made available for operational use in the bottom right corner. The selector LEDs are important when using a Remote Display Module (RDM) because these LEDs indicate the combined logic of the two selector switches, i.e. the selected mode of operation of the actuator. All three LOR LEDs flash while the actuator is in setup mode.

5.5 Display Blanking

The user has the option to have the display blank out (turn off) when not in use. This is a very important feature for solar power applications because power consumption is minimized. Option to enable or disable display blanking timeout is available by setup using MPA Config or the control knobs. See the field setup section for selecting the option. When control knobs are used for setup, the parameter is C9 as shown in the table on Page 21. The default setting is display blanking timeout enabled for 24VDC versions and disabled for AC versions. If display blanking is enabled, the display will blank out after 60 seconds when left unattended while the selector switch is in Remote mode. The display will blank out after 3 minutes when left unattended while the selector switch is in Local mode. The display will not blank out while in setup mode. When selected, display blanking applies to both local (LDM) and remote (RDM) displays.

5.6 Alarms Display

When an alarm occurs, it is automatically displayed by the two character LED display. The yellow ALARM LED will flash while any alarm is present. The display will alternate between the current port position and the active alarm(s) except when stopped between parts. If more than one alarm is active, the display will cycle through a sequence of Port Position, newest alarm, Port Position, next oldest alarm and so on until all active alarms are displayed. The cycle is continuously repeated until all alarms are cleared. Each alarm is recorded in an Alarm History. The alarm history may be viewed by entering setup mode (see next section).

All possible alarms that may be displayed are listed on the name plate of the Local Display Module (LDM). Following are definitions of the listed alarms.
Table 3. Alarm List

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>Communication Error</td>
<td>Lost communication with the Remote Display Module (RDM) when configured.</td>
</tr>
<tr>
<td>SA</td>
<td>Stall Alarm</td>
<td>Actuator failed to move within 8 seconds after commanded by either local or remote controls.</td>
</tr>
<tr>
<td>LE</td>
<td>Local ESD</td>
<td>Hardwired Local Emergency Shut Down is active.</td>
</tr>
<tr>
<td>PH</td>
<td>Phase Alarm</td>
<td>Loss of one phase when configured for 3-Phase.</td>
</tr>
<tr>
<td>EF</td>
<td>Encoder Failed</td>
<td>Failure of either the position or torque encoders.</td>
</tr>
<tr>
<td>AF</td>
<td>Actuator Failed</td>
<td>A fault is detected by hardware electronics fault monitor. This is a non-recoverable condition that requires actuator service.</td>
</tr>
<tr>
<td>OL</td>
<td>Motor Overload</td>
<td>Motor thermals or motor overload relay has tripped.</td>
</tr>
<tr>
<td>LC</td>
<td>Lost Control Voltage</td>
<td>Loss of power to the motor control circuits. The control voltage supply has an automatic resetting fuse.</td>
</tr>
</tbody>
</table>

NOTE:
Over torque alarm is displayed by dedicated LED. See Operational Display section above.
Section 6: Field Setup Using MPA Config Software

MPA Config is a Windows application for configuration, calibration, test, and operation of the MPA. MPA Config is compatible with Windows XP, Windows 7, and Vista. Connection to the MPA requires a RS485 link. It may be necessary to use a USB to RS485 converter for connection of a PC to the RDM port of the actuator. RDM port is TBM terminals 18 (-) and 19 (+). Load the software to a laptop or other compatible PC device and connect the RS485 link to the TBM in the electrical enclosure. If opening the enclosure is undesirable, configuration may be performed using the local control knobs of the actuator as described in the next section of this manual. If the system is configured for Modbus networking, the PC may be connected to the local area network at any location in the network. The MPFS factory uses this software to configure and calibrate the MPA and saves the configuration to a “.mpa” file by MPFS serial number. Should loss of factory configuration or port calibration occur due to failure of a CPU module or user error, a copy of the file may be obtained from the MPFS factory and loaded to the actuator using MPA Config Software.

6.1 CommSetUp

First select the CommSetUp screen shown in Figure 8 to configure the network communication link.

Figure 8

If connected to the RDM port, set the computer Baud Rate to 9600, Parity None and Stop Bits to 1. Set the Slave Address to 254. The RDM port configuration of the MPA is fix at 9600,N,8,1, address 254 and may not be changed by the user.
If connected to a Modbus local area network, the baud rate and slave address configured for the actuator must be known in order to setup the computer communication port. Default configuration for the MPA network port is 19,200 baud and slave address 254. There are two universal addresses of 99 and 254. Addresses 1-98 and 100-254 are unique.

HELP: Clicking the ? button at the top of the screen and then passing the cursor across each button will cause a description of that button to be displayed.

6.2 User Setup Menus

To configure the actuator, select the User Setup Menus tab shown in Figure 9.

Figure 9

From this screen Alarm History of the last eight accumulated alarms may be viewed. Configuration may also be viewed without a passcode. In order to change configuration, a valid passcode must be entered. Click on “Enter User Password” button near the bottom of the screen and the screen shown in Figure 9 will display. Enter the 4-digit passcode and click Enter. You may now edit configuration, including a new passcode as shown in Figure 9. If the passcode is changed, be sure it is recorded and kept in a safe place. The default passcode is 0000.

Figure 10
The Network SetUp changes configuration only for the network ports. It does not affect the RDM port. If a pipeline is not connected to any one or more ports, or if it is desirable to skip any one or more ports, click on the “Delete Port” number. The deleted ports will be skipped when a next port command is issued in either local or remote control modes.

NOTICE:
When configuration changes are made, click the “Write” button at the bottom of the screen to transfer the new parameters to the actuator. The “Read” button may be used to refresh the screen to verify the parameters have been properly written and stored in the actuator. To ensure the new configuration values are written to EEPROM, click on the Factory tab and then click Force EEPROM Write. Within several seconds the three LOR LEDs will simultaneously flash slowly. This slow flash is a signal that all new values were successfully written to EEPROM.

6.3 Selecting New Home Port (HP command using Control Knob setup)

The User may select any port as the new “Home Port” in the field. When a new home port is selected, the new home port is identified as Port 0 or 8 and the MPA reassigns all other port numbers (1-7) in a counterclockwise sequence around the MPFS. The MPA recalculates the exact calibrated port position based on factory calibration values so no accuracy is lost.

To select a new home port, click on the “Set Home Port” button shown in Figure 11. The Pop-Up shown in Figure 9 will appear. Enter the new home port number 1-7 relative to the factory calibrated port assignments and click “Enter”.

![Figure 11](image-url)
NOTE:
When a new home port is selected, it must be a port without piping connected and must be fitted with a blind cover to allow for future seal inspection and visual port alignment. Selecting a new home port will cause the MPA to recalculate all calibration parameters based on the factory calibration and store the new values to EEPROM.

6.4 Home Port LED Function

The home port LED on the LDM will now identify the newly selected home port position. This LED is on when the actuator is within 0.25 degrees of the selected home port. When the blind cover of the home port is removed in the field to inspect the seals, the home zero may be verified and corrected if an error is detected.

6.5 Home Port Calibration (HC command using Control Knob setup)

If maintenance is performed on the actuator that can cause loss of calibration, the home port must be re-calibrated. Examples of maintenance that affect calibration are removal of the actuator from the MPFS and replacement of the position encoder. If a MPA is removed from one MPFS and installed on another or if a CPU module is replaced, the factory configuration (.mpa) file for the MPFS must be loaded to the new actuator and the selected home port calibrated. To calibrate the home port position, remove the blind cover from the selected home port. Use the hand wheel of the MPA to position the plug seal over the port as precisely as possible. Click on the “Cal Home Port” button shown in Figure 9. To avoid accidental setting of a new home port, the user is required to enter a passcode of 43 to gain access. A Pop-Up will appear as shown in Figure 12, providing a warning and allow entry of the passcode.

Figure 12
6.6 **Factory SetUp Menus**

All factory settings may be viewed but some items in Factory Setup require a Factory Password to change them. The protected items are, RDM Required, Motor Type, Reset User Password, and Calibrate Ports. The user may load or save a ".mpa" configuration file from or to a PC.

Figure 13

For precise MPFS port alignment, the factory calibrates each actuator to each of the ports of the mated MPFS. The calibrated values are displayed on this screen and may be compared to the current position (Encoder Feedback) to determine accuracy. When a new home port is selected by the user, these calibration values are recalculated and stored to EEPROM.

6.7 **Motor Type**

Motor Type is entered at the factory for the type of MPFS, power supply and motor horse power rating as shown in the table below. Motor type is displayed on the MPA Config Factory Setup Menu for information only and cannot be edited.

Table 4. Motor Type

<table>
<thead>
<tr>
<th>MPFS</th>
<th>Motor HP</th>
<th>1 PH 115 VAC</th>
<th>1 PH 230 VAC</th>
<th>3 PH 220/230 VAC</th>
<th>3 PH 380 VAC</th>
<th>3 PH 415 VAC</th>
<th>3 PH 460 VAC</th>
<th>3 PH 575 VAC</th>
<th>24 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X4</td>
<td>1/12</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>26</td>
<td>--------</td>
</tr>
<tr>
<td>2X4</td>
<td>1/6</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td>19</td>
<td>23</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>3X6</td>
<td>1/6</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td>4X8</td>
<td>1/6</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>29</td>
<td>33</td>
</tr>
<tr>
<td>6X16</td>
<td>1/6</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>6X16</td>
<td>1.5</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td>19</td>
<td>23</td>
<td>27</td>
<td>31</td>
<td>35</td>
</tr>
</tbody>
</table>
NOTE:
The user is not required to select motor type unless qualified to download firmware upgrade to the MPA. If a new HEX file for firmware upgrade is loaded to the MPA in the field, the motor type must be configured before the actuator will operate. When power is first applied to the MPA after a firmware upgrade, in order to know how to initialize the electronics, the Motor Type stored in the EEPROM will be examined. If a new HEX file was just downloaded, it will not yet have a Motor Type (it will be ZERO). When firmware sees that the Motor Type is ZERO, firmware will immediately go to the display entry in the Factory Setup Menu for Motor Type. The user will NOT have to move the left control knob back and forth to go to Setup Mode or enter a passcode. The user will see alternate display of “F1” and “0”. The “F1” is the abbreviation for Motor Type in the factory setup menu, and the current value is 0. Then the user (who just now completed the hex file download) will have to use the left hand control knob to increment the display number to the correct Motor Type (from 1 to 33 shown in the Table 4). Then a move of the right hand selector knob either left or right will force an exit out of the Setup Menu in this unusual one-time circumstance after a HEX file download.

Now the firmware will examine the Motor Type and know how to initialize the electronics. Normally when power is applied to the MPA, if it is NOT after a new download of the HEX file, the Motor Type will already be non-ZERO so the firmware will know how to initialize the electronics without forcing the user to use the knobs.
6.8 Control Screen

The control screen (see Figure 14) is a valuable tool for commissioning the system. All functions of the system may be tested prior to commissioning with the DCS. This screen may be used to troubleshoot any problems should they occur. Field diagnostic messages are displayed in the “Field Diagnostics Information” box. All active alarms may be viewed at a glance in the “Alarms” section of the Control Screen.

Figure 14

1. “Mode” displays the mode selected by the selector switch of the LDM or combined logic of both LDM and RDM selector switches.
2. “Status” displays Running or Stop state of the actuator.
3. “At Port” displays the port number position of the actuator and whether the MPA is at the port within 1 degree or within 2 degrees.
4. “Torque” is displayed as percentage of the full torque rating of the actuator. Torque is displayed from 10% to 99% in 1% increments. Torque less than 10% is displayed as zero because torque between 0% and 10% cannot be accurately measured.
5. “Encoder Value” is the 12-bit raw data from the position encoder in the range of 0 to 4095. This value is also displayed on the Factory Setup screen so it can be compared to port calibration value of each port.
6. “Valve Control” allows commanding the actuator to go to the next port or go to a desired port number. “Go to Port” is the new setpoint in the range of 0 to 7. “Current Setpoint” is the last commanded value stored in the actuator. Each time the actuator is powered up or it torques out while moving, it loads an invalid setpoint of 255 to the “Current Setpoint”. This prevents the actuator from moving until a valid setpoint from 0 to 7 is entered in the “Go to Port” and sent to the actuator. If “Next Port” button is clicked while 255 is in the “Current Setpoint”, then the next higher port number from the current position will be loaded to the current setpoint.
Section 7: Field Setup Using Local Controls

Use the Local Control (left) knob and Selector (right) knob to enter setup mode and to execute Setup functions. The table below (see Table 5) outlines the knob functions for Setup mode.

To access the Field SETUP mode of operation ensure the Selector Knob is placed in the OFF (Stop) position. Once set, rotate the Control Knob to the “UP” & then to the “DOWN” position in right to left succession three times. Keep the knob in each position for at least ½ second but not more than 3 seconds. The display module will flash the (3) amber LOR selector LED's when the SETUP mode is enabled.

Table 5. Selector / Control Knob Setup Function

<table>
<thead>
<tr>
<th>Selector Knob (right)</th>
<th>Setup Function</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF (Stop) [return position]</td>
<td>neutral position</td>
<td>Allows entry to SETUP mode. Completes NEXT, or BACK entry cycle, except when knob is held for scrolling through various menus.</td>
</tr>
<tr>
<td>Clockwise (REMOTE) (Auto)</td>
<td>NEXT</td>
<td>Advances to the next menu item. Displayed data is accepted.</td>
</tr>
<tr>
<td>Counter-clockwise (LOCAL) (Hand)</td>
<td>BACK</td>
<td>Backs up to the last menu item.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control Knob (left)</th>
<th>Setup Function</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Return to Center</td>
<td>neutral position</td>
<td>Completes UP or Down entry Cycle except when knob is held for continuous data entry update.</td>
</tr>
<tr>
<td>Clockwise (CLOSE)</td>
<td>UP</td>
<td>Increments displayed data.</td>
</tr>
<tr>
<td>Counter-clockwise (OPEN)</td>
<td>DOWN</td>
<td>Decrements displayed data.</td>
</tr>
</tbody>
</table>
When the actuator LDM is placed in SETUP mode of operation it first displays the Field Diagnostics (Fd) menu item. The second menu item Alarm History (AH) menu. The field diagnostics and alarm history may be viewed without entering a passcode (See Field Diagnostics and Alarm History Display section).

NOTE:
On any setup menu, use up/down to change a parameter and back/next to accept the displayed parameter. All menus and all parameters are wrap around, meaning they will advance from the highest or last value to the lowest or first value.

To view or change setup parameters of the actuator, Rotate the Selector Knob to the right or NEXT position to cycle through the alarm history display A1 through A8 until P1 is displayed. Alarm history (A1-A8) may be skipped by changing AH(1) to AH(0) and go directly to passcode menu. Passcode menu is displayed as two, 2-digit entries, P1 and P2. The actuator is shipped from the factory with the passcode disabled, meaning that the passcode is 00 00. Until the passcode is changed by the user, the passcode of 00 00 may be accepted by using the NEXT selector knob sequence to accept the passcode and continue to the setup menus. You will now be able to display and/or edit setup data. If you forget your configured passcode, factory trained technicians can reset the passcode back to 00 00.

NOTE:
While in the SETUP mode the actuator will not turn on the motor control circuits & disables all control of discrete outputs until exiting the Setup Mode.

7.1 Alarm History Display

Setup always enters the main menu at the Field Diagnostics (Fd) and the next menu item is Alarm History (AH). The user may view the alarm history without having to enter a passcode. The AH menu will alternately display a value of 0 or 1. Use the Control Knob up or down to change the selection from 0 to 1 or 1 to 0. If display of the alarm history is desired, then the value must be 1. When AH with a value of 1 is displayed, use the Selector Knob REMOTE (NEXT) to advance through the alarms. If it is desirable to skip the alarm history and advance to the setup menus, use the control knob to select a value of 0 and then the Selector Knob Remote (Next) to advance directly to the P1 passcode entry. Alarms are displayed by a sequence number A1 through A8. The display alternates between the alarm sequence number (A1-A8) and the recorded alarm. A1 is the newest alarm and A8 is the oldest alarm. Use the NEXT and BACK selector positions to cycle through the alarms. Blanks are displayed for fewer than 8 alarms. The alarm history is cleared by cycling power to the actuator. If it is desirable to only display alarm history and not go into setup, use the LOCAL(BACK) selection repeatedly to back out of the alarm history and return to normal operating mode.

7.2 Setup Mode Display Sequence

The three (3) amber LED’s for the LOR section flash to indicate Setup Mode. When in setup mode, the user must enter the REMOTE (NEXT) or LOCAL (BACK) within 120 seconds or the display will revert back to the normal display mode.

Setup data may be changed by using the UP & Down entries of the Control Knob. The UP and Down entries are active only after a valid pass-code is entered and the Selector Switch is in the STOP position. The default pass-code is P1 00 and P2 00. Once the correct passcode is entered and accepted at the actuator controls, the user will then be able to
advance thru the displays shown in the Main Menu table on the following page.

The table on the following page (see Table 6) shows the sequence of the setup menus. It also shows the selections, units, and defaults. Each time the REMOTE (NEXT) selector knob is selected, the display advances to the next menu item. Each time the LOCAL (BACK) selector knob is selected, the display backs up to the previous menu item. The UP and DOWN control knob is used to increment or decrement the value shown in the table.

Following is an example for changing the Torque Limit. In this example the current torque value is the default value of 60%.

1) Enter setup mode – Selector knob Off – Rock control knob back and forth until 3 selector LEDs begin to flash and Fd is displayed. When using the selector knob to advance to the next menu or back to the previous menu, always return the selector to the Off position to complete the cycle.

2) Use control knob to change the value of AH to 0 – Rotate selector knob clockwise to Remote (Next) to display P1 (1st passcode). The display will alternate between P1 and the value (default is 00). If the passcode has been changed, rotate the control knob clockwise to advance the display to the correct 1st passcode. Rotate the selector knob clockwise to advance to the next display, P2. The display will alternate between P2 and value of the 2nd passcode (default is 00). If the passcode has been changed, rotate the control knob clockwise to increment the display to the correct 2nd passcode.

3) Repeatedly cycle the selector knob clockwise to advance to the next menu item until C2 is displayed. This is the torque limit setting as shown in the following table. The display will alternate between C2 and the value of C2 which we have assumed to be 60.

4) Rotate the control knob clockwise to the “up” position to increase the torque limit setting. Rotate the control knob counterclockwise to the “dn” position to decrease the torque limit setting.

5) Repeatedly cycle the selector knob to the Remote (Next) position and the Off position to advance though the remaining menu items until the EP (Exit Program) is displayed.

6) If it is desirable to exit, use the control knob “up” to display a 1 value. Use the selector knob Remote (Next) to select exit. The system and display will return to normal operating mode.

NOTE:
Use Selector Knob to select Menu and Use Control Knob to select Units.

Table 6. Setup Mode Parameter Values

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fd</td>
<td>Field diagnostics</td>
<td>0-27</td>
<td>Fault code</td>
<td>0</td>
</tr>
<tr>
<td>AH</td>
<td>Display Alarm History?</td>
<td>0-1</td>
<td>0=No, Skip to 1st Passcode 1=Yes, Display History</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>1st latest alarm</td>
<td>Alarm</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>2nd older alarm</td>
<td>Alarm</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>3rd older alarm</td>
<td>Alarm</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>4th older alarm</td>
<td>Alarm</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>5th older alarm</td>
<td>Alarm</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>6th older alarm</td>
<td>Alarm</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>7th older alarm</td>
<td>Alarm</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>8th older alarm</td>
<td>Alarm</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>1st passcode</td>
<td>00-99</td>
<td>None</td>
<td>00</td>
</tr>
</tbody>
</table>
Table 6 continued......

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>Control Mode</td>
<td>0-1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>C1</td>
<td>ESD Action</td>
<td>0-1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>Torque Limit</td>
<td>15-99</td>
<td>Torque in %</td>
<td>27</td>
</tr>
<tr>
<td>C3</td>
<td>Network Node Address</td>
<td>1-99</td>
<td>99 = selection of default address 254 for other protocol CAM modules</td>
<td>99</td>
</tr>
<tr>
<td>C4</td>
<td>Network Baudrate</td>
<td>0-3</td>
<td>0=4800 1=9600 2=19200 3=38400</td>
<td>2</td>
</tr>
<tr>
<td>C5</td>
<td>Network Parity</td>
<td>0-2</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>C6</td>
<td>Network Stop Bits</td>
<td>1-2</td>
<td>1=1 Stop bit 2=2 Stop bits</td>
<td>1</td>
</tr>
<tr>
<td>C7</td>
<td>Calibrate Motor Characteristics</td>
<td>0-1</td>
<td>None</td>
<td>81</td>
</tr>
<tr>
<td>C8</td>
<td>Disable Jog Control</td>
<td>0-1</td>
<td>0=No, 1=Yes</td>
<td>1</td>
</tr>
<tr>
<td>C9</td>
<td>Disable Display Timeout</td>
<td>0-1</td>
<td>0=No, 1=Yes</td>
<td>1</td>
</tr>
<tr>
<td>CA</td>
<td>Home Port Number (0 or 8)</td>
<td>0-1</td>
<td>0=0, 1=8</td>
<td>0</td>
</tr>
<tr>
<td>HP</td>
<td>Home Port (User selected)</td>
<td>0-7</td>
<td>Port No. 1-7</td>
<td>0</td>
</tr>
<tr>
<td>HC</td>
<td>Accept Home Port Calibration</td>
<td>0 or 43</td>
<td>0=No, 43=Yes</td>
<td>0</td>
</tr>
<tr>
<td>d1</td>
<td>Delete port 1</td>
<td>0-1</td>
<td>0=No, 1=Yes</td>
<td>0</td>
</tr>
<tr>
<td>d2</td>
<td>Delete port 2</td>
<td>0-1</td>
<td>0=No, 1=Yes</td>
<td>0</td>
</tr>
<tr>
<td>d3</td>
<td>Delete port 3</td>
<td>0-1</td>
<td>0=No, 1=Yes</td>
<td>0</td>
</tr>
<tr>
<td>d4</td>
<td>Delete port 4</td>
<td>0-1</td>
<td>0=No, 1=Yes</td>
<td>0</td>
</tr>
<tr>
<td>d5</td>
<td>Delete port 5</td>
<td>0-1</td>
<td>0=No, 1=Yes</td>
<td>0</td>
</tr>
<tr>
<td>d6</td>
<td>Delete port 6</td>
<td>0-1</td>
<td>0=No, 1=Yes</td>
<td>0</td>
</tr>
<tr>
<td>d7</td>
<td>Delete port 7</td>
<td>0-1</td>
<td>0=No, 1=Yes</td>
<td>0</td>
</tr>
<tr>
<td>E1</td>
<td>Edit 1st Passcode</td>
<td>00-99</td>
<td>None</td>
<td>00</td>
</tr>
<tr>
<td>E2</td>
<td>Edit 2nd Passcode</td>
<td>00-99</td>
<td>None</td>
<td>00</td>
</tr>
<tr>
<td>EP</td>
<td>Exit Program?</td>
<td>0-1</td>
<td>0=No, Return to last menu 1=Yes, Exit</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
RDM port configuration is fixed at 9600,N,8,1 address 254 and may not be changed by the user. Only the network port configuration may be changed. The address programmed for the network port will be accepted by the RDM port in addition to address 254.
Section 8: Field Diagnostics

Should trouble occur, the Field Diagnostics feature may be used to help diagnose the problem. Field diagnostics provides more detailed and definitive feedback than the alarms, i.e. possible root cause(s) for the alarm. For example, there may be many causes for an Actuator Fail alarm. Field diagnostics may be displayed by MPA Config as shown in Figure 16 (highlighted in yellow).

Figure 16

Field diagnostic may be displayed by the local display by entering setup mode. In Setup Mode, the first entry is Field Diagnostics having visible code “Fd”. Its value is 0 if there is no fault. If there is a fault, its code is from 1 to 28. If there are multiple faults, only the first of those faults in the following list will be seen. When that fault is corrected, the next fault will display if present.

8.1 Fd Fault Codes

1. MCP23 Chip will not initialize (pertains to a three phase AC motor type)
2. Motor is wired to turn in the wrong direction
3. Self-detected wiring fault (Emergency Shut Down - LE)
4. Host transmitted ESD command (Emergency Shut Down - LE)
5. Lost Phase, pertains to a three phase AC motor type - PH
6. Motor has over-heated (Motor overload - OL)
7. Stall Alarm. No motor movement after excess time of power applied - SA
8. Lost Control Voltage (Loss of power for motor control - LC)
9. Contactor is engaged, but there is no AUX feedback (= Control Failure)
10. SPI communication failure for GPA chip
11. AUX feed-back alarm (= Incorrect AUX feedback from contactor)
12. Three consecutive overshoots of the port
13. RDM is not communicating and is required (Communication Error - CE)
14. No input from Torque Encoder. Check for cable connection problems or encoder failure
15. Torque OCF bit is low. Power supply to the Torque Encoder is likely at fault
16. Encoder reports that Torque Encoder value is invalid
17. Torque Encoder Parity error
18. Torque Encoder Magnet is out of range
19. Over-Torque. Torque value is greater than the Torque Limit
20. Value from the Torque Encoder is out of range (invalid instead of over-torque)
21. No input from Position Encoder. Check for cable connection problems or encoder failure
22. Position OCF bit is low. Power supply to the Position Encoder is likely at fault
23. Encoder reports that Position Encoder value is invalid
24. Position Encoder Parity error
25. Position Encoder Magnet is out of range
27. Stopped between ports (non-critical)
28. Home Port is the last port reached (stopped at Home Port, non-critical and may be normal operation)
Section 9: Remote Network Control

9.1 Modbus RTU

The native language of the MPA is Modbus RTU. If other network protocols such as Foundation Fieldbus are used, a Communication Adapter Module (CAM) module is installed to translate between the selected protocol and Modbus. The controller supports Modbus function codes 01, 02, 03, 04, 05, 06, 15, 16. Following are the memory maps for discrete I/O and unsigned 16-bit Holding registers used in this application. All memory maps shown are zero based, i.e. register 1 = holding register 40002. reading Input Bit 0 using FC02 = 10001.

9.1.1 Discrete Input Map (Valve Status) and Alarms

<table>
<thead>
<tr>
<th>Bit</th>
<th>Input</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
<td>At commanded port within 1 degree</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>At commanded port within 2 degrees</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>Flow selector moving</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>Wrong direction alarm</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>Selector switch Local/Manual Mode</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>Selector switch Remote/Auto Mode</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>Over torque alarm</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>Stop between ports alarm</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>Flow selector stall alarm</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>Power monitor alarm</td>
</tr>
<tr>
<td>A</td>
<td>26</td>
<td>Motor thermal overload alarm</td>
</tr>
<tr>
<td>B</td>
<td>27</td>
<td>Phase monitor alarm</td>
</tr>
<tr>
<td>C</td>
<td>28</td>
<td>Local ESD alarm</td>
</tr>
<tr>
<td>D</td>
<td>29</td>
<td>Actuator fail alarm</td>
</tr>
<tr>
<td>E</td>
<td>30</td>
<td>No input (always zero)</td>
</tr>
<tr>
<td>F</td>
<td>31</td>
<td>Unit alarm (above alarms are OR’ed)</td>
</tr>
</tbody>
</table>

These same status and alarm bits are duplicated in Modbus Registers 01, 06, 09 (40002, 40007, 40010) in the same bit sequence shown above.

9.1.2 Coil Map (Discrete Network Control)

There are only two coils used for discrete network control as follows. When Coil 10 is set by the host, the actuator resets the coil automatically when the command is executed. When Coil 11 is set, the host must reset the coil before the actuator will respond to any other command.

<table>
<thead>
<tr>
<th>Coil</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Go to next port</td>
</tr>
<tr>
<td>11</td>
<td>Host ESD command, Go to Home Port</td>
</tr>
</tbody>
</table>
9.1.3 Holding Register Map

These are the recommended registers to use. Other registers are active but the user is cautioned not to use the data or write to any other registers.

Table 9. Monitor and Control Registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Actuator status and alarms in the bit sequence shown for the input map</td>
</tr>
<tr>
<td>06</td>
<td>Actuator status and alarms in the bit sequence shown for the input map</td>
</tr>
<tr>
<td>07</td>
<td>Last Port position reached (0-7 or 1-8) (See CA Home port number on Page 22)</td>
</tr>
<tr>
<td>09</td>
<td>Actuator status and alarms in the bit sequence shown for the input map</td>
</tr>
<tr>
<td>11</td>
<td>Port position Setpoint (0-7 or 1-8) (Data must be a single digit between 0 and 7 or 1 and 8 depending on Home configuration) (See CA Home port number on Page 22) (MPA returns 255 (0xFF) in register 11 when the commanded port is reached)</td>
</tr>
<tr>
<td>13</td>
<td>Raw 12-bit position encoder value (0-4095)</td>
</tr>
<tr>
<td>14</td>
<td>Port position (0-4095)</td>
</tr>
<tr>
<td>15</td>
<td>Torque (0-4095)</td>
</tr>
</tbody>
</table>

Table 10. Configuration and Calibration Registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>Port 0 calibration value (0-4095)</td>
</tr>
<tr>
<td>212</td>
<td>Port 1 calibration value (0-4095)</td>
</tr>
<tr>
<td>213</td>
<td>Port 2 calibration value (0-4095)</td>
</tr>
<tr>
<td>214</td>
<td>Port 3 calibration value (0-4095)</td>
</tr>
<tr>
<td>215</td>
<td>Port 4 calibration value (0-4095)</td>
</tr>
<tr>
<td>216</td>
<td>Port 5 calibration value (0-4095)</td>
</tr>
<tr>
<td>217</td>
<td>Port 6 calibration value (0-4095)</td>
</tr>
<tr>
<td>218</td>
<td>Port 7 calibration value (0-4095)</td>
</tr>
</tbody>
</table>

Note: After the HC command is executed, Register 211 will be zero and remain zero.

WARNING

Extreme caution must be used when writing port calibration values to registers 211 through 218 (40212 thru 40219). Only values read from these registers shall be written to them. The purpose of these registers is to allow the network host to store the port calibration values and then write them back to the actuator in case of replacement of the CPU module.
9.2 Foundation Fieldbus (FF)

The MPA uses a CAM18 to convert between Modbus and Foundation Fieldbus. Refer to M2CP CAM18 & TEC2000 CAM218 Installation, Operation and Instruction Manual for installation and setup of the FF link. Relations between the Modbus and FF maps are identified as follows:

<table>
<thead>
<tr>
<th>Modbus Discrete Input Map</th>
<th>Actuator Readback (Channel 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>DI</td>
</tr>
<tr>
<td>16</td>
<td>At port within 1 degree</td>
</tr>
<tr>
<td>17</td>
<td>At port within 1 degree</td>
</tr>
<tr>
<td>18</td>
<td>Flow selector moving</td>
</tr>
<tr>
<td>19</td>
<td>Wrong direction alarm</td>
</tr>
</tbody>
</table>

Foundation Fieldbus

<table>
<thead>
<tr>
<th>Modbus Discrete Input Map</th>
<th>Actuator Status (Channel 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>DI</td>
</tr>
<tr>
<td>20</td>
<td>SS Local/Manual</td>
</tr>
<tr>
<td>21</td>
<td>SS Remote/Auto</td>
</tr>
<tr>
<td>22</td>
<td>Over torque alarm</td>
</tr>
<tr>
<td>23</td>
<td>Stop between ports alarm</td>
</tr>
<tr>
<td>24</td>
<td>Flow selector stall alarm</td>
</tr>
<tr>
<td>25</td>
<td>Power monitor alarm</td>
</tr>
<tr>
<td>26</td>
<td>Motor thermal overload alarm</td>
</tr>
<tr>
<td>27</td>
<td>Phase monitor alarm</td>
</tr>
<tr>
<td>28</td>
<td>Local ESD alarm</td>
</tr>
<tr>
<td>29</td>
<td>Actuator fail alarm</td>
</tr>
</tbody>
</table>

Coil Map (Discrete Network Control)

<table>
<thead>
<tr>
<th>Coil</th>
<th>Actuator Command (Channel 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>DO</td>
</tr>
<tr>
<td></td>
<td>Go to Next Port</td>
</tr>
</tbody>
</table>

Coil Map (Discrete Network Control)

<table>
<thead>
<tr>
<th>Coil</th>
<th>ESD Command (Channel 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Do</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monitor and Control Registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Analog input / Output Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Port Position Setpoint (0-7 or 1-8)</td>
</tr>
<tr>
<td>14</td>
<td>Port position (0-4095)</td>
</tr>
<tr>
<td>15</td>
<td>Torque (0-99%)</td>
</tr>
</tbody>
</table>
Section 9: Remote Network Control

<table>
<thead>
<tr>
<th>Modbus Configuration and Calibration Registers</th>
<th>Foundation Fieldbus MAO (Channel 19)</th>
<th>MAI (Channel 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>Parameter</td>
<td>Parameter</td>
</tr>
<tr>
<td>211 Port 0 calibration</td>
<td>IN_1</td>
<td>OUT_1</td>
</tr>
<tr>
<td>212 Port 1 calibration</td>
<td>IN_2</td>
<td>OUT_2</td>
</tr>
<tr>
<td>213 Port 2 calibration</td>
<td>IN_3</td>
<td>OUT_3</td>
</tr>
<tr>
<td>214 Port 3 calibration</td>
<td>IN_4</td>
<td>OUT_4</td>
</tr>
<tr>
<td>215 Port 4 calibration</td>
<td>IN_5</td>
<td>OUT_5</td>
</tr>
<tr>
<td>216 Port 0 calibration</td>
<td>IN_6</td>
<td>OUT_6</td>
</tr>
<tr>
<td>217 Port 0 calibration</td>
<td>IN_7</td>
<td>OUT_7</td>
</tr>
<tr>
<td>218 Port 0 calibration</td>
<td>IN_8</td>
<td>OUT_8</td>
</tr>
</tbody>
</table>

NOTE:
Input and Output parameters are the number of hardware registers that are connected to the I/O block. They define the transducers to be used going to or from the physical world.

WARNING
Extreme caution must be used when writing port calibration values to registers 211 through 218. Only values read from these registers shall be written to them. The purpose of these registers is to allow the network host to store the port calibration values and then write them back to the actuator in case of replacement of the CPU module.

NOTE:
The network host may write a Port Position Setpoint to Channel 3 (SP/OUT) as a 12-bit unsigned integer analog value corresponding to 0% to 8% where the percentage relates to the port number 0 to 8. The analog value is calculated as absolute value of Port Number / 100 * 4095. Example: Analog value for Port 6 = 6/100*4095=245.7 = 245. The actuator will accept the percentage analog value within a tolerance as shown below:

- Port 0 = 0
- Port 1 = 39 – 42 (If CA is configured as 1 for Home Port = 8, the MPA will accept either 0 or 327 for setpoint)
- Port 2 = 79 – 82 (of Home Port. The acceptable range for Port 8)
- Port 3 = 120 – 123 (is 325 to 329. (see Page 22 for CA configuration))
- Port 4 = 162 – 165
- Port 5 = 203 – 206
- Port 6 = 244 – 247
- Port 7 = 284 – 288
9.3 Profibus DP Redundant Networks with Redcom

The MPA uses CAM20 to convert between Modbus RTU and Profibus DP. This section describes the data mapping between the Profibus DP host and MPA Modbus map. The mapping allows the Profibus DP host to control the Flow Selector and monitor the actuator status. The control information is mapped directly to words in the Profibus Output data and status information is mapped directly to words in the Profibus Input data.

Table 11. Output Data

<table>
<thead>
<tr>
<th>Location</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Byte</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 12. Input Data

<table>
<thead>
<tr>
<th>Location</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Byte</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>
9.4 DeviceNet

The MPA uses CAM09 to convert between Modbus and DeviceNet. This section describes the data mapping between the DeviceNet host and MPA Modbus map. The mapping allows the DeviceNet host to control the Flow Selector and monitor actuator status. The control information is mapped directly to words in the DeviceNet Output data and status information are mapped directly to words in the DeviceNet Input data.

Table 13. Output Data

<table>
<thead>
<tr>
<th>Location</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Byte</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Table 14. Input Data

<table>
<thead>
<tr>
<th>Location</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Byte</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Appendix A: EC Declaration of Conformity Certificate

EC Declaration of Conformity
Emerson Process Management Valve Actuation, LLC

Emerson Process Management Valve Actuation, LLC declares under our sole responsibility that the product(s) listed below conform with the relevant provisions of directive 94/9/EC of 23 March 1994.

Products: Series 2000 Valve Actuators

Notified Body: Sira Certification Service (0518)
Rake Lane, Eccleston, Chester, CH4 9JN, England

Conformity has been demonstrated with reference to the following documentation:

EC type-examination certification Sira 03ATEX1424, Issue 2 (March 9, 2010)

Compliance with Essential Health & Safety Requirements has been assessed by reference to the following standards:

- EN 60079-0:2009
- EN 60079-1:2007
- EN 60079-31:2009

Actuators conform to the requirements of the European Economic Community EMC Directive 89/336/EEC as amended by 92/31/EEC

Actuators conform to the requirements of the European Economic Community Low Voltage Directive 73/23/EEC amended by 93/68/EEC.

Steve Farmer, Engineering Manager

12/15/10
December 15, 2010

Head Office & Factory
Emerson Process Management Valve Actuation, LLC
13840 Pike Road, Missouri City, TX 77489 USA

Eastern Hemisphere Sales
Emerson Process Management Valve Actuation, LTD
6-7 Galaxy House, New Greenham Park, Newbury, Berkshire RG19 6HW England
Appendix B: Wiring Diagrams

B.1 Three Phase Power
B.2 Single Phase Power
B.3 24VDC Power

Circuit Breaker – M2CP mounted.

Position Encoder

Torque Encoder

RS485
Repeater

BUS

Modbus RTU

MOTOR TYPE 3

© 2009 Emerson Process Management Valve Actuation LLC
Contact Us: Emerson Process Management, Valve Automation facilities at your nearest location:

NORTH & SOUTH AMERICA

19200 Northwest Freeway
Houston, TX 77065
T +1 281 477 4100
F +1 281 477 2801

2500 Park Avenue West
Mansfield, OH 44906
USA
T +1 419 529 4311
F +1 419 529 3688

13840 Pike Road
Missouri City, Texas 77489
USA
T +1 281 499 1561
F +1 281 499 8445

Av. Hollingsworth,
325, Iporanga Sorocaba,
SP 18087-105
Brazil
T +55 15 3238 3788
F +55 15 3228 3300

MIDDLE EAST & AFRICA

P. O. Box 17033
Dubai
United Arab Emirates
T +971 4 811 8100
F +971 4 886 5465

P. O. Box 105958
Abu Dhabi
United Arab Emirates
T +971 2 697 2000
F +971 2 555 0364

P. O. Box 3911
Al Khobar 31952
Saudi Arabia
T +966 3 814 7560
F +966 3 814 7570

P. O. Box 10305
Jubail 31961
Saudi Arabia
T +966 3 340 8650
F +966 3 340 8790

P. O. Box 32281
Doha
Qatar
T +974 4 576777
F +974 4 315448

24 Angus Crescent
Longmeadow Business Estate
East P.O. Box 6908;
Greenstone; 1616
Modderfontein, Extension 5
South Africa
T +27 11 451 3700
F +27 11 451 3800

EUROPE

Asveldweg 11
7556 BR Hengelo (O)
The Netherlands
T +31 74 256 1010
F +31 74 291 0038

Siemersring 112
47877 Willich
Germany
T +49 2154 499 660
F +49 2154 499 6613

25, Rue de Villeneuve
Silic – BP 40434
94583 Rungis
France
T +33 1 49 79 73 00
F +33 1 49 79 73 99

Via Montello 71/73
20038 Seregno (Milan)
Italy
T +39 0362 2285 207
F +39 0362 2436 55

6 Bracken Hill
South West Industrial Estate
Peterlee SR8 2LS
United Kingdom
T +44 191 518 0020
F +44 191 518 0032

2A Szturmowa Str
02-678 Warsaw
Poland
T +48 22 45 89 237
F +48 22 45 89 231

C/ Francisco Gervás, 1
28108 Alcobendas – Madrid
Spain
T +34 9013 586 000
F +34 9013 589 145

Letnikovskaya Str. 10-2
115114 Moscow
Russia and FSU
T +7 495 981 98 11
F +7 495 981 98 10

ASIA PACIFIC

No. 9 Gul Road
#01-02 Singapore 629361
T +65 6501 4600
F +65 6268 0028

9/F Gateway Building
No. 10 Ya Bao Road
Chaoyang District
Beijing 100020
P.R.China
T +86 10 8572 6666
F +86 10 8572 6888

No.1 Lai Yuan Road
Wuqing Development Area
Tianjin 301700
P.R.China
T +86 22 8212 3300
F +86 22 8212 3308

Lot 13112, Mukim Labu
Kawasan Perindustrian Nilai
71807 Nilai, Negeri Sembilan
Malaysia
T +60 6 799 2323
F +60 6 799 9942

471 Mountain Highway
Bayswater, Victoria 3153
Australia
T +61 3 9721 0200
F +61 3 9720 0588

Delphi B Wing, 601 & 602
6th Floor, Central Avenue
Pawal, Mumbai – 400 076
India
T +91 22 6662 0566
F +91 22 6662 0500

Please visit our web site for up to date product data.
www.bettis.com

All Rights Reserved.
We reserve the right to modify or improve the designs or specifications of the products mentioned in this manual at any time without notice. Emerson Process Management does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson Process Management product remains solely with the purchaser.
©2013 Emerson Electric Co.