Quick Installation Guide
00825-0100-4662, Rev CD
June 2013

Rosemount 8732

Rosemount 8732E Magnetic Flowmeter System
(Transmitter and Sensor)

Start

Step 1: Pre-Installation
Step 2: Handling
Step 3: Mounting
Step 4: Installation
 (Flanged Sensors)
 (Wafer Sensors)
 (Sanitary Sensors)
Step 5: Grounding
Step 6: Wiring
Step 7: Basic Configuration
Product Certifications

End
IMPORTANT NOTICE

This document provides basic installation guidelines for the Rosemount® 8732. It does not provide instructions for detailed configuration, diagnostics, maintenance, service, troubleshooting, explosion-proof, flame-proof, or intrinsically safe (I.S.) installations. Refer to the Rosemount 8732 reference manual (document number 00809-0100-4662) for more instructions. The manual and this QIG are also available electronically on www.rosemount.com.

WARNING

Failure to follow these installation guidelines could result in death or serious injury:

Installation and servicing instructions are for use by qualified personnel only. Do not perform any servicing other than that contained in the operating instructions, unless qualified. Verify that the operating environment of the sensor and transmitter is consistent with the appropriate FM, CSA, ATEX, or IECEx approval.

Do not connect a Rosemount 8732 to a non-Rosemount sensor that is located in an explosive atmosphere.

WARNING

The sensor liner is vulnerable to handling damage. Never place anything through the sensor for the purpose of lifting or gaining leverage. Liner damage can render the sensor useless.

To avoid possible damage to the sensor liner ends, do not use metallic or spiral-wound gaskets. If frequent removal is anticipated, take precautions to protect the liner ends. Short spool pieces attached to the sensor ends are often used for protection.

Correct flange bolt tightening is crucial for proper sensor operation and life. All bolts must be tightened in the proper sequence to the specified torque limits. Failure to observe these instructions could result in severe damage to the sensor lining and possible sensor replacement.

WARNING

Rosemount 8705 Magnetic Flowtube units ordered with non-standard paint options may be subject to electrostatic discharge.

To avoid electrostatic charge build-up, do not rub the meter body with a dry cloth or clean with solvents.
STEP 1: PRE-INSTALLATION

Before installing the Rosemount 8732 Magnetic Flowmeter Transmitter, there are several pre-installation steps that should be completed to make the installation process easier:

- Identify the options and configurations that apply to your application
- Set the hardware switches if necessary
- Consider mechanical, electrical, and environmental requirements

Mechanical Considerations

The mounting site for the Rosemount 8732 transmitter should provide enough room for secure mounting, easy access to conduit ports, full opening of the transmitter covers, and easy readability of the LOI screen (see Figure 1).

If the Rosemount 8732 is mounted separately from the sensor, it is not subject to limitations that might apply to the sensor.

NOTE:

* M20 and PG 13.5 connections are available with the use of threaded conduit adapters.
Environmental Considerations
To ensure maximum transmitter life, avoid excessive heat and vibration. Typical problem areas:
• high-vibration lines with integrally mounted transmitters
• warm-climate installations in direct sunlight
• outdoor installations in cold climates.
Remote-mounted transmitters may be installed in the control room to protect the electronics from the harsh environment and provide easy access for configuration or service.
Both remotely and integrally mounted Rosemount 8732 transmitters require external power so there must be access to a suitable power source.

Installation Procedures
Rosemount 8732 installation includes both detailed mechanical and electrical installation procedures.

Mount the Transmitter
At a remote site the transmitter may be mounted on a pipe up to two inches in diameter or against a flat surface.

Pipe Mounting
To mount the transmitter on a pipe:
1. Attach the mounting bracket to the pipe using the mounting hardware.
2. Attach the Rosemount 8732 to the mounting bracket using the mounting screws.

Identify Options and Configurations
The standard application of the 8732 includes a 4–20 mA output and control of the sensor coils and electrodes. Other applications may require one or more of the following configurations or options:
• HART Multidrop Configuration
• Discrete Output
• Discrete Input
• Pulse Output
Be sure to identify those options and configurations that apply to your situation and keep a list of them nearby for consideration during the installation and configuration procedures.
Hardware Jumpers/Switches
The 8732 electronics board is equipped with four user-selectable hardware switches. These switches set the Failure Alarm Mode, Internal/External Analog Power, Internal/External Pulse Power, and Transmitter Security. The standard configuration for these switches when shipped from the factory are as follows:

- **Failure Alarm Mode:** HIGH
- **Internal/External Analog Power(1):** INTERNAL
- **Internal/External Pulse Power(1):** EXTERNAL
- **Transmitter Security:** OFF

(1) For electronics with intrinsically safe (I.S. Output) approvals, analog and pulse power must be provided externally. The electronics do not include these hardware switches.

Changing Hardware Switch Settings
In most cases, it is not necessary to change the setting of the hardware switches. If you need to change the switch settings, complete the steps outlined in the manual.

Electrical Considerations
Before making any electrical connections to the Rosemount 8732, consider local and plant electrical standards and be sure to have the proper power supply, conduit, and other accessories necessary to comply with these standards.

Rotate Transmitter Housing
The electronics housing can be rotated on the sensor in 90° increments by loosening the four mounting bolts on the bottom of the housing and reinstalling the bolts. When the housing is returned to its original position, be sure the surface is clean and there is no gap between the housing and the sensor.
STEP 2: HANDLING

Handle all parts carefully to prevent damage. Whenever possible, transport the system to the installation site in the original shipping containers. PTFE-lined sensors are shipped with end covers that protect it from both mechanical damage and normal unrestrained distortion. Remove the end covers just before installation.

Figure 2. Rosemount 8705 sensor support for handling
STEP 3: MOUNTING

Upstream/Downstream Piping

To ensure specification accuracy over widely varying process conditions, install the sensor a minimum of five straight pipe diameters upstream and two pipe diameters downstream from the electrode plane (see Figure 3).

Installations with reduced upstream and downstream straight runs are possible. In reduced straight run installations, absolute performance may shift. Reported flow rates will still be highly repeatable.

Flow Direction

The sensor should be mounted so the FORWARD end of the flow arrow, shown on the sensor tube adaptor points in the direction of flow through the sensor. See Figure 4.
Rosemount 8732

Sensor Location
The sensor should be installed in a location that ensures the sensor remains full during operation. Vertical installation allows upward process fluid flow and keeps the cross-sectional area full, regardless of flow rate. Horizontal installation should be restricted to low piping sections that are normally full.

Figure 5. Sensor orientation

![Sensor orientation diagram](image)

Sensor Orientation
The electrodes in the sensor are properly orientated when the two measurement electrodes are in the 3 and 9 o'clock positions or within 45° from the vertical, as shown on the right of Figure 6. Avoid any mounting orientation that positions the top of the sensor at 90° from the vertical position as shown on the left of Figure 6.

Figure 6. Mounting position

- **Incorrect**
- **Correct**
STEP 4: INSTALLATION

Flanged Sensors

Gaskets

The sensor requires a gasket at each of its connections to adjacent devices or piping. The gasket material selected must be compatible with the process fluid and operating conditions. Metallic or spiral-wound gaskets can damage the liner. Gaskets are required on each side of a grounding ring. All other applications (including sensors with lining protectors or a grounding electrode) require only one gasket on each end connection.

Figure 7. Flanged gasket placement

Flange Bolts

NOTE:

Do not bolt one side at a time. Tighten each side simultaneously. Example:

1. Snug upstream
2. Snug downstream
3. Tighten upstream
4. Tighten downstream

Do not snug and tighten the upstream side and then snug and tighten the downstream side. Failure to alternate between the upstream and downstream flanges when tightening bolts may result in liner damage.

Suggested torque values by sensor line size and liner type are listed in Table 1 for ASME B16.5 flanges and Table 2 for EN flanges. Consult the factory if the flange rating of the sensor is not listed. Tighten flange bolts on the upstream side of the sensor in the incremental sequence shown in Figure 8 to 20% of the suggested torque values. Repeat the process on the downstream side of the sensor. For sensors with more or less flange bolts, tighten the bolts in a similar crosswise sequence. Repeat this entire tightening sequence at 40%, 60%, 80%, and 100% of the suggested torque values or until the leak between the process and sensor flanges stop. If leakage has not stopped at the suggested torque values, the bolts can be tightened in
additional 10% increments until the joint stops leaking, or until the measured torque value reaches the maximum torque value of the bolts. Practical consideration for the integrity of the liner often leads the user to distinct torque values to stop leakage due to the unique combinations of flanges, bolts, gaskets, and sensor liner material.

Check for leaks at the flanges after tightening the bolts. Failure to use the correct tightening methods can result in severe damage. Sensors require a second tightening 24 hours after the initial installation. Over time, sensor liner materials may deform under pressure.

Figure 8. Flange bolt torquing sequence

<table>
<thead>
<tr>
<th>Size Code</th>
<th>Line Size</th>
<th>PTFE/ETFE/PFA liners</th>
<th>Polyurethane/Neoprene/Linatex/Adiprene liner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Class 150 (pound-feet)</td>
<td>Class 300 (pound-feet)</td>
</tr>
<tr>
<td>005</td>
<td>0.5 inch (15 mm)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>010</td>
<td>1 inch (25 mm)</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>015</td>
<td>1.5 inch (40 mm)</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>020</td>
<td>2 inch (50 mm)</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>025</td>
<td>2.5 inch (65 mm)</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>030</td>
<td>3 inch (80 mm)</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>040</td>
<td>4 inch (100 mm)</td>
<td>26</td>
<td>50</td>
</tr>
<tr>
<td>050</td>
<td>5 inch (125 mm)</td>
<td>36</td>
<td>60</td>
</tr>
<tr>
<td>060</td>
<td>6 inch (150 mm)</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>080</td>
<td>8 inch (200 mm)</td>
<td>60</td>
<td>32</td>
</tr>
<tr>
<td>100</td>
<td>10 inch (250 mm)</td>
<td>55</td>
<td>80</td>
</tr>
<tr>
<td>120</td>
<td>12 inch (300 mm)</td>
<td>65</td>
<td>125</td>
</tr>
<tr>
<td>140</td>
<td>14 inch (350 mm)</td>
<td>85</td>
<td>110</td>
</tr>
<tr>
<td>160</td>
<td>16 inch (400 mm)</td>
<td>85</td>
<td>160</td>
</tr>
<tr>
<td>180</td>
<td>18 inch (450 mm)</td>
<td>120</td>
<td>170</td>
</tr>
<tr>
<td>200</td>
<td>20 inch (500 mm)</td>
<td>110</td>
<td>175</td>
</tr>
<tr>
<td>240</td>
<td>24 inch (600 mm)</td>
<td>165</td>
<td>280</td>
</tr>
<tr>
<td>300</td>
<td>30 inch (750 mm)</td>
<td>195</td>
<td>415</td>
</tr>
<tr>
<td>360</td>
<td>36 inch (900 mm)</td>
<td>280</td>
<td>575</td>
</tr>
</tbody>
</table>
Table 2. Flange Bolt Torque and Bolt Load Specifications for 8705 (EN 1092-1)

<table>
<thead>
<tr>
<th>Size Code</th>
<th>Line Size</th>
<th>PTFE/ETFE/PFA liner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PN10 (Newton-meter)</td>
</tr>
<tr>
<td>005</td>
<td>0.5-inch (15 mm)</td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>1 inch (25 mm)</td>
<td></td>
</tr>
<tr>
<td>015</td>
<td>1.5 inch (40 mm)</td>
<td></td>
</tr>
<tr>
<td>020</td>
<td>2 inch (50 mm)</td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>2.5 inch (65 mm)</td>
<td></td>
</tr>
<tr>
<td>030</td>
<td>3 inch (80 mm)</td>
<td></td>
</tr>
<tr>
<td>040</td>
<td>4 inch (100 mm)</td>
<td></td>
</tr>
<tr>
<td>050</td>
<td>5.0 inch (125 mm)</td>
<td></td>
</tr>
<tr>
<td>060</td>
<td>6 inch (150 mm)</td>
<td></td>
</tr>
<tr>
<td>080</td>
<td>8 inch (200 mm)</td>
<td>130</td>
</tr>
<tr>
<td>100</td>
<td>10 inch (250 mm)</td>
<td>100</td>
</tr>
<tr>
<td>120</td>
<td>12 inch (300 mm)</td>
<td>120</td>
</tr>
<tr>
<td>140</td>
<td>14 inch (350 mm)</td>
<td>160</td>
</tr>
<tr>
<td>160</td>
<td>16 inch (400 mm)</td>
<td>220</td>
</tr>
<tr>
<td>180</td>
<td>18 inch (450 mm)</td>
<td>190</td>
</tr>
<tr>
<td>200</td>
<td>20 inch (500 mm)</td>
<td>230</td>
</tr>
<tr>
<td>240</td>
<td>24 inch (600 mm)</td>
<td>290</td>
</tr>
</tbody>
</table>
Table 2. (continued) Flange Bolt Torque and Bolt Load Specifications for 8705 (EN 1092-1)

<table>
<thead>
<tr>
<th>Size Code</th>
<th>Line Size</th>
<th>Polyurethane, Linatex, Adiprene and Neoprene Liners</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PN 10</td>
</tr>
<tr>
<td></td>
<td>(Newton-meter)</td>
<td>(Newton-meter)</td>
</tr>
<tr>
<td>010</td>
<td>1 inch (25 mm)</td>
<td></td>
</tr>
<tr>
<td>015</td>
<td>1.5 inch (40 mm)</td>
<td></td>
</tr>
<tr>
<td>020</td>
<td>2 inch (50 mm)</td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>2.5 inch (65 mm)</td>
<td></td>
</tr>
<tr>
<td>030</td>
<td>3 inch (80 mm)</td>
<td></td>
</tr>
<tr>
<td>040</td>
<td>4 inch (100 mm)</td>
<td></td>
</tr>
<tr>
<td>050</td>
<td>5 inch (125 mm)</td>
<td></td>
</tr>
<tr>
<td>060</td>
<td>6 inch (150 mm)</td>
<td></td>
</tr>
<tr>
<td>080</td>
<td>8 inch (200 mm)</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>10 inch (250 mm)</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>12 inch (300 mm)</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>14 inch (350 mm)</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>16 inch (400 mm)</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>18 inch (450 mm)</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>20 inch (500 mm)</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>24 inch (600 mm)</td>
<td></td>
</tr>
</tbody>
</table>
Wafer Sensors

Gaskets

The sensor requires a gasket at each of its connections to adjacent devices or piping. The gasket material selected must be compatible with the process fluid and operating conditions. Metallic or spiral-wound gaskets can damage the liner. Gaskets are required on each side of a grounding ring. See Figure below.

Figure 9. Wafer gasket placement

Alignment

1. On 1.5 through 8-inch (40 through 200 mm) line sizes. Rosemount strongly recommends installing the alignment spacers provided to insure proper centering of the wafer sensor between the process flanges. Sensor sizes of 0.15, 0.30, 0.5 and 1 in. (4 through 25 mm), do not require alignment spacers.

2. Insert studs for the bottom side of the sensor between the pipe flanges and center the alignment spacer in the middle of the stud. See Figure 9 for the bolt hole locations recommended for the spacers provided. Stud specifications are listed in Table 3.

3. Place the sensor between the flanges. Make sure that the alignment spacers are properly centered on the studs. For vertical flow installations slide the o-ring over the stud to keep the spacer in place. See Figure 9. To ensure the spacers match the flange size and class rating for the process flanges see Table 4.

4. Insert the remaining studs, washers, and nuts.

5. Tighten to the torque specifications shown in Table 5. Do not over-tighten the bolts or the liner may be damaged.

Table 3. Stud specifications

<table>
<thead>
<tr>
<th>Nominal Sensor Size</th>
<th>Stud Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15 – 1 inch (4 – 25 mm)</td>
<td>316 SST ASTM A193, Grade B8M Class 1 threaded mounted studs</td>
</tr>
<tr>
<td>1.5 – 8 inch (40 – 200 mm)</td>
<td>CS, ASTM A193, Grade B7, threaded mounting studs</td>
</tr>
</tbody>
</table>

NOTE:

Sensor sizes of 0.15, 0.30, and 0.5 in. mount between AMSE 1/2-inch flanges. Using carbon steel bolts on sensor sizes of 0.15, 0.30, 0.5 and 1 in. (15 and 25 mm), rather than the required stainless steel bolts, will degrade the flow sensor measurement.
Table 4. Rosemount alignment spacer table

<table>
<thead>
<tr>
<th>Dash No.</th>
<th>Line Size</th>
<th>Flange Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>0A15</td>
<td>1.5</td>
<td>JIS 10K-20K</td>
</tr>
<tr>
<td>0A20</td>
<td>2</td>
<td>JIS 10K-20K</td>
</tr>
<tr>
<td>0A30</td>
<td>3</td>
<td>JIS 10K</td>
</tr>
<tr>
<td>0B15</td>
<td>1.5</td>
<td>JIS 40K</td>
</tr>
<tr>
<td>AA15</td>
<td>1.5</td>
<td>ASME - 150#</td>
</tr>
<tr>
<td>AA20</td>
<td>2</td>
<td>ASME - 150#</td>
</tr>
<tr>
<td>AA30</td>
<td>3</td>
<td>ASME - 150#</td>
</tr>
<tr>
<td>AA40</td>
<td>4</td>
<td>ASME - 150#</td>
</tr>
<tr>
<td>AA60</td>
<td>6</td>
<td>ASME - 150#</td>
</tr>
<tr>
<td>AB15</td>
<td>1.5</td>
<td>ASME - 300#</td>
</tr>
<tr>
<td>AB20</td>
<td>2</td>
<td>ASME - 300#</td>
</tr>
<tr>
<td>AB30</td>
<td>3</td>
<td>ASME - 300#</td>
</tr>
<tr>
<td>AB40</td>
<td>4</td>
<td>ASME - 300#</td>
</tr>
<tr>
<td>AB60</td>
<td>6</td>
<td>ASME - 300#</td>
</tr>
<tr>
<td>AB80</td>
<td>8</td>
<td>ASME - 300#</td>
</tr>
<tr>
<td>AJ15</td>
<td>1.5</td>
<td>ASME - 300#</td>
</tr>
<tr>
<td>AB20</td>
<td>2</td>
<td>ASME - 300#</td>
</tr>
<tr>
<td>AB30</td>
<td>3</td>
<td>ASME - 300#</td>
</tr>
<tr>
<td>AB40</td>
<td>4</td>
<td>ASME - 300#</td>
</tr>
<tr>
<td>AB60</td>
<td>6</td>
<td>ASME - 300#</td>
</tr>
<tr>
<td>AB80</td>
<td>8</td>
<td>ASME - 300#</td>
</tr>
<tr>
<td>AB90</td>
<td>10</td>
<td>ASME - 300#</td>
</tr>
<tr>
<td>AD40</td>
<td>4</td>
<td>EN 1092-1 - PN10/16</td>
</tr>
<tr>
<td>AD60</td>
<td>6</td>
<td>EN 1092-1 - PN10/16</td>
</tr>
<tr>
<td>AD80</td>
<td>8</td>
<td>EN 1092-1 - PN10/16</td>
</tr>
<tr>
<td>DC80</td>
<td>8</td>
<td>EN 1092-1 - PN25</td>
</tr>
<tr>
<td>DD15</td>
<td>1.5</td>
<td>EN 1092-1 - PN10/16</td>
</tr>
<tr>
<td>DD20</td>
<td>2</td>
<td>EN 1092-1 - PN10/16</td>
</tr>
<tr>
<td>DD30</td>
<td>3</td>
<td>EN 1092-1 - PN10/16</td>
</tr>
<tr>
<td>DD40</td>
<td>4</td>
<td>EN 1092-1 - PN25/40</td>
</tr>
<tr>
<td>DD60</td>
<td>6</td>
<td>EN 1092-1 - PN25/40</td>
</tr>
<tr>
<td>DD80</td>
<td>8</td>
<td>EN 1092-1 - PN40</td>
</tr>
<tr>
<td>KA80</td>
<td>8</td>
<td>AS40871-PN16</td>
</tr>
<tr>
<td>RA20</td>
<td>2</td>
<td>AS40871-PN2T/135</td>
</tr>
<tr>
<td>RC20</td>
<td>2</td>
<td>AS40871-PN2T/135</td>
</tr>
<tr>
<td>RC30</td>
<td>3</td>
<td>AS40871-PN2T/135</td>
</tr>
<tr>
<td>RC40</td>
<td>4</td>
<td>AS40871-PN2T/135</td>
</tr>
<tr>
<td>RC60</td>
<td>6</td>
<td>AS40871-PN2T/135</td>
</tr>
<tr>
<td>RC80</td>
<td>8</td>
<td>AS40871-PN2T/135</td>
</tr>
</tbody>
</table>

To order an Alignment Spacer Kit (qty 3 spacers) use p/n 08711-3211-xxxx along with the Dash No. above.
Flange Bolts
Wafer sensors require threaded studs. See Figure 8 for torque sequence. Always check for leaks at the flanges after tightening the flange bolts. All sensors require a second torquing 24 hours after initial flange bolt tightening.

Table 5. Rosemount 8711 torque specifications

<table>
<thead>
<tr>
<th>Size Code</th>
<th>Line Size</th>
<th>Pound-feet</th>
<th>Newton-meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>15F</td>
<td>0.15 inch (4 mm)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>30F</td>
<td>0.30 inch (8 mm)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>005</td>
<td>0.5 inch (15 mm)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>010</td>
<td>1 inch (25 mm)</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>015</td>
<td>1.5 inch (40 mm)</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>020</td>
<td>2 inch (50 mm)</td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td>030</td>
<td>3 inch (80 mm)</td>
<td>40</td>
<td>54</td>
</tr>
<tr>
<td>040</td>
<td>4 inch (100 mm)</td>
<td>50</td>
<td>68</td>
</tr>
<tr>
<td>060</td>
<td>6 inch (150 mm)</td>
<td>70</td>
<td>95</td>
</tr>
</tbody>
</table>

Sanitary Sensors
Gaskets
The sensor requires a gasket at each of its connections to adjacent devices or piping. The gasket material selected must be compatible with the process fluid and operating conditions. Gaskets are supplied between the IDF fitting and the process connection fitting, such as a Tri-Clamp fitting, on all Rosemount 8721 Sanitary sensors except when the process connection fittings are not supplied and the only connection type is an IDF fitting.

 Alignment and Bolting
Standard plant practices should be followed when installing a magmeter with sanitary fittings. Unique torque values and bolting techniques are not required.

Figure 10. Rosemount 8721 sanitary installation
Rosemount 8732

STEP 5: GROUNDING

Use Table 6 to determine which process grounding option to follow for proper installation. The sensor case should be earth grounded in accordance with national and local electrical codes. Failure to do so may impair the protection provided by the equipment.

Table 6. Process grounding installation

<table>
<thead>
<tr>
<th>Type of Pipe</th>
<th>Grounding Straps</th>
<th>Grounding Rings</th>
<th>Reference Electrode</th>
<th>Lining Protectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductive Unlined Pipe</td>
<td>See Figure 11 (1)</td>
<td>See Figure 11 (1)</td>
<td>Not Required</td>
<td>See Figure 12</td>
</tr>
<tr>
<td>Conductive Lined Pipe</td>
<td>Insufficient Grounding</td>
<td>See Figure 12</td>
<td>See Figure 11</td>
<td>See Figure 12</td>
</tr>
<tr>
<td>Non-Conductive Pipe</td>
<td>Insufficient Grounding</td>
<td>See Figure 13</td>
<td>Not Recommended</td>
<td>See Figure 13</td>
</tr>
</tbody>
</table>

(1) Ground Rings/Lining Protectors are not required for process reference. Ground Straps per Figure 12 would be sufficient.

Figure 11. Grounding Straps in Conductive Lines Pipe or Reference Electrode in Lined Pipe

Figure 12. Grounding with Grounding Rings or Lining Protectors in Conductive Pipe
Quick Installation Guide
00825-0100-4662, Rev CD
June 2013

Rosemount 8732

Figure 13. Grounding with Grounding Rings or Lining Protectors in Non-Conductive Pipe

Figure 14. Grounding with Reference Electrode in Conductive Unlined Pipe
STEP 6: WIRING

This wiring section covers the connection between the transmitter and sensor, the 4-20 mA loop, and supplying power to the transmitter. Follow the conduit information, cable requirements, and disconnect requirements in the sections below.

Conduit Ports and Connections

Both the sensor and transmitter junction boxes have ports for 1/2-inch NPT conduit connections with optional CM20 or PG 13.5 connections available. These connections should be made in accordance with national, local, and plant electrical codes. Unused ports should be sealed with metal plugs. Proper electrical installation is necessary to prevent errors due to electrical noise and interference. Separate conduits are not necessary for the coil drive and electrode cables, but a dedicated conduit line between each transmitter and sensor is required. Shielded cable must be used for best results in electrically noisy environments. When preparing all wire connections, remove only the insulation required to fit the wire completely under the terminal connection. Removal of excessive insulation may result in an unwanted electrical short to the transmitter housing or other wire connections. For flanged sensors installed into an application requiring IP68 protection, sealed cable glands, conduit, and conduit plugs that meet IP68 ratings are required.

Conduit Requirements

A single dedicated conduit run for the coil drive and electrode cable is needed between the sensor and the remote transmitter. See Figure 15. Bundled cables in a single conduit are likely to create interference and noise problems in the system. Use one set of cables per conduit run.

Figure 15: Conduit preparation

<table>
<thead>
<tr>
<th>Wrong</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coil Drive and Electrode Cables

Power Outputs
STEP 6 CONTINUED...

Run the appropriate size cable through the conduit connections in your magnetic flowmeter system. Run the power cable from the power source to the transmitter. Run the coil drive and electrode cables between the flowmeter sensor and transmitter.

- Electrode cables should not be run together and should not be in the same cable tray as AC or DC power wiring.
- Device must be properly grounded according to national and local electric codes.
- Rosemount combination cable part number 08732-0753-1003 (ft) or 08732-0753-2004 (m) is required to be used to meet EMC requirements.

Transmitter to Sensor Wiring

The transmitter can be integral to the sensor or remotely mounted following the wiring instructions.

Remote Mount Cable Requirements and Preparation

For installations using the individual coil drive and electrode cable, lengths should be limited to less than 1,000 feet (300 meters). Equal length cable is required for each. See Table 7.

For installations using the combination coil drive and electrode cable, lengths should be limited to less than 330 feet (100 meters). See Table 7.

Prepare the ends of the coil drive and electrode cables as shown in Figure 16. Limit the unshielded wire length to 1-inch on both the coil drive and electrode cables. Any unsheathed wire should be wrapped with proper insulation. Excessive lead length or failure to connect cable shields can create electrical noise resulting in unstable meter readings.

Figure 16. Cable preparation detail

NOTE: Dimensions are in inches (millimeters).
STEP 6 CONTINUED...

To order cable specify length as quantity desired.
25 feet = Qty (25) 08732-0753-1003

Table 7. Cable requirements

<table>
<thead>
<tr>
<th>Description</th>
<th>Length</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil Drive Cable (14 AWG)</td>
<td>ft</td>
<td>08712-0060-0001</td>
</tr>
<tr>
<td>Belden 8720, Alpha 2442 or equivalent</td>
<td>m</td>
<td>08712-0060-2013</td>
</tr>
<tr>
<td>Electrode Cable (20 AWG)</td>
<td>ft</td>
<td>08712-0061-0001</td>
</tr>
<tr>
<td>Belden 8762, Alpha 2411 or equivalent</td>
<td>m</td>
<td>08712-0061-2003</td>
</tr>
<tr>
<td>Combination Cable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coil Drive Cable (18 AWG) and Electrode Cable (20 AWG)</td>
<td>ft</td>
<td>08732-0753-1003</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>08732-0753-2004</td>
</tr>
</tbody>
</table>

WARNING

Potential Shock Hazard Across Terminals 1 & 2 (40 Vac).

Wiring the Transmitter to the Sensor

When using individual cables for coil drive and electrode refer to Table 8. If using the combination coil drive and electrode cable refer to Table 9. See Figure 17 for transmitter specific wiring diagram.

1. Connect the coil drive cable using terminals 1, 2, and 3 (ground).
2. Connect the electrode cable using terminals 17, 18, and 19.

Table 8. Individual coil and electrode cables

<table>
<thead>
<tr>
<th>Transmitter Terminal</th>
<th>Sensor Terminal</th>
<th>Wire Gauge</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>14</td>
<td>Clear</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>14</td>
<td>Black</td>
</tr>
<tr>
<td>3 or Ground</td>
<td>3 or Ground</td>
<td>14</td>
<td>Shield</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>20</td>
<td>Shield</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>20</td>
<td>Black</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>20</td>
<td>Clear</td>
</tr>
</tbody>
</table>

Table 9. Combination coil and electrode cable

<table>
<thead>
<tr>
<th>Transmitter Terminal</th>
<th>Sensor Terminal</th>
<th>Wire Gauge</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>18</td>
<td>Red</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>18</td>
<td>Green</td>
</tr>
<tr>
<td>3 or Ground</td>
<td>3 or Ground</td>
<td>18</td>
<td>Shield</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>20</td>
<td>Shield</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>20</td>
<td>Black</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>20</td>
<td>White</td>
</tr>
</tbody>
</table>
STEP 6 CONTINUED...

NOTE:
When using the Rosemount supplied combination cable, the electrode cables for terminals 18 and 19 contain an additional shield wire. These two shield wires should be tied with the main shield wire at terminal 17 at the sensor terminal block and cut back to the insulation in the transmitter junction box. See Figure 18.

NOTE:
When using the Rosemount supplied combination cable, the electrode cables for terminals 18 and 19 contain an additional shield wire. These two shield wires should be tied with the main shield wire at terminal 17 at the sensor terminal block and cut back to the insulation in the transmitter junction box. See Figure 18.
STEP 6 CONTINUED...

Integral Mount Transmitters

The interconnecting wire harness for an integral mount transmitter is installed at the factory. See Figure 19. Do not use cable other than that supplied by Emerson Process Management, Rosemount, Inc.

Figure 19. 8732EST integral mount wiring diagram
Connecting the 4–20 mA Analog Signal

Cabling considerations
If possible, use individually shielded twisted pair cable, either in single pair or multi-pair varieties. Unshielded cables may be used for short distances, provided ambient noise and cross-talk will not adversely impact communication. The minimum conductor size is 0.51 mm diameter (#24 AWG) for cable runs less than 1,500 meters (5,000 ft.) and 0.81 mm diameter (#20 AWG) for longer distances. Resistance in the loop must be 1000 ohms or less.

Powering the 4-20mA Output
For transmitters with non-I.S. Output, the 4–20 mA output signal may be powered internally or externally. The default position of this switch is in the internal position and is located on the front of the electronics board.

8732E terminal connections
Connect negative (-)DC to Terminal 1 and positive (+)DC to Terminal 2. See Figure 20.

Internal Power Source
The 4–20 mA analog signal loop is powered from the transmitter itself.

External Power Source
The 4–20 mA analog signal loop is powered from an external power source. HART multidrop installations require a 10–30 V DC external analog power source.

NOTE:
If a HART Field Communicator or control system will be used, it must be connected across a minimum of 250 ohms resistance in the loop.

To connect any of the other output options (pulse output and/or digital input/output), consult the comprehensive product manual.
Powering the Transmitter
The 8732E transmitter is designed to be powered by 90-250 Vac, 50–60 Hz or 12–42 Vdc. Before connecting power to the Rosemount 8732E, consider the following standards and be sure to have the proper power supply, conduit, and other accessories. Wire the transmitter according to national, local, and plant electrical requirements for the supply voltage. See Figure 21.

Figure 21. DC Power supply current requirements

Supply Wire Requirements
Use 12 to 18 AWG wire rated for the proper temperature of the application. For connections in ambient temperatures above 140 °F (60 °C), use a wire rated for 176 °F (80 °C). For ambient temperatures greater than 176 °F (80 °C), use a wire rated for 230 °F (110 °C). For DC powered transmitters with extended cable lengths, verify that there is a minimum of 12 V DC at the terminals of the transmitter.

Disconnects
Connect the device through an external disconnect or circuit breaker. Clearly label the disconnect or circuit breaker and locate it near the transmitter and per local electrical control.

Installation Category
The installation category for the 8732E is (Overvoltage) Category II.

Overcurrent Protection
The Rosemount 8732E flowmeter transmitter requires Overcurrent protection of the supply lines. Maximum ratings of Overcurrent devices are shown in Table 10.

<table>
<thead>
<tr>
<th>Power System</th>
<th>Fuse Rating</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-250 V AC</td>
<td>2 Amp, Quick Acting</td>
<td>Bussman AGC2 or Equivalent</td>
</tr>
<tr>
<td>12-42 V DC</td>
<td>3 Amp, Quick Acting</td>
<td>Bussman AGC3 or Equivalent</td>
</tr>
</tbody>
</table>
STEP 6 CONTINUED...

8732E Power Supply
For AC power applications (90-250 VAC, 50-60 Hz) connect AC Neutral to terminal 9 (AC N/L2) and connect AC Line to terminal 10 (AC/L1). For DC power applications connect negative to terminal 9 (DC -) and positive to terminal 10 (DC +). Units powered by 12-42 V DC power supply may draw up to 1 amp of current. See Figure 22 for terminal block connections.

Figure 22. 8732E Transmitter power connections

Cover Jam Screw
For transmitter housings shipped with a cover jam screw, the screw should be properly installed once the transmitter has been wired and powered up. Follow these steps to install the cover jam screw:

1. Verify that the cover jam screw is completely threaded into the housing.
2. Install the transmitter housing cover and verify that the cover is tight against the housing.
3. Using an M4 hex wrench, loosen the jam screw until it contacts the transmitter cover.
4. Turn the jam screw an additional 1/2 turn counterclockwise to secure the cover. (Note: Application of excessive torque may strip the threads.)
5. Verify that the cover cannot be removed.
STEP 7: BASIC CONFIGURATION

Once the magnetic flowmeter is installed and power has been supplied, the transmitter must be configured through the basic setup. These parameters can be configured through either a local operator interface or a HART communication device. A table of all the parameters are on page 27. Descriptions of the more advanced functions are included in the comprehensive product manual.

Basic Setup

Tag

Tag is the quickest and shortest way of identifying and distinguishing between transmitters. Transmitters can be tagged according to the requirements of your application. The tag may be up to eight characters long.

Flow Units (PV)

The flow rate units variable specifies the format in which the flow rate will be displayed. Units should be selected to meet your particular metering needs.

Line Size

The line size (sensor size) must be set to match the actual sensor connected to the transmitter. The size must be specified in inches.

URV (Upper Range Value)

The upper range value (URV) sets the 20 mA point for the analog output. This value is typically set to full-scale flow. The units that appear will be the same as those selected under the units parameter. The URV may be set between –39.3 ft/s to 39.3 ft/s (–12 m/s to 12 m/s). There must be at least 1 ft/s (0.3 m/s) span between the URV and LRV.

LRV (Lower Range Value)

The lower range value (LRV) sets the 4 mA point for the analog output. This value is typically set to zero flow. The units that appear will be the same as those selected under the units parameter. The LRV may be set between –39.3 ft/s to 39.3 ft/s (–12 m/s to 12 m/s). There must be at least 1 ft/s (0.3 m/s) span between the URV and LRV.

Calibration Number

The sensor calibration number is a 16-digit number generated at the Rosemount factory during flow calibration and is unique to each sensor.
Local Operator Interface

To activate the optional Local Operator Interface (LOI), press the DOWN arrow two times. Use the UP, DOWN, LEFT, and RIGHT arrows to navigate the menu structure. A map of the LOI menu structure is shown on page 28. The display can be locked to prevent unintentional configuration changes. The display lock can be activated through a HART communication device, or by holding the UP arrow for 10 seconds. When the display lock is activated, DL will appear in the lower right hand corner of the display. To deactivate the display lock (DL), hold the UP arrow for 10 seconds. Once deactivated, the DL will no longer appear in the lower right hand corner of the display.

Table 11. Handheld fast keys (HART Handheld communicator)

<table>
<thead>
<tr>
<th>Function</th>
<th>HART Fast Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Variables</td>
<td>1, 1</td>
</tr>
<tr>
<td>Primary Variable (PV)</td>
<td>1, 1, 1</td>
</tr>
<tr>
<td>PV Percent of Range</td>
<td>1, 1, 2</td>
</tr>
<tr>
<td>PV Analog Output (AO)</td>
<td>1, 1, 3</td>
</tr>
<tr>
<td>Totalizer Set-Up</td>
<td>1, 1, 4</td>
</tr>
<tr>
<td>Totalizer Units</td>
<td>1, 1, 4, 1</td>
</tr>
<tr>
<td>Cross Total</td>
<td>1, 1, 4, 2</td>
</tr>
<tr>
<td>Net Total</td>
<td>1, 1, 4, 3</td>
</tr>
<tr>
<td>Reverse Total</td>
<td>1, 1, 4, 4</td>
</tr>
<tr>
<td>Start Totalizer</td>
<td>1, 1, 4, 5</td>
</tr>
<tr>
<td>Stop Totalizer</td>
<td>1, 1, 4, 6</td>
</tr>
<tr>
<td>Reset Totalizer</td>
<td>1, 1, 4, 7</td>
</tr>
<tr>
<td>Pulse Output</td>
<td>1, 1, 5</td>
</tr>
<tr>
<td>Basic Setup</td>
<td>1, 3</td>
</tr>
<tr>
<td>Tag</td>
<td>1, 3, 1</td>
</tr>
<tr>
<td>Flow Units</td>
<td>1, 3, 2</td>
</tr>
<tr>
<td>PV Units</td>
<td>1, 3, 2, 1</td>
</tr>
<tr>
<td>Special Units</td>
<td>1, 3, 2, 2</td>
</tr>
<tr>
<td>Volume Unit</td>
<td>1, 3, 2, 2, 1</td>
</tr>
<tr>
<td>Base Volume Unit</td>
<td>1, 3, 2, 2, 2</td>
</tr>
<tr>
<td>Conversion Number</td>
<td>1, 3, 2, 2, 3</td>
</tr>
<tr>
<td>Base Time Unit</td>
<td>1, 3, 2, 2, 4</td>
</tr>
<tr>
<td>Flow Rate Unit</td>
<td>1, 3, 2, 2, 5</td>
</tr>
<tr>
<td>Line Size</td>
<td>1, 3, 3</td>
</tr>
<tr>
<td>PV Upper Range Value (URV)</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td>PV Lower Range Value (LRV)</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>Calibration Number</td>
<td>1, 3, 6</td>
</tr>
<tr>
<td>PV Damping</td>
<td>1, 3, 7</td>
</tr>
<tr>
<td>Review</td>
<td>1, 5</td>
</tr>
</tbody>
</table>
Figure 23. Local Operator Interface (LOI) menu tree for the Rosemount 8732E
Product Certifications

Approved Manufacturing Locations
Rosemount Inc. — Eden Prairie, Minnesota, USA
Fisher-Rosemount Tecnologías de Flujo, S.A. de C.V. — Chihuahua, Mexico
Emerson Process Management Flow — Ede, The Netherlands
Asia Flow Technology Center — Nanjing, China

EUROPEAN DIRECTIVE INFORMATION
The EC declaration of conformity can be found on page 36. The most recent revision can be found at www.rosemount.com.

Type n protection type in accordance with EN50021
- Closing of entries in the device must be carried out using the appropriate EEx e or EEx n metal cable gland and metal blanking plug or any appropriate ATEX approved cable gland and blanking plug with IP66 rating certified by an EU approved certification body.

CE Marking
Complies with EN 61326-1: 2006

For Rosemount 8732E transmitters:
Complies with Essential Health and Safety Requirements:
EN 60079-0: 2006
EN 60079-1: 2007
EN 60079-7: 2007
EN 60079-11: 2007
EN 60079-26: 2004
EN 60079-27: 2006
EN 50281-1-1: 1998 + A1

International Certificates
Rosemount Inc. complies with the following IEC Requirements.

C-Tick Marking
For Rosemount 8732E transmitters:
IEC 60079-0: 2004
IEC 60079-1: 2007-04
IEC 60079-11: 2006
IEC 60079-26: 2004
IEC 60079-7: 2006-07
IEC 61241-0: 2004
IEC 61241-1: 2004

NOTE:
For the 8732E transmitters with a local operator interface (LOI), the lower ambient temperature limit is -20 °C.
Rosemount 8732

North American Certifications

Factory Mutual (FM)

N0 Non-incendive for Class I, Division 2
- Groups A, B, C, and D non-flammable fluids
 \(T_4 \leq 60 ^\circ C \leq T_a \leq +60 ^\circ C\)
- Dust-ignition proof Class II/III, Division 1
 Groups E, F, and G \(T_5 \leq 60 ^\circ C\)
- Hazardous Locations; Enclosure Type 4X

N5 Non-incendive for Class I, Division 2,
- Groups A, B, C, and D flammable fluids
 \(T_4 \leq 60 ^\circ C \leq T_a \leq +60 ^\circ C\)
- Dust-ignition proof Class II/III, Division 1
 Groups E, F, and G \(T_5 \leq 60 ^\circ C\)
- Hazardous Locations; Enclosure Type 4X
 Requires sensors with N5 Approval

E5 Explosion proof for Class I, Division 1
- Groups C and D \(T_6 \leq 60 ^\circ C\)
- Dust-ignition proof Class II/III, Division 1
- Groups E, F, and G \(T_5 \leq 60 ^\circ C\)
- Non-incendive for Class I, Division 2
- Groups A, B, C, and D flammable fluids
 \(T_4 \leq 60 ^\circ C \leq T_a \leq +60 ^\circ C\)
- Hazardous Locations; Enclosure Type 4X

Canadian Standards Association (CSA)

N0 Non-incendive for Class I, Division 2
- Groups A, B, C, and D non-flammable fluids
 \(T_4 \leq 60 ^\circ C \leq T_a \leq +60 ^\circ C\)
- Dust-ignition proof Class II/III, Division 1
 Groups E, F, and G \(T_5 \leq 60 ^\circ C\)
- Hazardous Locations; Enclosure Type 4X

European Certifications

E1 ATEX Flameproof
- Certificate No: KEMA 07ATEX0073 X
- II 2G Ex de IIC T6 or
- II 2G Ex de [ia] IIC T6
 without LOI \(-50 ^\circ C \leq T_a \leq +60 ^\circ C\)
 with LOI \(-20 ^\circ C \leq T_a \leq +60 ^\circ C\)
- \(V_{\text{max}} = 250 \text{ V AC} \) or \(42 \text{ V DC}\)
- CE 0575
Quick Installation Guide
00825-0100-4662, Rev CD
June 2013

Rosemount 8732

ED ATEX Flameproof
Certificate No: KEMA 07ATEX0073X
II 2G Ex de IIB T6 or
II 2G Ex de [ia] IIB T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_{\text{max}} = 250 V AC or 42 V DC
0575

ND ATEX Dust
Certificate No: KEMA 07ATEX0073X
II 1D Ex tD A20 IP66 T100 °C or
with I.S. outputs
II G [Ex ia] IIC
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_{\text{max}} = 250 V AC or 42 V DC
IP 66
0575

Special Conditions for Safe Use (KEMA 07ATEX0073X):
Contact Rosemount Inc. for information on the dimensions of the flameproof joints. The property class of the security screws which attach the flowtube or junction box to the transmitter is SST A2-70.

Installation Instructions:
The cable and conduit entry devices and blanking elements shall be of a certified flameproof type, suitable for the conditions of use and correctly installed. With the use of conduit, a certified stopping box shall be provided immediately to the entrance of the enclosure.

N1 ATEX Type n
Certificate No: Baseefa 07ATEX0203X
II 3G Ex nA nL IIC T4
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_{\text{max}} = 42 V DC
IP 66
0575

Special Conditions for Safe Use (x):
The apparatus is not capable of withstanding the 500V electrical strength test required by Clause 6.8.1 of EN 60079-15: 2005. This must be taken into account when installing the apparatus.
International Certifications

IECEx

E7 IECEx Flameproof
Certificate No: KEM 07.0038X
Ex IIC or Ex de [ia] IIC T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
$V_{\text{max}} = 250$ V AC or 42 V DC

EF IECEx Flameproof
Certificate No: KEM 07.0038X
Ex de IIB or Ex de [ia] IIB T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
$V_{\text{max}} = 250$ V AC or 42 V DC

NF IECEx Dust
Certificate No: KEM 07.0038X
Ex tD A20 IP66 T 100 °C
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
$V_{\text{max}} = 250$ V AC or 42 V DC

Special Conditions for Safe Use (KEM 07.0038X):
Contact Rosemount Inc. for information on the dimensions of the flameproof joints. The property class of the security screws which attach the flowtube or junction box to the transmitter is SST A2-70.

Installation Instructions:
The cable and conduit entry devices and blanking elements shall be of a certified flameproof or increased safety type, suitable for the conditions of use and correctly installed. With the use of conduit, a certified stopping box shall be provided immediately to the entrance of the enclosure.

N7 IECEx Type n
Certificate No: IECEx BAS 07.0062X
Ex nA nL IIC T4
with FISCO / FNICO output
Ex nA nL [ia] IIC T4
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
$V_{\text{max}} = 42$ V DC

Special Conditions for Safe Use (x):
The apparatus is not capable of withstanding the 500V electrical strength test required by Clause 6.8.1 of IEC 60079-15: 2005. This must be taken into account when installing the apparatus.
Quick Installation Guide
00825-0100-4662, Rev CD
June 2013

Rosemount 8732

INMETRO - Brazil
E2 INMETRO Flameproof
Certificate No: NCC 12.1177 X
Ex de IIC T6 Gb IP66
Ex de [ia IIC Ga] IIC T6 Gb IP66
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_{\text{max}} = 250 V AC or 42 V DC

EB INMETRO Flameproof
Certificate No: NCC 12.1177 X
Ex de IIB T6 Gb IP66 or
Ex de [ia IIC Ga] IIB T6 Gb IP66
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_{\text{max}} = 250 V AC or 42 V DC

Special conditions for safe use:
If the equipment needs maintenance, the company Emerson Process Management Brazil should be contacted for information about flameproof seals.
The integral assembly of the 8732E flow transmitter with 8711 or 8705 sensor is allowed only for processes where the maximum ambient temperature is 60 °C. For processes where the ambient temperature is above 60 °C, the assembly of the 8732E flow transmitter must be remote.

Technical characteristics:
Electrical Supply:
250 V, 1 A, 40 VA or 42 V, 1 A, 20 W (maximum)
Transmitter Version Ex de:
Circuit 4-20mA output: 30 V, 30 mA, 900 mW (maximum)
Transmitter with intrinsically safe active circuits (Ex de [ia] version):
Circuit with 4-20 mA output - protection type Ex ia IIC:
U_o = 23.1 V, I_o = 179.8 mA, P_o = 1.03 W, C_o = 137 nF, L_o = 600 μH
Pulse Circuit - protection type Ex ia IIC:
U_o = 23.1 V, I_o = 12.7 mA, P_o = 73.1 mW, C_o = 135.6 nF, L_o = 198 mH
Transmitter with intrinsically safe passive circuits (Ex de [ia] version):
Circuit with 4-20 mA output - protection type Ex ia IIC, only for connection to a certified intrinsically safe circuit:
U_i = 30 V, I_i = 300 mA, P_i = 1W, C_i = 924 pF, L_i = 0 μH
U_o = 13.2 V, C_o = 1 μF
Pulse Circuit - protection type Ex ia IIC, only for connection to a certified intrinsically safe circuit:
U_i = 30 V, I_i = 100 mA, P_i = 1W, C_i = 4.4 nF, L_i = 1.3 mH
U_o = 13.02 V, I_o = 2.08 mA, P_o = 6.7 mW, C_o = 1 μF, L_o = 1 H
From the safety point of view, circuits should be considered to be connected to ground.
The intrinsically safe 4-20 mA output and pulse circuits, are not galvanically isolated from each other.
NEPSI - China

E3 NEPSI Flameproof
Certificate No: GYJ071438X
Ex de IIC T6 or Ex de [ia] IIC T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_{max} = 250 V AC or 42 V DC

EP NEPSI Flameproof
Certificate No: GYJ071438X
Ex de IIB T6 or Ex de [ia] IIB T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_{max} = 250 V AC or 42 V DC

KOSHA - Korea

E9 KOSHA Flameproof
Certificate No: 2008-2094-Q1X
Ex de IIC or Ex de [ia] IIC T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_{max} = 250 V AC or 42 V DC

EK KOSHA Flameproof
Certificate No: 2008-2094-Q1X
Ex de IIB or Ex de [ia] IIB T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_{max} = 250 V AC or 42 V DC

GOST - Russia

E8 GOST Flameproof
Ex de IIC T6 or Ex de [ia] IIC T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
IP67

EM GOST Flameproof
Ex de IIB T6 or Ex de [ia] IIB T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
IP67
Sensor Approval Information

Table 12. Sensor option codes\(^{(1)}\)

<table>
<thead>
<tr>
<th>Approval Codes</th>
<th>Rosemount 8705 Sensor</th>
<th>Rosemount 8707 Sensor</th>
<th>Rosemount 8711 Sensor</th>
<th>Rosemount 8721 Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For Non-flammable Fluids</td>
<td>For Flammable Fluids</td>
<td>For Non-flammable Fluids</td>
<td>For Flammable Fluids</td>
</tr>
<tr>
<td>NA</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>N1</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>N5</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N7</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>NF</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E5(^{(2)})</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E8</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E9</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EK</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KD</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) CE Marking is standard on Rosemount 8705, 8711, and 8721. No hazardous location certifications are available on the Rosemount 570TM.

(2) Available in line sizes up to 8 in. (200 mm) only.
Figure 24. Declaration of conformity

We,

Rosemount Inc.
12001 Technology Drive
Eden Prairie, MN 55344-3695
USA
declare under our sole responsibility that the product(s),

Model 8732E Magnetic Flowmeter Transmitter

manufactured by,

Rosemount Inc.
12001 Technology Drive and
8200 Market Boulevard
Eden Prairie, MN 55344-3695 Chanhassen, MN 55317-9687
USA
USA
to which this declaration relates, is in conformity with the provisions of the European
Community Directives, including the latest amendments, as shown in the attached schedule.

Assumption of conformity is based on the application of harmonized or applicable technical
standards and, when applicable or required, a European Community notified body certification,
as shown in the attached schedule.

January 21, 2010
(date of issue)

Mark J Fleigle
Vice President Technology and New Products
(name - printed)
(function name - printed)
Quick Installation Guide
00825-0100-4662, Rev CD
June 2013

Schedule
EC Declaration of Conformity RFD 1068 Rev. E

All Models
EN 61326-1: 2006

LVD Directive (2006/95/EC)
All Models
EN 61010-1: 2001

ATEX Directive (94/9/EC)
Model 8732E Magnetic Flowmeter Transmitter

KEMA 07ATEX0073 X – Flameproof, with Increased Safety Terminal(s), Intrinsically Safe Output(s), Dust

- Equipment Group II, Category 2 G:
 - Ex d IIB IIC T6
 - Ex de IIB IIC T6
 - Ex e IIB IIC (Junctionbox)

- Equipment Group II, Category 2 (1) G:
 - Ex de [ia] IIB IIC T6 (Transmitter)

- Equipment Group II, Category (1) G
 - [Ex ia] IIC

- Equipment Group II, Category 1 D:
 - Ex dA A20 IP66 T100 °C

EN 60079-0: 2006
EN 60079-1: 2007
EN 60079-7: 2007
EN 60079-11: 2007
EN 60079-26: 2004
EN 60079-27: 2006
EN 61241-0: 2006
EN 61241-1: 2004
Quick Installation Guide
00825-0100-4662, Rev CD
June 2013

Rosemount 8732

Schedule
EC Declaration of Conformity RFD 1068 Rev. E

BASEEF07ATEX8203X – Type n, Intrinsically Safe Output

- Equipment Group II, Category 3 G
- Ex nA nL IIC T4

- Equipment Group II, Category 3(1) G
- Ex nA nL [ia] IIC T4

EN 60079-0: 2006
EN 60079-15: 2005
EN 60079-11: 2007

ATEX Notified Bodies for EC Type Examination Certificate

- KEMA [Notified Body Number: 0344]
 Utrechtseweg 310, 6812 AR Arnhem
 P.O. Box 5185, 6802 ED Arnhem
 The Netherlands
 Postbank 6794647

- Baseefa [Notified Body Number: 1180]
 Rockhead Business Park, Staden Lane
 Buxton, Derbyshire SK17 9RZ
 United Kingdom

ATEX Notified Body for Quality Assurance

- Det Norske Veritas (DNV) [Notified Body Number: 0575]
 Veritasveien 1, N-1322
 Hovik, Norway