Rosemount™ 499ADO

Dissolved Oxygen Sensor
Safety information

⚠️ CAUTION

Sensor/process application compatibility
The wetted sensor materials may not be compatible with process composition and operating conditions.
Application compatibility is entirely the operator’s responsibility.

⚠️ CAUTION

Equipment damage
Do not exceed pressure and temperature specifications
- Pressure: 65 psig (459 kPa abs) max.
- Temperature: 32 to 122 °F (0 to 50 °C)

⚠️ WARNING

Physical access
Unauthorized personnel may potentially cause significant damage to and/or misconfiguration of end users’ equipment. This could be intentional or unintentional and needs to be protected against.
Physical security is an important part of any security program and fundamental to protecting your system. Restrict physical access by unauthorized personnel to protect end users’ assets. This is true for all systems used within the facility.

Notice

ROSEMOUNT™ (“SELLER”) SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL ERRORS IN THIS MANUAL OR OMISSIONS FROM THIS MANUAL. SELLER MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THIS MANUAL AND, IN NO EVENT, SHALL SELLER BE LIABLE FOR ANY SPECIAL OR CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS OF PRODUCTION, LOSS OF PROFITS, ETC.

PRODUCT NAMES USED HEREIN ARE FOR MANUFACTURER OR SUPPLIER IDENTIFICATION ONLY AND MAY BE TRADEMARKS/REGISTERED TRADEMARKS OF THESE COMPANIES.

THE CONTENTS OF THIS PUBLICATION ARE PRESENTED FOR INFORMATIONAL PURPOSES ONLY, AND WHILE EVERY EFFORT HAS BEEN MADE TO ENSURE THEIR ACCURACY, THEY ARE NOT TO BE CONSTRUED AS WARRANTIES OR GUARANTEES, EXPRESSED OR IMPLIED, REGARDING THE PRODUCTS OR SERVICES DESCRIBED HEREIN OR THEIR USE OR APPLICABILITY. WE RESERVE THE RIGHT TO MODIFY OR IMPROVE THE DESIGNS OR SPECIFICATIONS OF SUCH PRODUCTS AT ANY TIME.

SELLER DOES NOT ASSUME RESPONSIBILITY FOR THE SELECTION, USE, OR MAINTENANCE OF ANY PRODUCT. RESPONSIBILITY FOR PROPER SELECTION, USE, AND MAINTENANCE OF ANY SELLER PRODUCT REMAINS SOLELY WITH THE PURCHASER AND END-USER.

Warranty

1. LIMITED WARRANTY: Subject to the limitations contained in Section 2 herein and except as otherwise expressly provided herein, Rosemount™ (“Seller”) warrants that the firmware will execute the programming instructions provided by Seller and that the Goods manufactured or Services provided by Seller will be free from defects in materials or workmanship under normal use and care until the expiration of the applicable warranty period. Goods are warranted for twelve (12) months from the date of initial installation or eighteen (18) months from the date of shipment by Seller, whichever period expires first. Consumables and
Services are warranted for a period of 90 days from the date of shipment or completion of the Services. Products purchased by Seller from a third party for resale to Buyer ("Resale Products") shall carry only the warranty extended by the original manufacturer. Buyer agrees that Seller has no liability for Resale Products beyond making a reasonable commercial effort to arrange for procurement and shipping of the Resale Products. If Buyer discovers any warranty defects and notifies Seller thereof in writing during the applicable warranty period, Seller shall, at its option, promptly correct any errors that are found by Seller in the firmware or Services, or repair or replace F.O.B. point of manufacture that portion of the Goods or firmware found by Seller to be defective, or refund the purchase price of the defective portion of the Goods/Services. All replacements or repairs necessitated by inadequate maintenance, normal wear and usage, unsuitable power sources, unsuitable environmental conditions, accident, misuse, improper installation, modification, repair, storage or handling, or any other cause not the fault of Seller are not covered by this limited warranty, and shall be at Buyer's expense. Seller shall not be obligated to pay any costs or charges incurred by Buyer or any other party except as may be agreed upon in writing in advance by an authorized Seller representative. All costs of dismantling, reinstallation and freight, and the time and expenses of Seller's personnel for site travel and diagnosis under this warranty clause shall be borne by Buyer unless accepted in writing by Seller. Goods repaired and parts replaced during the warranty period shall be in warranty for the remainder of the original warranty period or ninety (90) days, whichever is longer. This limited warranty is the only warranty made by Seller and can be amended only in a writing signed by an authorized representative of Seller. Except as otherwise expressly provided in the Agreement, THERE ARE NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, EXPRESSED OR IMPLIED, AS TO MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, OR ANY OTHER MATTER WITH RESPECT TO ANY OF THE GOODS OR SERVICES. It is understood that corrosion or erosion of materials is not covered by our guarantee.

2. LIMITATION OF REMEDY AND LIABILITY: SELLER SHALL NOT BE LIABLE FOR DAMAGES CAUSED BY DELAY IN PERFORMANCE. THE SOLE AND EXCLUSIVE REMEDY FOR BREACH OF WARRANTY HEREUNDER SHALL BE LIMITED TO REPAIR, CORRECTION, REPLACEMENT, OR REFUND OF PURCHASE PRICE UNDER THE LIMITED WARRANTY CLAUSE IN SECTION 1 HEREIN. IN NO EVENT, REGARDLESS OF THE FORM OF THE CLAIM OR CAUSE OF ACTION (WHETHER BASED IN CONTRACT, INFRINGEMENT, NEGLIGENCE, STRICT LIABILITY, OTHER TORT, OR OTHERWISE), SHALL SELLER'S LIABILITY TO BUYER AND/OR ITS CUSTOMERS EXCEED THE PRICE TO BUYER OF THE SPECIFIC GOODS MANUFACTURED OR SERVICES PROVIDED BY SELLER GIVING RISE TO THE CLAIM OR CAUSE OF ACTION. BUYER AGREES THAT IN NO EVENT SHALL SELLER'S LIABILITY TO BUYER AND/OR ITS CUSTOMERS EXTEND TO INCLUDE INCIDENTAL, CONSEQUENTIAL OR PUNITIVE DAMAGES. THE TERM “CONSEQUENTIAL DAMAGES” SHALL INCLUDE, BUT NOT BE LIMITED TO, LOSS OF ANTICIPATED PROFITS, LOSS OF USE, LOSS OF REVENUE, AND COST OF CAPITAL.

Contents

First steps... 5
Install... 7
Wire... 12
Calibrate.. 20
Maintenance.. 22
Accessories.. 25
1 First steps

1.1 Unpack and inspect

Procedure

1. Inspect the shipping container. If it is damaged, contact the shipper immediately for instructions.

2. If there is no apparent damage, unpack the container. Be sure all items shown on the packing list are present. If items are missing, notify Emerson immediately.

1.2 Product description

Figure 1-1: Rosemount™ 499ADOSensor Parts

- **A. Membrane retainer**
- **B. Membrane assembly**
- **C. O-ring**
- **D. Cathode**
- **E. Electrolyte fill plug (wrap with pipe tape)**
- **F. Pressure equalizing port**
- **G. Sensor cable (integral cable shown)**

1.3 Specifications

Table 1-1: Sensor Specifications

<table>
<thead>
<tr>
<th>Physical characteristics</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 to 20 ppm (mg/L) as O₂. For measurements at the ppb level, choose 499ATrDO.</td>
</tr>
<tr>
<td>Pressure</td>
<td>0 to 65 psig (101 to 549 kPa abs)</td>
</tr>
<tr>
<td>Temperature (operating)</td>
<td>0 to 50 °C (32 to 122 °F)</td>
</tr>
<tr>
<td>Process connection</td>
<td>1 in. MNPT</td>
</tr>
</tbody>
</table>
Table 1-1: Sensor Specifications (continued)

<table>
<thead>
<tr>
<th>Physical characteristics</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetted parts</td>
<td>Noryl®, Viton, EPDM, Teflon® (TFE), and silicone</td>
</tr>
<tr>
<td>Cathode</td>
<td>Gold (not normally wetted)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.2 ppm at 77 °F (25 °C)</td>
</tr>
<tr>
<td>Linearity</td>
<td>2% (typ.)</td>
</tr>
<tr>
<td>Repeatability</td>
<td>±0.05 ppm at 77 °F (25 °C)</td>
</tr>
<tr>
<td>Response time</td>
<td>< 30 sec to 90% of final reading (0 to 2 ppm) at 25 °C (77 °F)</td>
</tr>
<tr>
<td>Electrolyte volume</td>
<td>25 mL (approx.)</td>
</tr>
<tr>
<td>Electrolyte life</td>
<td>4 to 6 months (approx.)</td>
</tr>
<tr>
<td>Cable length (standard integral cable)</td>
<td>25 ft (7.6 m)</td>
</tr>
<tr>
<td>Cable length (maximum)</td>
<td>300 ft (91 m)</td>
</tr>
</tbody>
</table>
| Sample flow | Flow through: 1 to 5 gpm (3.8 to 19 L/min)
 | Open channel: 1 ft/sec (0.3 m/sec)
 | Low flow cell: 2 to 5 gph (7.6 to 19 L/hr)
 | Agitation produced by bubbles in aeration basins usually provides adequate flow. |
| Weight/shipping weight | 0.5 kg / 1.5 kg (1 lb / 3 lb) |
2 Install

Install the sensor in a flowing sample. Keep the sample flow as constant as possible at a value within the following limits:

<table>
<thead>
<tr>
<th>Sample flow unit</th>
<th>Flow limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow through</td>
<td>1 to 5 gpm (3.8 to 19 L/min)</td>
</tr>
<tr>
<td>Open channel</td>
<td>1 ft/sec (0.3 m/sec)</td>
</tr>
<tr>
<td>Low flow cell</td>
<td>2 to 5 gph (7.6 to 19 L/hr)</td>
</tr>
</tbody>
</table>

The Rosemount 499ADO sensor can be installed in ponds or basins. Use a pipe screwed into the back-facing threads to protect the cable and keep liquid away from the back end of the sensor. The cable end of the sensor is not intended for submersion under liquid. See Figure 2-5. For additional mounting hardware, see product data sheet 71-HRMS.

Figure 2-1: Sensor Orientation
Figure 2-2: Flow Through 1-1/2 in. Tee

A. Union coupler
B. 1 in. NPT (2 places)
C. Sensor body: Rosemount 499A
D. 1 in. NPT flow cell adapter
E. O-ring 2-222
F. 1 1/2 in. sched 80 CPVC tee body
Figure 2-3: Flow Through 2 in. Tee

A. Union coupler
B. Adapter
C. 1 in. NPT (2 places)
D. Sensor body: Rosemount 499A
E. O-ring 2-222
F. 2 in. sched 80 PVC tee body
Figure 2-4: Low Flow Cell (PN 24091-00)
Figure 2-5: Sensor Installed in a Stand Pipe for Submersion Applications
3 Wire

NOTICE

For additional wiring information on this product, including sensor combinations not shown here, please refer to the Liquid Transmitter Wiring Diagrams.

Figure 3-1: Rosemount™ 499ADO-54 Sensor Wiring to Rosemount 1056 and 56 Transmitters
Figure 3-2: Rosemount 499ADO-54-60 and Rosemount 499ADO-54-VP Sensor Wiring to Rosemount 1056 and 56 Transmitters
Figure 3-3: Rosemount 499ADO-54 Sensor Wiring to Rosemount 5081 Transmitter
Figure 3-4: Rosemount 499ADO-60 and 499ADO-VP Sensor Wiring to Rosemount 5081 Transmitter
Figure 3-5: Rosemount 499ADO-54-VP Sensor Wiring to Rosemount 5081 Transmitter
Figure 3-6: Rosemount 499ADO-54 Sensor Wiring to Rosemount 1066 Transmitter

Note
Connect clear shield wires to sol gnd terminal on TB 2. Use wire nut and pigtail if necessary.
Figure 3-7: Rosemount 499ADO-60 and 499ADO-54-VP Sensor Wiring to Rosemount 1066 Transmitter

Note
Connect clear shield wires to solution ground terminal on TB 2. Use wire nut and pigtail if necessary.
When making a connection through a junction box (PN 23550-00), wire point-to-point.

NOTICE

Use a wire nut and pigtail (included) when connecting several wires to the same terminal.
4 **Calibrate**

4.1 **Zero point calibration**

Even in the absence of oxygen, the Rosemount 499ADO sensor generates a small signal called the zero current. Failing to correct for the zero current can introduce a bias, particularly if the oxygen concentration is small (<1 ppm). Zero the sensor when it is first placed in service and every time the fill solution is changed.

To zero the sensor:

Procedure

1. Pour a cup of deionized or bottled water.
2. Add a teaspoon of sodium sulfite to the water.
3. Place the sensor in the water.
4. Wait until the sensor current has reached a stable low value (at least two hours).
5. Follow the transmitter prompts for zeroing the sensor.

Note

Refer to the manual for the transmitter you are using (Rosemount 56, 1056, 5081, or 1066).

The zero current should be <200 nA.

4.2 **Full scale**

The Rosemount 499ADO sensor is best calibrated by exposing the sensor to water-saturated air.

Procedure

1. Pour a small amount of water into a cup.
2. Suspend the sensor, keeping the membrane dry, about 1/4 in. (6 mm) above the surface of the water.
3. Once readings are stable, follow the analyzer prompts to complete the calibration.
 The analyzer automatically calculates the equilibrium solubility of atmospheric oxygen in water under the prevailing temperature and barometric pressure.
4. After calibration, go to the **Diagnostics** menu and check the sensitivity.
 The sensitivity should be between 1,800 and 3,000 nA/ppm.
For more information, refer to the transmitter manual.
5 Maintenance

Periodic maintenance and cleaning are required for best performance of the sensor. Generally, the membrane and fill solution should be replaced every four to six months. Sensors installed in harsh or dirty environments require more frequent maintenance. The optimum maintenance frequency is best determined by experience.

⚠️ WARNING

PRESSURIZED SPRAY INJURY
Before removing the sensor, be absolutely certain that the process pressure is reduced to 0 psig and the process temperature is lowered to a safe level!

5.1 Cleaning the membrane

Keep the membrane and sensor tip clean and free from dirt. Clean the membrane with water sprayed from a wash bottle. Use a soft tissue to gently wipe the membrane.

5.2 Replacing the electrolyte solution and membrane

⚠️ WARNING

HARMFUL SUBSTANCE
Fill solution may cause irritation. May be harmful if swallowed. Read and follow manual.

Procedure

1. Unscrew the membrane retainer.
2. Remove the membrane assembly and O-ring.
 See Figure 1-1.
3. Hold the sensor over a container with the cathode pointing down.
4. Remove the fill plug.
5. Allow the electrolyte solution to drain out.
6. Inspect the cathode.
 a) If it is tarnished, clean it by gently rubbing in the direction of the existing scratches (do not use a circular motion) with 400-600 grit silicon carbide finishing paper.
 b) Rinse thoroughly with water.
7. Remove the old pipe tape from the plug.
8. Wrap the plug with one or two turns of pipe tape.
 a) Hold the membrane assembly with the cup formed by the membrane and membrane holder pointing up.
 b) Fill the cup with electrolyte solution.
 c) Leave the membrane assembly filled with electrolyte solution and set it aside.
10. Hold the sensor at about a 45° angle with the cathode end pointing up.
11. Add electrolyte solution through the fill hole until the liquid overflows.
12. Tap the sensor near the threads to release trapped air bubbles.
13. Add more electrolyte solution if necessary.
14. Place the fill plug in the electrolyte port and begin screwing it in.
15. After several threads have engaged, rotate the sensor so that the cathode is pointing up and continue tightening the fill plug. Do not overtighten.
16. Place a new O-ring in the groove around the cathode post.
17. Cover the holes at the base of the cathode stem with several drops of electrolyte solution.
18. Insert a small blunt probe, like a toothpick with the end cut off, through the pressure equalizing port. See Figure 1-1.

⚠️ CAUTION

EQUIPMENT DAMAGE
Do not use a sharp probe. It will puncture the bladder and destroy the sensor.

19. Gently press the probe against the bladder several times to force liquid through the holes at the base of the cathode stem. Keep pressing the bladder until no air bubbles can be seen leaving the holes. Be sure the holes remain covered with electrolyte solution.
20. Place a drop of electrolyte solution on the cathode; then place the membrane assembly over the cathode.
21. Screw the membrane retainer in place.
The sensor may require several hours operating at the polarizing voltage to equilibrate after the electrolyte solution has been replenished.
Accessories

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23747-06</td>
<td>Interconnecting cable, VP 6, 2.5 ft (0.8 m)</td>
</tr>
<tr>
<td>23747-04</td>
<td>Interconnecting cable, VP 6, 4 ft (1.2 m)</td>
</tr>
<tr>
<td>23747-02</td>
<td>Interconnecting cable, VP 6, 10 ft (3.0 m)</td>
</tr>
<tr>
<td>23747-07</td>
<td>Interconnecting cable, VP 6, 15 ft (4.6 m)</td>
</tr>
<tr>
<td>23747-08</td>
<td>Interconnecting cable, VP 6, 20 ft (6.1 m)</td>
</tr>
<tr>
<td>23747-09</td>
<td>Interconnecting cable, VP 6, 25 ft (7.6 m)</td>
</tr>
<tr>
<td>23747-10</td>
<td>Interconnecting cable, VP 6, 30 ft (9.1 m)</td>
</tr>
<tr>
<td>23747-03</td>
<td>Interconnecting cable, VP 6, 50 ft (15.2 m)</td>
</tr>
<tr>
<td>23747-11</td>
<td>Interconnecting cable, VP 6, 100 ft (30.5 m)</td>
</tr>
<tr>
<td>23567-00</td>
<td>1-1/2 in. flow through tee with 1-1/2 in. socket connections</td>
</tr>
<tr>
<td>915240-03</td>
<td>2 in. flow through tee with 3/4 in. FNPT connections</td>
</tr>
<tr>
<td>915240-04</td>
<td>2 in. flow through tee with 1 in. FNPT connections</td>
</tr>
<tr>
<td>915240-05</td>
<td>2 in. flow through tee with 1-1/2 in. FNPT connections</td>
</tr>
<tr>
<td>24091-00</td>
<td>Low flow cell</td>
</tr>
<tr>
<td>9390004</td>
<td>Rotameter: 0.5 - 5.0 gph</td>
</tr>
<tr>
<td>11275-01</td>
<td>Sensor handrail mounting assembly</td>
</tr>
<tr>
<td>12707-00</td>
<td>Jet spray cleaner</td>
</tr>
<tr>
<td>22550-00</td>
<td>Junction box without preamplifier</td>
</tr>
<tr>
<td>9200266</td>
<td>Extension cable for option -54 cable, unprepped</td>
</tr>
<tr>
<td>9200275</td>
<td>Extension cable for optimum EMI/RFI cable, unprepped</td>
</tr>
<tr>
<td>23747-00</td>
<td>Extension cable for optimum EMI/RFI cable, prepped</td>
</tr>
<tr>
<td>9210264</td>
<td>Dissolved oxygen sensor fill solution, 4 oz (125 mL)</td>
</tr>
<tr>
<td>23501-00</td>
<td>Dissolved oxygen membrane assembly: includes one membrane assembly and one O-ring</td>
</tr>
<tr>
<td>23502-00</td>
<td>Dissolved oxygen membrane assembly: includes three membrane assemblies and three O-rings</td>
</tr>
<tr>
<td>33521-02</td>
<td>Membrane retainer</td>
</tr>
<tr>
<td>33523-03</td>
<td>Fill plug</td>
</tr>
</tbody>
</table>