The Future of Boundless Automation

October 24, 2022

Agenda

Peter Zornio	Boundless Automation
Laura Schafer	The Intelligent Field
Peter Zornio	The Cloud
Claudio Fayad	The Edge
Peter Zornio	Summary and Q&A

Buzzword Bingo – What is the Future of Automation Architecture?

context vision information seamless bte innovative connection future mode Docker OPC UA field computer data intelligence flexible reality robotics automation rpm ot generation suites remote transformation efficient virtual machine enterprise external cloud wifi edge energy business MQTT ml cloud wifi edge ai innovative domain device technology cyber digital reliability software electronic zones development blockchain design AMQP

Automation Inflection Points Move Industry Forward

30+ Years

Future

Boundless Automation

Today's Automation is Vertically and Horizontally Siloed Creating Pockets of Data and Expertise

	SaaS Offerings	Connected Services	Workflow Visualization	Operational Analytics	Reporting Dashboard		
	\blacksquare						
L5 Enterprise Software	OT Data Lake						
Datacenter Cloud							
L3 / L4 Site Operations On-Premise Windows	Operator Apps Engineering Apps Historian Batch and APC	Engineering Aps Validation Tools Proof Testing Diagnostics	Operator Apps Eng. Apps Diagnostics Local Panels	Prediction CMMS Equip. Monitor Asset Mgmt.	Inventory Mgmt. Workflows Sample Tracking Data archival		
L1 / L2 Site Control WinTel Purpose-built							
L0 Field Devices	+ *						
	Control System	Safety System	Packaged Equipment	Reliability	LIMS		

PURPOSE BUILT AUTOMATION

Hierarchical automation networks

- Hard segmentation between OT/IT
- "Here's your data now go away"
- Complex security constructs between the layers – "in-depth"
- Hardware products designed for specific "layers" with associated software

A "one-way" architecture

Data flow from bottom to top

Purpose built for automation applications

Reliability, safety, energy – separate silos

- captured in ANSI/ISA-95

Since its inception, automation has followed the "Purdue Model"

Market Needs Have Created an Inflection Point and Demand for a New Automation Paradigm

Secure by Design Simplified Network Flexible Subscriptions

Virtual Reality

Leading the Way to the Next Architecture Paradigm

Boundless Automation

Flexible computing domains

seamlessly interact and exchange

A common, **consistent data model** provides **ease of use** and application of usable data at all levels

Zero trust security architecture **provides dynamic functional "zones" of authorization**

Functional "systems" (control, reliability, etc.) as suites of software distributed across common compute infrastructure

Control System System Safety :

Tomorrow's Automation Architecture: Connected and Boundless

Intelligent Field

The Intelligent devices continue to expand into domains other than automation and add applications and compute power

The Edge

The Edge securely places computing power closest to where it's needed

The Cloud

The Cloud provides infinite scalability, global connectivity, attractive lifecycle costs and rich analytics technologies

Devices connected to physical assets that include measuring or controlling elements of those assets; capable of digital connection

Computing devices hosted close to data generation; typically, where data has not traversed public internet

Remote banks of computing capability with an integrated compute fabric to host workloads; typically, external companies

Cohesive Software Environment

Common data models and API's drive customer ease of use, rich integration and solution-level security

A Cohesive Software Platform is Key to Unlock the New Automation Paradigm

Integrated by design

Ease of use

Data democratization

Solution level security certification

Unrestricted innovation

Interoperability

Extensibility

Unlimited Scalability

The Intelligent Field

Laura Schafer

Connectivity Options For All Applications Will Coexist in the Future

Discrete & Hybrid Manufacturing

HART-IP

🔅 PC UA

0
123
C. C

∦

Process

Distributed Assets

Wide Area Networks

Wireless Devices to "Drop-in Data" for Pervasive Monitoring

Customer Value

Increased density

Longer range

Reduced cost

Geographically dispersed mobile assets

- Location tracking
- Multi-tenancy •
- SaaS

public telco

Communicate anywhere

APL Unlocks Ethernet in Hazardous Areas

Over 10 billion ethernet devices globally with numbers expected to triple by 2030

Not in process environments •

Traditional ethernet is not suitable for explosion hazardous locations

Easiest migration path with CHARMs

- analog signals
- Fully redundant backhaul .
- Connects control, edge, and cloud .
- Simple, fast, secure .

Ethernet-APL is ideal for process environments

An "APL switch" that can also input conventional

Leverage of NAMUR PA-DIM Unified Data Model Will Enable **Easy Integration**

Greater Intelligence in Field Devices Delivers New Application Value

Compressed Air Optimization

More variables delivered from field devices

Computation and networking capability continues to grow

- new applications

cost and privacy benefits

~Zero Unplanned Downtime for **Critical Valves**

50%

Lower Major Maintenance **Event Costs**

\$80K/Yr

Average Maintenance **Costs Savings**

20-30% Less Compressed Air Consumption

Partnered with edge or cloud deliver

Field devices become edge platforms

Analytics run at device or edge have low latency, communication

Available for demo at Technical Exhibit Hall

The Cloud

OT and Cloud

Cloud has conquered IT and will have an increasing role in OT

- Initial skepticism disappearing rapidly, driven by digital transformation programs
- Not just a HW platform but a computing model for software deployment and support
- Will bring IT benefits to OT, but with some data access challenges

Cloud providers adding OT-like services natively in the cloud

- •

Azure Time-Series Insights

Cloud vendors are offering horizontal applications

Based on data Offered as SaaS

IoT Hub

PaaS "Toolkits"

OT suppliers will continue to offer domain-centric

Based on domain expertise

Offered on-prem or SaaS

Industry **Specific MES** **Industry Specific** Analytics

Process Control Applications

Process Simulation

Cloud Enables OT to Enjoy IT Value Proposition

Vendor takes on infrastructure and some cybersecurity responsibility

No software to deploy on clients

Universal access from multiple clients

Elastic scalability

Pay as you go

Enterprise Level Coverage, Capability, & Access

Unified data model enables easy enterprise application development

- Consolidated reporting and dashboarding
- Compare and contrast performance of various plants

Integrate OT data with enterprise functions

• Business level optimization

Centralized expertise leveraged across the enterprise

• Both in-house and external partners

Operational redundancy

• Secure visualization anywhere

Customer Instance Regional Emerson Instance

Cloud Enables On-Demand, Tailored Customer Support

licenses. Easily view upgrades and hotfixes.

"I want help sizing a DP flow meter, including a CAD model so I can quickly check dimensions"

Increase efficiency with engineering tools to size and configure, generate drawings, and collaborate.

"I want access to my organization's quote and

Improve digital commerce processes with visibility to price, quotes, and order history.

"I want to access, download, and manage

View asset records to access product documents, order spare parts, and schedule service.

Cloud Technologies Have Revolutionized Software Development and Deployment

Containers	Fleet Management	Multi-Tenant Capability	SW
Modular deployment, functionality and security	Orchestrated provisioning and upgrade of entire software fleets	Lower execution cost and provides single instance upgrades	Sp ar infr
<image/>			Coll from equ Hig IoT Hu

Platform-as-a-Service

nd outsources software rastructure management

Edge

Claudio Fayad

The Edge is a New Paradigm for **Software Workload Deployment** and Connection

Leverages Cloud Technologies

Built on Current OT Infrastructure

Deploys Software as Orchestrated Workloads

Redefines the Communication Architecture

Data Centric

Secure by Design

The Edge is where IT and **OT innovation come together**

Emerson and AspenTech Have Enabled the Evolution of the Industrial Edge with Distributed Compute Nodes, Smart Protocols and Cohesive Software Environment

Smart Protocols

Plant Asset Management

Asset Performance Management

Asset Reliability & Performance

Machinery Health & Protection

The Edge Automation Environment Removes Functional Silos, Converging Embedded Functionality as a Software-Defined Workloads

Available for demo at Technical Exhibit Hall

Containerized Automation

On-Demand Scalability

Fault Tolerance & Redundancy

Easy Deployment &

Upgrades

Improved Performance

Efficient Data Distribution

A Flexible Connectivity Approach Eliminates the Silos Created by the Purdue Model

Combines OT and IT protocols locations

Remove horizontal silos

Eliminate bottlenecks

Adapts to required latency

Enable workloads to be executed on most effective

Increases data accessibility

Data Democratization Requires an Integrated and Contextualized Data Model

Data Silos

Unified Data Model Sites **Areas** Units **Production** Equipment Instruments **Real Time Data Time Series** Reliability

Knowledge Base

What Happened to My Plant Today???

Data Silos

Reliability Data

Production Data

What Happened to My Plant Today???

Unified Data Model

The Yield Today was **95%** due to an Unexpected Shutdown of Unit A.

There were **3 alarms** on Unit A before the shutdown associated with instruments connected to **Pump 101**

The Unexpected Shutdown was most likely caused by a combination of lack of lubrication and inclement weather, causing excessive vibration on the pump

Knowledge Base

"Secure by Design" Augments Traditional "Perimeter Defense" to Enable Easy, Next-Level Cybersecurity in a Hyper-Connected Ecosystem

Traditional Approach – Perimeter Defense

- Antivirus & Allow-Listing
- Secure Remote Access
- Two Factor Authentication
- USB Protection
- Smart Firewalls

- Smart Switches
- Backup & Recovery
- Integrated Patch Mgmt.
- Security Info & Event Mgmt.
- Network Security Monitor

New Additional Protection – Secure by Design

Secure Development

- All Developers Trained
- Assess and Monitor 3rd
 Party Software
- ISA Secure Certified

Containerized Isolation

- Isolated Secure Sandbox
- App Containerization

Zero Trust Architecture

- No Intrinsic Trust
- Encrypted
- Communications
- Node Authentication
- Only Pre-Approved
- Connections

The First Products are Focused into Connectivity and Extensibility

DeltaV Edge Environment

- Secure replica of DeltaV data and context
- Secure sandbox to run analytics and custom code
- Connectivity with Cloud and other Edge Workloads

PACedge

Edge Controller

- Integrated real-time and non-critical workloads without compromise
- Connect islands of automation

IIoT Software

The Future Automation System is Software-Defined, Data-Centric & Flexible **Enterprise Ops Platform**

Automation Edge

Enterprise Operations Platform

Operations Anywhere

Software-Defined Infrastructure

Distributed CHARMs with APL

Summary

Industrial Automation Architecture

Now vs. Future

EMERSON

Now

Siloed system architectures

Data islands

Cybersecurity defense in depth

Hardware-centric perception

Device administration

Single-site operations

Mostly CAPEX

Boundless Automation

Inherently secure by design

Software-defined and data-centric

Fleet administration

Cloud-enabled enterprise operations

Emerson and AspenTech Form a Unique Opportunity to Unify the Broadest Suite of Best-in-Class Software on a Next-Gen Software Platform

Empowered digital workers drive even more value

Truly optimizing operations requires tensioning multiple domains simultaneously

Enabled by uniform data access and context across the enterprise

New computational architecture allows optimal execution based on specific requirements

Inherent security, fleet deployment and support, elastic scalability and software defined

The Plantweb Digital Ecosystem Powers World Class Performance

Sensing & visualization to optimize insight and decision making

Predictive diagnostics & monitoring for maximum asset reliability

Precision control to ensure safe, responsive operations

Modeling & AI-powered analytics for performance optimization

