Rosemount™ 3051 Pressure Transmitter and Rosemount™ 3051CF Series Flow Meter

with 4-20 mA HART® and 1-5 Vdc Low Power Protocol
Safety messages

Before installing the transmitter, confirm the correct device driver is loaded on the host systems. See System readiness.

NOTICE

This guide provides basic guidelines for Rosemount™ 3051 Transmitters. It does not provide instructions for configuration, diagnostics, maintenance, service, troubleshooting, Explosion-Proof, Flame-Proof, or intrinsically safe (I.S.) installations. Refer to the Rosemount 3051 Reference Manual for more instructions. This manual is also available electronically on Emerson.com/Rosemount.

WARNING

Explosions
Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the local, national, and international standards, codes, and practices. Review product certifications for any restrictions associated with a safe installation.

In an explosion-proof/flameproof installation, do not remove the transmitter covers when power is applied to the unit.

Process leaks
Process leaks may cause harm or result in death.

To avoid process leaks, only use the O-ring designed to seal with the corresponding flange adapter.

Electrical shock
Electrical shock can result in death or serious injury.

Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

Conduit/cable entries
Unless marked, the conduit/cable entries in the transmitter housing use a ½–14 NPT thread form. Entries marked “M20” are M20 × 1.5 thread form. On devices with multiple conduit entries, all entries will have the same thread form. Only use plugs, adapters, glands, or conduit with a compatible thread form when closing these entries.

When installing in a hazardous location, use only appropriately listed or Ex certified plugs, glands, or adapters in cable/conduit entries.

Physical access
Unauthorized personnel may potentially cause significant damage to and/or misconfiguration of end users’ equipment. This could be intentional or unintentional and needs to be protected against.

Physical security is an important part of any security program and fundamental to protecting your system. Restrict physical access by unauthorized personnel to protect end users’ assets. This is true for all systems used within the facility.

Contents
Mount the transmitter..5
1 Mount the transmitter

1.1 Liquid flow applications

Procedure
1. Place taps to the side of the line.
2. Mount beside or below the taps.
3. Mount the transmitter so that the drain/vent valves are oriented upward.

1.2 Gas flow applications

Procedure
1. Place taps in the top or side of the line.
2. Mount beside or above the taps.

Note
Bracket required to support the transmitter and the 1/4-in. tubing going into the transmitter.
1.3 Steam flow applications

Procedure

1. Place taps to the side of the line.
2. Mount beside or below the taps.
3. Fill impulse lines with water.
1.4 Panel and pipe mount

Figure 1-1: Panel and Pipe Mounting

Panel mount

Pipe mount

Coplanar flange

Traditional flange

Rosemount™ 3051T

Rosemount 3051H

(1) 5/16 x 1½ panel bolts are customer supplied.
1.5 Bolting considerations

If the transmitter installation requires assembly of the process flanges, manifolds, or flange adapters, follow these assembly guidelines to ensure a tight seal for optimal performance characteristics of the transmitters. Use only bolts supplied with the transmitter or sold by Emerson as spare parts. Figure 1-2 illustrates common transmitter assemblies with the bolt length required for proper transmitter assembly.

Figure 1-2: Common Transmitter Assemblies

- **A. Transmitter with coplanar flange**
- **B. Transmitter with coplanar flange and optional flange adapters**
- **C. Transmitter with traditional flange and optional flange adapters**
- **D. Transmitter with coplanar flange and optional manifold and flange adapters**

Bolts are typically carbon steel or stainless steel. Confirm the material by viewing the markings on the head of the bolt and referencing Table 1. If bolt material is not shown in Table 1, contact the local Emerson Process Management representative for more information.

1.5.1 Bolt installation

Bolt installation procedure.

Note

Carbon steel bolts do not require lubrication and the stainless steel bolts are coated with a lubricant to ease installation. However, no additional lubricant should be applied when installing either type of bolt.
Procedure

1. Finger-tighten the bolts.
2. Torque the bolts to the initial torque value using a crossing pattern (see Table 1-1 for torque values).
3. Torque the bolts to the final torque value using the same crossing pattern (see Table 1-1 for torque values).
4. Verify that the flange bolts are protruding through the isolator plate before applying pressure.

Table 1-1: Torque Values for the Flange and Flange Adapter Bolts

<table>
<thead>
<tr>
<th>Bolt material</th>
<th>Head markings</th>
<th>Initial torque</th>
<th>Final torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Steel (CS)</td>
<td></td>
<td>300 in-lb</td>
<td>650 in-lb</td>
</tr>
<tr>
<td>Stainless Steel (SST)</td>
<td></td>
<td>150 in-lb</td>
<td>300 in-lb</td>
</tr>
</tbody>
</table>
1.6 **O-rings with flange adapters**

WARNING

Failure to install proper flange adapter O-rings may cause process leaks, which can result in death or serious injury. The two flange adapters are distinguished by unique O-ring grooves. Only use the O-ring that is designed for its specific flange adapter, as shown below.

Figure 1-3: O-ring Location

Rosemount 3051S/3051/2051

A. Flange adapter
B. O-ring
C. PFTE-based profile (square)
D. Elastomer profile (round)

Whenever the flanges or adapters are removed, visually inspect the O-rings. Replace them if there are any signs of damage, such as nicks or cuts. If you replace the O-rings, re-torque the flange bolts and alignment screws after installation to compensate for seating of the PTFE O-ring.

1.7 **Environmental seal for housing**

For NEMA® 4X, IP66, and IP68 requirements, use thread sealing (PTFE) tape or paste on male threads of conduit to provide a water and dust tight seal. Consult factory if other ingress protection ratings are required.

For M20 threads, install conduit plugs to full thread engagement or until mechanical resistance is met.

1.8 **In-line gage transmitter orientation**

The low side pressure port (atmospheric reference) on the in-line gage transmitter is located in the neck of the transmitter, behind the housing. The
vent path is 360° around the transmitter between the housing and sensor. (See Figure 1-4.)

Keep the vent path free of any obstruction, including but not limited to paint, dust, and lubrication by mounting the transmitter so that fluids can drain away.

Figure 1-4: In-line Gage Low Side Pressure Port

A. Pressure port location
2 Housing rotation

To improve field access to wiring or to better view the optional LCD display:

Procedure

1. Loosen the housing rotation set screw using a 5/64-in. hex wrench.
2. Turn the housing left or right up to a maximum of 180 ° from its original position.\(^{(3)}\)
3. Re-tighten the housing rotation set screw to a maximum of 7 in.-lb when desired location is reached.

Note
Over-rotating will damage the transmitter.

Figure 2-1: Housing Rotation

A. Housing rotation set screw (5/64-in.)

\(^{(3)}\) Rosemount 3051C original position aligns with "H" side; Rosemount 3051T original position is the opposite side of the bracket holes.
3 **Set the jumpers**

If alarm and security jumpers are not installed, the transmitter will operate normally with the default alarm condition alarm *high* and the security *off*.

Procedure

1. If the transmitter is installed, secure the loop, and remove power.
2. Remove the housing cover opposite the field terminal side. Do not remove the instrument cover in explosive atmospheres when the circuit is live.
3. Reposition the jumper. Avoid contact with the leads and the terminals. See Figure 3-1 for the location of the jumper and the ON and OFF positions.
4. Reattach the transmitter cover. The cover must be fully engaged to comply with explosion-proof requirements.

Figure 3-1: Transmitter Electronics Board

Without LCD display

![Transmitter Electronics Board without LCD display](image)

With LCD display

![Transmitter Electronics Board with LCD display](image)

A. Alarm

B. Security
4 Connect the wiring and power up

Figure 4-1 shows wiring connections necessary to power a Rosemount 3051 and enable communications with a handheld communicator. For low-power transmitters, refer to the Rosemount 3051 Reference Manual.

Use the following steps to wire the transmitter:

Procedure

1. Remove the housing cover on the field terminals side.
2. Connect the positive lead to the “+” terminal (PWR/COMM) and the negative lead to the “–” terminal.
3. Ensure full contact with terminal block screw and washer. When using a direct wiring method, wrap wire clockwise to ensure it is in place when tightening the terminal block screw.

The use of a pin or a ferrule wire terminal is not recommended as the connection may be more susceptible to loosening over time or under vibration.

4. Ensure proper grounding.

It is important that the instrument cable shield:

- Be trimmed close and insulated from touching the transmitter housing
- Be connected to the next shield if cable is routed through a junction box
- Be connected to a good earth ground at the power supply end

Do not connect the powered signal wiring to the test terminals. Power could damage the test diode in the test connection. Shielded twisted pair cable should be used for best results. Use 24 AWG or larger wire and do not exceed 5,000 ft (1500 m).

5. Plug and seal unused conduit connections.
6. If applicable, install wiring with a drip loop. Arrange the drip loop so the bottom is lower than the conduit connections and the transmitter housing.
7. Replace the housing cover.
Figure 4-1: Transmitter Wiring Diagrams (4–20 mA)

A. Current meter
B. \(R_L \geq 250\Omega \)
C. 24 Vdc supply

Figure 4-2: Low Power Transmitter Wiring

A. Voltmeter
B. 6–12 Vdc supply

Note
Installation of the transient protection terminal block does not provide transient protection unless the Rosemount 3051 case is properly grounded.

4.1 Signal wiring grounding

Do not run signal wiring in conduit or open trays with power wiring, or near heavy electrical equipment. Grounding terminations are provided on the outside of the electronics housing and inside the terminal compartment. These grounds are used when transient protect terminal blocks are installed.
or to fulfill local regulations. See Step 2 for more information on how the cable shield should be grounded.

Procedure

1. Remove the field terminals housing cover.
2. Connect the wiring pair and ground as indicated in Figure 4-3.
 - Be trimmed close and insulated from touching the transmitter housing
 - Continuously connect to the termination point
 - Be connected to a good earth ground at the power supply end

Figure 4-3: Wiring

![Wiring Diagram]

- A. Minimize distance
- B. Trim shield and insulate
- C. Ground for transient protection
- D. Shield connected to power supply ground
- E. Insulate shield

3. Replace the housing cover.
 It is recommended the cover be tightened until there is no gap between the cover and the housing.

4. Plug and seal unused conduit connections.
4.2 Power supply for a 4-20 mA HART®

The transmitter operates on 10.5-4.2 Vdc at the terminal of the transmitter. The dc power supply should provide power with less than two percent ripple. Loops with a 250 Ω resistance require a minimum of 16.6 V.

Note
The transmitter must have a minimum of 250 Ω to communicate with a Field Communicator. If you are using a single power supply to power more than one Rosemount 3051 Transmitter, make sure the power supply used and the circuitry common to the transmitters do not have more than 20 Ω of impedance at 1200 Hz.

Figure 4-4: Load Limitation

Maximun loop resistance = 43.5 x (power supply voltage - 10.5)

A. Load (Ωs)
B. Voltage (Vdc)
C. Operating region

The total resistance load is the sum of the resistance of the signal leads and the load resistance of the controller, indicator, I.S. barriers, and related pieces. If you use intrinsic safety barriers, make sure to include the resistance and voltage drop.

4.3 Power supply for 1-5 Vdc HART Low Power

Low power transmitters operate on 6–12 Vdc. The dc power supply should provide power with less than two percent ripple. The V_{out} load should be 100 kW or greater.
5 Verify configuration

5.1 Handheld communicator user interface

The Traditional Interface - Device Revision 3 and DD Revision 2 Fast Key sequence can be found on page 12.

Figure 5-1: Traditional Interface - Device Revision 3 and DD Revision 2

The Device Dashboard - Device Revision 3 and DD Revision 6 Fast Key sequence can be found on Table 5-2.

Figure 5-2: Device Dashboard - Device Revision 3 and DD Revision 6

Note
A check (✓) indicates the basic configuration parameters. At minimum, these parameters should be verified as part of the configuration and startup procedure.
<table>
<thead>
<tr>
<th>Function</th>
<th>Fast Key Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm and Saturation Levels</td>
<td>1, 4, 2, 7</td>
</tr>
<tr>
<td>Analog Output Alarm Type</td>
<td>1, 4, 3, 2, 4</td>
</tr>
<tr>
<td>Burst Mode Control</td>
<td>1, 4, 3, 3, 3</td>
</tr>
<tr>
<td>Burst Operation</td>
<td>1, 4, 3, 3, 3</td>
</tr>
<tr>
<td>Custom Meter Configuration</td>
<td>1, 3, 7, 2</td>
</tr>
<tr>
<td>Custom Meter Value</td>
<td>1, 4, 3, 4, 3</td>
</tr>
<tr>
<td>✓ Damping</td>
<td>1, 3, 6</td>
</tr>
<tr>
<td>Date</td>
<td>1, 3, 4, 1</td>
</tr>
<tr>
<td>Descriptor</td>
<td>1, 3, 4, 2</td>
</tr>
<tr>
<td>Digital To Analog Trim (4–20 mA Output)</td>
<td>1, 2, 3, 2, 1</td>
</tr>
<tr>
<td>Disable Local Span/Zero Adjustment</td>
<td>1, 4, 4, 1, 7</td>
</tr>
<tr>
<td>Field Device Information</td>
<td>1, 4, 4, 1</td>
</tr>
<tr>
<td>Full Trim</td>
<td>1, 2, 3, 3</td>
</tr>
<tr>
<td>Keypad Input – Rerange</td>
<td>1, 2, 3, 1, 1</td>
</tr>
<tr>
<td>Local Zero and Span Control</td>
<td>1, 4, 4, 1, 7</td>
</tr>
<tr>
<td>Loop Test</td>
<td>1, 2, 2</td>
</tr>
<tr>
<td>Lower Sensor Trim</td>
<td>1, 2, 3, 3, 2</td>
</tr>
<tr>
<td>Message</td>
<td>1, 3, 4, 3</td>
</tr>
<tr>
<td>Meter Options</td>
<td>1, 4, 3, 4</td>
</tr>
<tr>
<td>Number of Requested Preambles</td>
<td>1, 4, 3, 3, 2</td>
</tr>
<tr>
<td>Poll Address</td>
<td>1, 4, 3, 3, 1</td>
</tr>
<tr>
<td>Poll a Multidropped Transmitter</td>
<td>Left Arrow, 4, 1, 1</td>
</tr>
<tr>
<td>Range Values</td>
<td>1, 3, 3</td>
</tr>
<tr>
<td>Rerange</td>
<td>1, 2, 3, 1</td>
</tr>
<tr>
<td>Scaled D/A Trim (4–20 mA Output)</td>
<td>1, 2, 3, 2, 2</td>
</tr>
<tr>
<td>Self Test (Transmitter)</td>
<td>1, 2, 1, 1</td>
</tr>
<tr>
<td>Sensor Info</td>
<td>1, 4, 4, 2</td>
</tr>
<tr>
<td>Sensor Temperature</td>
<td>1, 1, 4</td>
</tr>
<tr>
<td>Sensor Trim Points</td>
<td>1, 2, 3, 3, 5</td>
</tr>
</tbody>
</table>
Table 5-1: Traditional Interface - Device Revision 3 and DD Revision 2
Fast Key Sequence (continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Fast Key Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>1, 2, 1, 1</td>
</tr>
<tr>
<td>✓Tag</td>
<td>1, 3, 1</td>
</tr>
<tr>
<td>Transfer Function (Setting Output Type)</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>✓Transmitter Security (Write Protect)</td>
<td>1, 3, 4, 4</td>
</tr>
<tr>
<td>Trim Analog Output</td>
<td>1, 2, 3, 2</td>
</tr>
<tr>
<td>✓Units (Process Variable)</td>
<td>1, 3, 2</td>
</tr>
<tr>
<td>Upper Sensor Trim</td>
<td>1, 2, 3, 3, 3</td>
</tr>
<tr>
<td>Zero Trim</td>
<td>1, 2, 3, 3, 1</td>
</tr>
</tbody>
</table>

Table 5-2: Traditional Interface - Device Revision 3 and DD Revision 2
Fast Key Sequence

<table>
<thead>
<tr>
<th>Function</th>
<th>Fast Key Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓Alarm and Saturation Levels</td>
<td>1, 7, 5</td>
</tr>
<tr>
<td>Burst Mode Control</td>
<td>2, 2, 4, 1</td>
</tr>
<tr>
<td>Burst Option</td>
<td>2, 2, 4, 2</td>
</tr>
<tr>
<td>Custom Display Configuration</td>
<td>2, 2, 3</td>
</tr>
<tr>
<td>✓Damping</td>
<td>2, 2, 1, 2</td>
</tr>
<tr>
<td>Date</td>
<td>2, 2, 6, 1, 4</td>
</tr>
<tr>
<td>Descriptor</td>
<td>2, 2, 6, 1, 5</td>
</tr>
<tr>
<td>Digital to Analog Trim (4–20 mA Output)</td>
<td>3, 4, 2, 1</td>
</tr>
<tr>
<td>Disable Zero & Span Adjustment</td>
<td>2, 2, 5, 2</td>
</tr>
<tr>
<td>Rerange with Keypad</td>
<td>2, 2, 2, 1</td>
</tr>
<tr>
<td>Loop Test</td>
<td>3, 5, 1</td>
</tr>
<tr>
<td>Lower Sensor Trim</td>
<td>3, 4, 1, 2</td>
</tr>
<tr>
<td>Message</td>
<td>2, 2, 6, 1, 6</td>
</tr>
<tr>
<td>✓Range Values</td>
<td>2, 2, 2</td>
</tr>
<tr>
<td>Scaled D/A Trim (4–20 mA Output)</td>
<td>3, 4, 2, 2</td>
</tr>
<tr>
<td>Sensor Temperature/Trend (Rosemount 3051S)</td>
<td>2, 2, 1, 6</td>
</tr>
<tr>
<td>✓Tag</td>
<td>2, 2, 6, 1, 1</td>
</tr>
<tr>
<td>✓Transfer Function</td>
<td>2, 2, 1, 3</td>
</tr>
</tbody>
</table>
Table 5-2: Traditional Interface - Device Revision 3 and DD Revision 2
Fast Key Sequence (continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Fast Key Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter Security (Write Protect)</td>
<td>2, 2, 5, 1</td>
</tr>
<tr>
<td>✔ Units</td>
<td>2, 2, 1, 1</td>
</tr>
<tr>
<td>Upper Sensor Trim</td>
<td>3, 4, 1, 1</td>
</tr>
<tr>
<td>Zero Trim</td>
<td>3, 4, 1, 3</td>
</tr>
</tbody>
</table>
6 Trim the transmitter

Note
Transmitters are shipped fully calibrated per request or by the factory default of full scale (span = upper range limit).

6.1 Zero trim

A zero trim is a single-point adjustment used for compensating mounting position effects. When performing a zero trim, ensure the equalizing valve is open and all wet legs are filled to the correct level.

There are two methods to compensate for mounting effects:

- Zero trim using the handheld communicator
- Using the transmitter zero adjustment buttons

6.1.1 Zero trim using the handheld communicator

If zero offset is within 3% of URL, follow the instructions below. This zero trim will affect the 4–20 mA value, the HART PV, and the display value.

Procedure

1. Equalize or vent the transmitter and connect Field Communicator.
2. At the menu, input the HART Fast Key sequence (refer to Table 1 or Table 2).
3. Follow the commands to perform a zero trim.

6.1.2 Using the transmitter zero adjustment buttons

Using the transmitter zero adjustment buttons, the lower range value (LRV) will be set to the pressure applied to the transmitter. This adjustment will affect the 4–20 mA value only. Perform the following steps to perform a range using the zero adjustment buttons.

Procedure

1. Loosen the certifications label screw and slide the label to expose the zero adjustment buttons.
2. Set the 4 mA point by pressing the zero button for two seconds. Verify the output is 4 mA. The optional LCD display will show ZERO PASS.
Figure 6-1: Zero Adjustment Buttons

A. Zero adjustment buttons
7 Safety Instrumented Systems (SIS)

The following section applies to Rosemount 3051C Transmitters used in SIS applications.

7.1 Installation

No special installation is required in addition to the standard installation practices outlined in this document. Always ensure a proper seal by installing the electronics housing cover(s) so that metal contacts metal.

The loop must be designed so the terminal voltage does not drop below 10.5 Vdc when the transmitter output is 22.5 mA.

Position the security switch to the ON position to prevent accidental or deliberate change of configuration data during normal operation.

7.2 Configuration

Use any HART-compliant master to communicate with and verify configuration of the Rosemount 3051.

User-selected damping will affect the transmitters ability to respond to changes in the applied process. The damping value + response time must not exceed the loop requirements.

1. Transmitter output is not safety-rated during the following: configuration changes, multidrop, loop test. Alternative means should be used to ensure process safety during transmitter configuration and maintenance activities.

2. DCS or safety logic solver must be configured to match transmitter configuration. Figure 7-1 identifies the two alarm levels available and their operation values. Position the alarm switch to the required HI or LO alarm position.

Figure 7-1: Alarm Levels

<table>
<thead>
<tr>
<th>Rosemount alarm level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.75 mA(1)</td>
</tr>
<tr>
<td>3.9 mA</td>
</tr>
<tr>
<td>4 mA</td>
</tr>
<tr>
<td>20 mA</td>
</tr>
<tr>
<td>20.8 mA</td>
</tr>
<tr>
<td>21.75 mA(2)</td>
</tr>
</tbody>
</table>

NAMUR alarm level

(1) low saturation
(2) high saturation
1. Transmitter failure, hardware alarm in LO position.

2. Transmitter failure, hardware alarm in HI position.

Note
Some detected faults are indicated on the analog output at a level above high alarm regardless of the alarm switch selection.

7.3 Operation and maintenance

7.3.1 Proof test and inspection

The following proof tests are recommended. Proof test results and corrective actions taken must be documented at Emerson.com/Rosemount/Report-A-Failure in the event that an error is found in the safety functionality.

Use the Fast Key sequences in Table 1 or Table 2 to perform a loop test, analog output trim, or sensor trim. See the Rosemount 3051 Reference Manual for additional information.

Proof test 1

This proof test will detect 59.6% of DU failures not detected by the Rosemount 3051 automatic diagnostics.

Procedure

1. Execute the Master Reset command to initiate start-up diagnostics.
2. Enter the milliampere value representing a high alarm state.
3. Check the reference meter to verify the mA output corresponds to the entered value.
4. Enter the milliampere value representing a low alarm state.
5. Check the reference meter to verify the mA output corresponds to the entered value.

(4) *This test will detect approximately 94.6% of possible DU failures in the transmitter.*
Proof test 2\(^{(5)}\)

This proof test, when combined with the five-year proof-test, will detect 94.6% of DU failures not detected by the Rosemount 3051 automatic diagnostics.

Procedure

1. Execute the Master Reset command to initiate start-up diagnostics.
2. Perform a minimum two point sensor calibration check using the 4–20 mA range points as the calibration points.
3. Check the reference mA meter to verify the mA output corresponds to the pressure input value.
4. If necessary, use one of the Trim procedures available in the Rosemount 3051 Reference Manual to calibrate.

Note

The user determines the proof-test requirements for impulse piping.

Visual inspection

Not required.

Special tools

Not required.

Product repair

All failures detected by the transmitter diagnostics or by the proof-test must be reported. Feedback can be submitted electronically at Emerson.com/Rosemount/Report-A-Failure

The Rosemount 3051 is repairable by major component replacement. Follow the instructions in the Rosemount 3051 Reference Manual for additional information.

7.4 Reference

Specifications

The Rosemount 3051 must be operated in accordance to the functional and performance specifications provided in the Rosemount 3051 Reference Manual.

Failure rate data

The FMEDA report includes failure rates and common cause Beta factor estimates. This report is available at Emerson.com/Rosemount.

\(^{(5)}\) This test will detect approximately 94.6% of possible DU failures in the transmitter.
Rosemount 3051 safety failure values

Safety accuracy: 0.065%

Safety response time: 100 msec

Product life

50 years – based on worst case component wear-out mechanisms – not based on wear-out process wetted materials
8 Product certifications

8.1 European directive information

A copy of the EU Declaration of Conformity can be found at the end of the Quick Start Guide. The most recent revision of the EU Declaration of Conformity can be found at Emerson.com/Rosemount.

8.2 Ordinary location certification

As standard, the transmitter has been examined and tested to determine that the design meets the basic electrical, mechanical, and fire protection requirements by a nationally recognized test laboratory (NRTL) as accredited by the Federal Occupational Safety and Health Administration (OSHA).

8.3 North America

8.3.1 E5 USA Explosionproof (XP) and Dust-Ignitionproof (DIP)

E5

Ranges 1-5 (HART) Certificate

- **Certificate**: FM16US0121
- **Markings**: XP CL I, DIV 1, GP B, C, D; DIP CL II, DIV 1, GP E, F, G; CL III; T5 (–50 °C ≤ Ta ≤ +85 °C); Factory Sealed; Type 4X

Range 6 (HART/Fieldbus/PROFIBUS) Certificate

- **Certificate**: 1053834
- **Standards**: ANSI/ISA 12.27.01-2003, CSA Std. C22.2 No. 142-M1987, CSA Std. C22.2 No. 213-M1987
- **Markings**: XP Class I, Division 1, Groups B, C, and D, T5, (–50 °C ≤ Ta ≤ +85 °C) Suitable for Class I, Zone 1, Group IIB+H2, T5; DIP Class II and Class III, Division 1, Groups E, F, and G, T5, (–50 °C ≤ Ta ≤ +85 °C); Type 4X; Factory Sealed; Single Seal (See drawing 03031-1053)
8.3.2 I5 USA Intrinsic Safety (IS) and Nonincendive (NI)

<table>
<thead>
<tr>
<th>Range 1-5 (HART) Certificate</th>
<th>FM16US0120X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markings</td>
<td>IS CL I, DIV 1, GP A, B, C, D; CL II, DIV 1, GP E, F, G; Class III; DIV 1 when connected per Rosemount drawing 03031-1019; NI CL 1, DIV 2, GP A, B, C, D; T4 (–50 °C ≤ Ta ≤ +70 °C) [HART], T4 (–50 °C ≤ Ta ≤ +60 °C) [Fieldbus/PROFIBUS]; Type 4X</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. The Model 3051 transmitter housing contains aluminum and is considered a potential risk of ignition by impact or friction. Care must be taken into account during installation and use to prevent impact and friction.

2. The Model 3051 transmitter with the transient terminal block (Option code T1) will not pass the 500 Vrms dielectric strength test, and this must be taken into account during installation.

<table>
<thead>
<tr>
<th>Range 1-6 (HART/Fieldbus/PROFIBUS) Certificate</th>
<th>1053834</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markings</td>
<td>IS Class I, II, III, Division 1 Groups A, B, C, D, E, F, and G when connected in accordance with Rosemount drawing 03031-1024, Suitable for Class I, Zone 0 Group IIC; Class I, Division 2, Groups A, B, C, and D; NIFW; Suitable for Class I, Zone 2, Group IIC; HART: T4 (–60 °C ≤ Ta ≤ +70 °C), T5 (–60 °C ≤ Ta ≤ +40 °C) Fieldbus/PROFIBUS: T4 (–60 °C ≤ Ta ≤ +60 °C) Type 4X</td>
</tr>
</tbody>
</table>

8.3.3 IE USA FISCO

<table>
<thead>
<tr>
<th>Range 1-5 (HART) Certificate</th>
<th>FM16US0120X</th>
</tr>
</thead>
</table>
Standards
FM Class 3600 - 2011, FM Class 3610 - 2010, FM Class 3611 - 2004, FM Class 3810 - 2005

Markings
IS CL I, DIV 1, GP A, B, C, D when connected per Rosemount™ drawing 03031-1019 (−50 °C ≤ Ta ≤ +60 °C); Type 4X

Special Conditions for Safe Use (X):

1. The Model 3051 transmitter housing contains aluminum and is considered a potential risk of ignition by impact or friction. Care must be taken into account during installation and use to prevent impact and friction.

2. The Model 3051 transmitter with the transient terminal block (Option code T1) will not pass the 500 Vrms dielectric strength test, and this must be taken into account during installation.

Range 1-6
(HART/Fieldbus/PROFIBUS) Certificate

Standards

Markings
IS Class I, Division 1 Groups A, B, C, D, T4 (−60 °C ≤ Ta ≤ +60 °C) when connected in accordance with Rosemount drawing 03031-1024, Suitable for Class I, Zone 0 Group IIC; Type 4X; Factory Sealed; Single Seal (See drawing 03031-1053)

8.3.4 C6 Canada Explosionproof, Dust-Ignitionproof, Intrinsic Safety and Nonincendive

Certificate
1053834

Standards

Markings
Explosionproof for Class I, Division 1, Groups B, C and D; Suitable for Class I, Zone 1, Group IIb+H2, T5 (−50 °C ≤ Ta ≤ +85 °C); Dust-Ignitionproof Class II, III Division 1, Groups E, F, G; T5 (−50 °C ≤ Ta ≤ +85 °C); Intrinsically Safe Class I, Division 1, Groups A, B, C, D when connected in accordance with Rosemount drawing 03031-1024, Temperature Code T4; Suitable for Class I, Zone 0; Class I Division 2 Groups A, B, C, and D, T5; Suitable for Class I Zone 2, Group IIC; Type 4X; Factory Sealed; Single Seal (See drawing 03031-1053)
8.3.5 E6 Canada Explosionproof, Dust-Ignitionproof and Division 2

Certificate 1053834

Markings Explosionproof Class I, Division 1, Groups B, C, and D; Suitable for Class I, Zone 1, Group IIB+H2, T5; Dust-Ignitionproof for Class II and Class III, Division 1, Groups E, F, and G; T5 (−50 °C ≤ Ta ≤ +85 °C); Class I, Division 2, Groups A, B, C, and D; T5; Suitable for Class I Zone 2, Group IIC; Type 4X; Factory Sealed; Single Seal (See drawing 03031-1053)

8.4 Europe

8.4.1 E8 ATEX Flameproof and Dust

Certificate KEMA00ATEX2013X; Baseefa11ATEX0275X

Markings ☺ II ½ G Ex dB IIC T6...T4 Ga/Gb T6 (−60 °C ≤ Ta ≤ +70 °C), T4/T5 (−60 °C ≤ Ta ≤ +80 °C); ☺ II 1 D Ex ta IIIIC T95 °C T500 105 °C Da (-20 °C ≤ Ta ≤ +85 °C)

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Process connection temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>−60 °C to +70 °C</td>
</tr>
<tr>
<td>T5</td>
<td>−60 °C to +80 °C</td>
</tr>
<tr>
<td>T4</td>
<td>−60 °C to +120 °C</td>
</tr>
</tbody>
</table>

Table 8-1: Process Temperature

Special Conditions for Safe Use (X):

1. This device contains a thin wall diaphragm less than 1 mm thick that forms a boundary between Category 1 (process connection) and Category 2 (all other parts of the equipment). The model code and datasheet are to be consulted for details of the diaphragm material. During installation, maintenance, and use, the environmental conditions to which the diaphragm will be subjected shall be taken into account. The manufacturer’s instructions for installation and maintenance shall be followed in detail to assure safety during its expected lifetime.

2. Flameproof joints are not intended for repair.

3. Non-standard paint options may cause risk from electrostatic discharge. Avoid installations that could cause electrostatic build-up.
on painted surfaces and only clean the painted surfaces with a damp cloth. If paint is ordered through a special option code, contact the manufacturer for more information.

4. Some variants of the equipment have reduced markings on the nameplate. Refer to the Certificate for full equipment marking.

8.4.2 I1 ATEX Intrinsic Safety and Dust

Certificate BAS97ATEX1089X; Baseefa11ATEX0275X

Markings

- **HART:** II 1 G Ex ia IIC T5/T4 Ga, T5 (-60 °C ≤ Ta ≤ +40 °C), T4 (-60 °C ≤ Ta ≤ +70 °C)
- **Fieldbus/PROFIBUS:** II 1 G Ex ia IIC Ga T4 (-60 °C ≤ Ta ≤ +60 °C)
- **DUST:** II 1 D Ex ta IIIIC T95 °C T_{500} 105 °C Da (-20 °C ≤ Ta ≤ +85 °C)

Table 8-2: Input Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HART</th>
<th>Fieldbus/PROFIBUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage U_i</td>
<td>30 V</td>
<td>30 V</td>
</tr>
<tr>
<td>Current I_i</td>
<td>200 mA</td>
<td>300 mA</td>
</tr>
<tr>
<td>Power P_i</td>
<td>0.9 W</td>
<td>1.3 W</td>
</tr>
<tr>
<td>Capacitance C_i</td>
<td>0.012 µF</td>
<td>0 µF</td>
</tr>
<tr>
<td>Inductance L_i</td>
<td>0 mH</td>
<td>0 mH</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. The apparatus is not capable of withstanding the 500 V insulation test required by clause 6.3.12 of EN60079-11: 2012. This must be taken into account when installing the apparatus.

2. The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion of located in Zone 0.

3. Some variants of the equipment have reduced markings on the nameplate. Refer to the Certificate for full equipment marking.

8.4.3 IA ATEX FISCO

Certificate BAS97ATEX1089X

Markings II 1 G Ex ia IIC T4 Ga (−60 °C ≤ Ta ≤ +60 °C)

Table 8-3: Input Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fieldbus/PROFIBUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage U_i</td>
<td>17.5 V</td>
</tr>
<tr>
<td>Current I_i</td>
<td>380 mA</td>
</tr>
<tr>
<td>Power P_i</td>
<td>5.32 W</td>
</tr>
<tr>
<td>Capacitance C_i</td>
<td>≤5 nF</td>
</tr>
<tr>
<td>Inductance L_i</td>
<td>≤10 µH</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. The apparatus is not capable of withstanding the 500 V insulation test required by clause 6.3.12 of EN60079-11: 2012. This must be taken into account when installing the apparatus.

2. The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion of located in Zone 0.

8.4.4 N1 ATEX Type n and Dust

Certificate BAS00ATEX3105X; Baseefa11ATEX0275X

Markings Ex II 3 G Ex nA IIC T5 Gc (−40 °C ≤ Ta ≤ +70 °C);
Ex II 1 D Ex ta IIC T95 °C T_{500} 105 °C Da (−20 °C ≤ Ta ≤ +85 °C)

Special Conditions for Safe Use (X):

1. This apparatus is not capable of withstanding the 500 V insulation test that is required by clause 6.8.1 of EN60079-15. This must be taken into account when installing the apparatus.

2. Some variants of the equipment have reduced markings on the nameplate. Refer to the Certificate for full equipment marking.

8.5 International

8.5.1 E7 IECEx Flameproof and Dust

Certificate IECEx KEM 09.0034X; IECEx BAS 10.0034X
Standards

Markings
Ex db IIC T6...T4 Ga/Gb T6(–60 °C ≤ Ta ≤ +70 °C), T4/T5(–60 °C ≤ Ta ≤ +80 °C); Ex ta IIIC T95 °C T500105 °C Da (-20 °C ≤ Ta ≤ +85 °C)

Table 8-4: Process Temperature

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Process connection temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>–60 °C to +70 °C</td>
</tr>
<tr>
<td>T5</td>
<td>–60 °C to +80 °C</td>
</tr>
<tr>
<td>T4</td>
<td>–60 °C to +80 °C</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. This device contains a thin wall diaphragm less than 1 mm thick that forms a boundary between EPL Ga (process connection) and EPL Gb (all other parts of the equipment). The model code and datasheet are to be consulted for details of the diaphragm material. During installation, maintenance, and use, the environmental conditions to which the diaphragm will be subjected shall be taken into account. The manufacturer’s instructions for installation and maintenance shall be followed in detail to assure safety during its expected lifetime.

2. Flameproof joints are not intended for repair.

3. Non-standard paint options may cause risk from electrostatic discharge. Avoid installations that could cause electrostatic build-up on painted surfaces and only clean the painted surfaces with a damp cloth. If paint is ordered through a special option code, contact the manufacturer for more information.

4. Some variants of the equipment have reduced markings on the nameplate. Refer to the Certificate for full equipment marking.

8.5.2 I7 IECEx Intrinsic Safety

Certificate
IECEx BAS 09.0076X

Standards

Markings
HART: Ex ia IIC T5/T4 Ga, T5(-60 °C ≤ Ta ≤ +40 °C), T4 (-60 °C ≤ Ta ≤ +70 °C)
Fieldbus/PROFIBUS: Ex ia IIC T4(–60 °C ≤ Ta ≤ +60 °C)
Table 8-5: Input Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HART</th>
<th>Fieldbus/PROFIBUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage U_i</td>
<td>30 V</td>
<td>30 V</td>
</tr>
<tr>
<td>Current I_i</td>
<td>200 mA</td>
<td>300 mA</td>
</tr>
<tr>
<td>Power P_i</td>
<td>0.9 W</td>
<td>1.3 W</td>
</tr>
<tr>
<td>Capacitance C_i</td>
<td>0.012 µF</td>
<td>0 µF</td>
</tr>
<tr>
<td>Inductance L_i</td>
<td>0 mH</td>
<td>0 mH</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. If the apparatus is fitted with an optional 90 V transient suppressor, it is not capable of withstanding the 500 V insulation test required by clause 6.3.12 of IEC 60079-11. This must be taken into account when installing the apparatus.

2. The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion of located in Zone 0.

IECEX Mining (Special A0259)

- **Certificate**: IECEx TSA 14.0001X
- **Standards**: IEC60079-0:2011, IEC60079-11:2011
- **Markings**: Ex ia I Ma (−60 °C ≤ T_a ≤ +70 °C)

Table 8-6: Input Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HART</th>
<th>Fieldbus/PROFIBUS</th>
<th>FISCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage U_i</td>
<td>30 V</td>
<td>30 V</td>
<td>17.5 V</td>
</tr>
<tr>
<td>Current I_i</td>
<td>200 mA</td>
<td>300 mA</td>
<td>380 mA</td>
</tr>
<tr>
<td>Power P_i</td>
<td>0.9 W</td>
<td>1.3 W</td>
<td>5.32 W</td>
</tr>
<tr>
<td>Capacitance C_i</td>
<td>0.012 µF</td>
<td>0 µF</td>
<td><5 nF</td>
</tr>
<tr>
<td>Inductance L_i</td>
<td>0 mH</td>
<td>0 mH</td>
<td><10 µH</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. If the apparatus is fitted with an optional 90 V transient suppressor, it is not capable of withstanding the 500 V insulation test required by IEC60079-11. This must be taken into account when installing the apparatus.
2. It is a condition of safe use that the above input parameters shall be taken into account during installation.

3. It is a condition of manufacture that only the apparatus fitted with housing, covers, and sensor module housing made out of stainless steel are used in Group 1 applications.

8.5.3 IG IECEx FISCO

Certificate: IECEx BAS 09.0076X
Markings: Ex ia IIC T4 Ga (-60 °C ≤ Ta ≤ +60 °C)

Table 8-7: Input Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Fieldbus/PROFIBUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage U_i</td>
<td>17.5 V</td>
</tr>
<tr>
<td>Current I_i</td>
<td>380 mA</td>
</tr>
<tr>
<td>Power P_i</td>
<td>5.32 W</td>
</tr>
<tr>
<td>Capacitance C_i</td>
<td>≤ 5 nF</td>
</tr>
<tr>
<td>Inductance L_i</td>
<td>≤ 10 µH</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. If the apparatus is fitted with an optional 90 V transient suppressor, it is not capable of withstanding the 500 V insulation test required by clause 6.3.12 of IEC 60079-11. This must be taken into account when installing the apparatus.

2. The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion of located in Zone 0.

8.5.4 N7 IECEx Type n

Certificate: IECEx BAS 09.0077X
Markings: Ex nA IIC T5 Gc (-40 °C ≤ Ta ≤ +70 °C)

Special Condition for Safe Use (X):

1. This apparatus is not capable of withstanding the 500 V insulation test required by clause 6.5.1 of IEC 60079-15. This must be taken into account when installing the apparatus.
8.6 Brazil

8.6.1 E2 INMETRO Flameproof

Certificate UL-BR 13.0643X

Standards ABNT NBR IEC 60079-0:2013; ABNT NBR IEC 60079-1:2016; ABNT NBR IEC 60079-26:2016

Markings Ex db IIC T6...T4 Ga/Gb, T6(−60 °C ≤ Ta ≤ +70 °C), T4/T5 (−60 °C ≤ Ta ≤ +80 °C)

Special Conditions for Safe Use (X):

1. This device contains a thin wall diaphragm with less than 1 mm thickness that forms a boundary between zone 0 (process connection) and zone 1 (all other parts of the equipment). The model code and datasheet are to be consulted for details of the diaphragm material. Installation, maintenance, and use shall take into account the environmental conditions to which the diaphragm will be subjected. The manufacturer’s instructions for installation and maintenance shall be followed in detail to assure safety during its expected lifetime.

2. Flameproof joints are not intended for repair.

3. Non-standard paint options may cause risk from electrostatic discharge. Avoid installations that could cause electrostatic build-up on painted surfaces and only clean the painted surfaces with a damp cloth. If paint is ordered through a special option code, contact the manufacturer for more information.

8.6.2 I2 INMETRO Intrinsic Safety

Certificate UL-BR 13.0584X

Standards ABNT NBR IEC60079-0:2013, ABNT NBR IEC60079-11:2013

Markings HART: Ex ia IIC T5/T4 Ga, T5(−60 °C ≤ Ta ≤ +40 °C), T4 (−60 °C ≤ Ta ≤ +70 °C)

Fieldbus/PROFIBUS: Ex ia IIC T4 Ga (−60 °C ≤ Ta ≤ +60 °C)

Table 8-8: Input Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HART</th>
<th>Fieldbus/PROFIBUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage U_i</td>
<td>30 V</td>
<td>30 V</td>
</tr>
<tr>
<td>Current I_i</td>
<td>200 mA</td>
<td>300 mA</td>
</tr>
<tr>
<td>Power P_i</td>
<td>0.9 W</td>
<td>1.3 W</td>
</tr>
<tr>
<td>Capacitance C_i</td>
<td>0.012 μF</td>
<td>0 μF</td>
</tr>
</tbody>
</table>
Table 8-8: Input Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HART</th>
<th>Fieldbus/PROFIBUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductance L_i</td>
<td>0 mH</td>
<td>0 mH</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. If the equipment is fitted with an optional 90 V transient suppressor, it is not capable of withstanding the 500 V insulation test required by ABNT NBR IEC 60079-11. This must be taken into account when installing the equipment.

2. The enclosure may be made of aluminum alloy and given protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion if equipment requires EPL Ga.

8.6.3 IB INMETRO FISCO

Certificate UL-BR 13.0584X
Standards ABNT NBR IEC60079-0:2013, ABNT NBR IEC60079-11:2013
Markings Ex ia IIC T4 Ga (-60 °C ≤ Ta ≤ +60 °C)

Table 8-9: Input Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FISCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage U_i</td>
<td>17.5 V</td>
</tr>
<tr>
<td>Current I_i</td>
<td>380 mA</td>
</tr>
<tr>
<td>Power P_i</td>
<td>5.32 W</td>
</tr>
<tr>
<td>Capacitance C_i</td>
<td>≤5 nF</td>
</tr>
<tr>
<td>Inductance L_i</td>
<td>≤10 µH</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. If the equipment is fitted with an optional 90 V transient suppressor, it is not capable of withstanding the 500 V insulation test required by ABNT NBR IEC 60079-11. This must be taken into account when installing the equipment.

2. The enclosure may be made of aluminum alloy and given protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion if equipment requires EPL Ga.
8.7 China

8.7.1 E3 China Flameproof

Certificate GYJ19.1056X [Transmitters]; GYJ15.1368X [Flow meters]

Standards GB3836.1-2010, GB3836.2-2010, GB3836.20-2010, GB12476.1-2013, GB12476.5-2013

Markings
- 3051 Series: Ex d IIC T6 ~ T4 Ga/Gb, Ex tD A20 IP66 T95 °C T500
- 3051 Series: Ex d IIC T5/T6 Ga/Gb
- 105 °C (-20 °C ≤ Ta ≤ +85 °C)

一、产品安全使用特殊条件

证书编号后缀“X”表明产品具有安全使用特殊条件，涉及隔爆接合面的维修须联系产品制造商。

1. 涉及隔爆接合面的维修须联系产品制造商。

2. 产品使用厚度小于1mm的隔膜作为0区（过程连接）和1区（产品其他部分）的隔离，安装和维护时需严格遵守制造商提供的说明书，以确保安全性。

3. 产品外部涂层可能产生静电危险，使用时须防止产生静电火花，只能用湿布清理。

二、产品使用注意事项

1. 用于爆炸性气体环境中，产品温度组别和使用环境温度之间的关系为：（变送器）

<table>
<thead>
<tr>
<th>温度组别</th>
<th>环境温度</th>
<th>过程温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-60 °C ~ +70 °C</td>
<td>-60 °C ~ +70 °C</td>
</tr>
<tr>
<td>T5</td>
<td>-60 °C ~ +80 °C</td>
<td>-60 °C ~ +80 °C</td>
</tr>
<tr>
<td>T4</td>
<td>-60 °C ~ +80 °C</td>
<td>-60 °C ~ +120 °C</td>
</tr>
</tbody>
</table>

用于爆炸性气体环境中，产品温度组别和使用环境温度之间的关系为：（流量计）

<table>
<thead>
<tr>
<th>温度组别</th>
<th>使用环境温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-50 °C ~ +65 °C</td>
</tr>
<tr>
<td>T5</td>
<td>-50 °C ~ +80 °C</td>
</tr>
</tbody>
</table>

2. 产品外壳设有接地端子，用户在使用时应可靠接地: -20 °C ≤ Ta ≤ +85 °C

3. 产品外壳设有接地端子，用户在使用时应可靠接地
4. 安装现场应不存在对产品外壳有腐蚀作用的有害气体。

5. 现场安装时，电缆引入口须选用国家指定的防爆检验机构按检验认可、具有 Ex dI IC，Ex tD A20 IP66 防爆等级的电缆引入装置或堵封件，冗余电缆引入入口须用堵封件有效密封。

6. 用于爆炸性气体环境中，现场安装、使用和维护必须严格遵守“断电后开盖！”的警告语。用于爆炸性粉尘环境，现场安装、使用和维护必须严格遵守“爆炸性粉尘场所严禁开盖！”的警告语。

7. 用于爆炸性粉尘环境中，产品外壳表面需保持清洁，以防粉尘堆积，但严禁用压缩空气吹扫。

8. 用户不得自行更换该产品的零部件，应会同产品制造商共同解决运行中出现的故障，以杜绝损坏现象的发生。

8.7.2 I3 China Intrinsic Safety

Certificate GYJ13.1362X; GYJ15.1367X [Flow meters]

Standards GB3836.1-2010, GB3836.4-2010, GB3836.20-2010, GB12476.1-2000

Markings 3051 Series: Ex ia IIC T4/T5 Ga, DIP A20 T A 80 °C IP66
3051 CF Series: Ex ia IIC T4/T5 Ga

- **产品安全使用特殊条件：**
 证书编号后缀“X”表明产品具有安全使用特殊条件：
 1. 产品（选用铝合金外壳）外壳含有轻金属，用于 0 区时需注意防止由于冲击或摩擦产生的点燃危险。
 2. 当选择 T1 瞬态抑制端子时，此设备不能承受 GB3836.4-2010 标准中第 6.3.12 条规定的 500V 交流有效值试验电压的介电强度试验。
 3. Transmitter output 为 X 时，需使用由厂家提供的型号为 701PG 的 Smart Power Green Power Module 电池。
 4. 产品外壳含有非金属部件，使用时须防止产生静电火花，只能用湿布清理。
- **产品使用注意事项：**
1. 产品使用环境温度范围：

<table>
<thead>
<tr>
<th>气体/粉尘</th>
<th>Transmitter output</th>
<th>温度组别</th>
<th>环境温度范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>气体 A, M</td>
<td>T5</td>
<td>-60 °C ~ +40 °C</td>
<td></td>
</tr>
<tr>
<td>气体 A, M</td>
<td>T4</td>
<td>-60 °C ~ +70 °C</td>
<td></td>
</tr>
<tr>
<td>气体 F, W</td>
<td>T4</td>
<td>-60 °C ~ +60 °C</td>
<td></td>
</tr>
<tr>
<td>气体 X</td>
<td>T4</td>
<td>-40 °C ~ +70 °C</td>
<td></td>
</tr>
<tr>
<td>粉尘 A, F, W</td>
<td>T80 °C</td>
<td>-20 °C ~ +40 °C</td>
<td></td>
</tr>
</tbody>
</table>

2. 本安电气参数：

<table>
<thead>
<tr>
<th>Transmitter output</th>
<th>最高输入电压 U_i (V)</th>
<th>最大输入电流 I_i (mA)</th>
<th>最大输入功率 P_i (W)</th>
<th>最大内部等效参数 C_i (nF)</th>
<th>L_i (µH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, M</td>
<td>30</td>
<td>200</td>
<td>0.9</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>F, W</td>
<td>30</td>
<td>300</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F, W (FISCO)</td>
<td>17.5</td>
<td>380</td>
<td>5.32</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

注：Transmitter Output 为 F, W (FISCO) 时，本安电气参数符合 GB3836.19-2010 对 FISCO 现场仪表的参数要求。

3. 该产品必须与已通过防爆认证的关联设备配套共同组成本安防爆系统方可使用于爆炸性气体环境。其系统接线必须同时遵守本产品和所配关联设备的使用说明书要求，接线端子不得接错。

4. 该产品与关联设备的连接电缆应为带绝缘护套的屏蔽电缆，其屏蔽层应在安全场所接地。

5. 对于爆炸性粉尘环境，最大输入电压为：

<table>
<thead>
<tr>
<th>Transmitter output</th>
<th>最高输入电压</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>55 V</td>
</tr>
<tr>
<td>F, W</td>
<td>40 V</td>
</tr>
</tbody>
</table>

6. 安装现场应不存在对产品外壳有腐蚀作用的有害气体。

7. 现场安装时，电缆引入口须选用国家指定的防爆检验机构按检验认可、具有 DIP A20 IP66 防爆等级的电缆引入装置、转接头或堵封件，冗余电缆引入口须用堵封件有效密封。
8. 对于爆炸性粉尘环境，现场安装、使用和维护必须严格遵守“爆炸性粉尘场所严禁开盖！”的警告语。

9. 用户不得自行更换该产品的零部件，应会同产品制造商共同解决运行中出现的故障，以杜绝损坏现象的发生。

10. 安装现场确认无可燃性粉尘存在时方可维修。

8.7.3 N3 China Type n

Certificate
GYJ15.1105X

Standards
GB3836.1-2010, GB3836.8-2003

Markings
Ex nA nL IIC T5 Gc (-40 °C ≤ Ta ≤ +70 °C)

- **产品安全使用特殊条件**
 产品防爆合格证号后缀“X”代表产品安全使用有特殊条件：产品不能承受 GB3836.8-2003 标准第 8.1 条中规定的 500V 对地电压试验 1 分钟，安装时需考虑在内。

- **产品使用注意事项**
 1. 产品使用环境温度范围为：-40 °C ≤ Ta ≤ 70 °C
 2. 最高输入电压：

<table>
<thead>
<tr>
<th>Transmitter output</th>
<th>最高输入电压</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, M (3051 Enhanced & 3051 Low Power HART®)</td>
<td>55 Vdc</td>
</tr>
<tr>
<td>F, W</td>
<td>40 Vdc</td>
</tr>
</tbody>
</table>

3. 现场安装时，电缆引入口须选用经国家指定的防爆检验机构检验认可的，具有 Ex e 或 Ex n 型的电缆引入装置或堵封件，冗余电缆引入口须用堵封件有效密封。
4. 安装现场确认无可燃性气体存在时方可维修。

5. 用户不得自行更换该产品的零部件, 应会同产品制造商共同解决运行中出现的故障，以杜绝损坏现象的发生。

8.8 Japan
8.8.1 E4 Japan Flameproof

Certificate TC20577, TC20578, TC20583, TC20584 [HART]; TC20579, TC20580, TC20581, TC20582 [Fieldbus]

Markings Ex d IIC T5

8.9 Republic of Korea
8.9.1 EP Republic of Korea Flameproof

Certificate 11-KB4BO-0188X [Mfg Singapore]

Markings Ex d IIC T6...T4

8.9.2 IP Republic of Korea Intrinsic Safety

Certificate 13-KB4BO-0203X [HART – Mfg USA], 13-KB4BO-0204X [Fieldbus – Mfg USA], 10-KB4BO-0138X [HART – Mfg Singapore], 13-KB4BO-0206X [Fieldbus – Mfg Singapore]

Markings Ex ia IIC T5/T4 (HART); Ex ia IIC T4 (Fieldbus)

8.10 Technical Regulations Customs Union (EAC)
8.10.1 EM EAC Flameproof

Markings Ga/Gb Ex db IIC T4...T6 X, T4/T5(-60 °C ≤ Ta ≤ +80 °C), T6(-60 °C ≤ Ta ≤ +70 °C)

Special Conditions for Safe Use (X):
See certificate for special conditions.
8.10.2 IM EAC Intrinsically Safe

Markings
HART: 0Ex ia IIC T4/T5 Ga X, T4(-60 °C ≤ Ta ≤ +70 °C), T5(-60 °C ≤ Ta ≤ +40 °C)
Fieldbus/PROFIBUS: 0Ex ia IIC T4 Ga X (~60 °C ≤ Ta ≤ +60 °C)

Special Conditions for Safe Use (X)
See certificate for special conditions.

8.11 Combinations

K2 Combination of E2 and I2
K5 Combination of E5 and I5
K6 Combination of C6, E8, and I1
K7 Combination of E7, I7, and N7
K8 Combination of E8, I1, and N1
KB Combination of E5, I5, and C6
KD Combination of E8, I1, E5, I5, and C6
KM Combination of EM and IM
KP Combination of EP and IP

8.12 Conduit plugs and adapters
8.12.1 IECEx Flameproof and Increased Safety

Certificate IECEx FMG 13.0032X
Markings Ex de IIC Gb

8.12.2 ATEX Flameproof and Increased Safety

Certificate FM13ATEX0076X
Markings Ex II 2 G Ex de IIC Gb

Table 8-10: Conduit Plug Thread Sizes

<table>
<thead>
<tr>
<th>Thread</th>
<th>Identification mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>M20 × 1.5</td>
<td>M20</td>
</tr>
<tr>
<td>½ –14 NPT</td>
<td>½ NPT</td>
</tr>
</tbody>
</table>
Table 8-11: Thread Adapter Thread Sizes

<table>
<thead>
<tr>
<th>Male thread</th>
<th>Identification mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>M20 × 1.5 – 6H</td>
<td>M20</td>
</tr>
<tr>
<td>½–14 NPT</td>
<td>½–14 NPT</td>
</tr>
<tr>
<td>¾–14 NPT</td>
<td>¾–14 NPT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Female thread</th>
<th>Identification mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>M20 × 1.5 – 6H</td>
<td>M20</td>
</tr>
<tr>
<td>½–14 NPT</td>
<td>½–14 NPT</td>
</tr>
<tr>
<td>G½</td>
<td>G½</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. When the thread adapter or blanking plug is used with an enclosure in type of protection increased safety “e,” the entry thread shall be suitably sealed in order to maintain the ingress protection rating (IP) of the enclosure.

2. The blanking plug shall not be used with an adapter.

3. Blanking plug and threaded adapter shall be either NPT or metric thread forms. G½ thread forms are only acceptable for existing (legacy) equipment installations.

8.13 Additional certifications

8.13.1 SBS American Bureau of Shipping (ABS) Type Approval

Certificate 18-HS1814795-PDA

Intended use Marine & Offshore Applications – Measurement of either gauge or absolute pressure for liquid, gas and vapor.

8.13.2 SBV Bureau Veritas (BV) Type Approval

Certificate 23155

Requirements Bureau Veritas rules for the classification of steel ships

Application Class notations: AUT-UMS, AUT-CCS, AUT-PORT and AUT-IMS; Pressure transmitter type 3051 cannot be installed on diesel engines

8.13.3 SDN Det Norske Veritas (DNV) Type Approval

Certificate TAA000004F
Intended Use

DNV GL rules for classification - ships and offshore units

Application

Table 8-12: Location Classes

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>D</td>
</tr>
<tr>
<td>Humidity</td>
<td>B</td>
</tr>
<tr>
<td>Vibration</td>
<td>A</td>
</tr>
<tr>
<td>EMC</td>
<td>B</td>
</tr>
<tr>
<td>Enclosure</td>
<td>D</td>
</tr>
</tbody>
</table>

8.13.4 SLL Lloyds Register (LR) Type Approval

Certificate 11/60002

Application Environmental categories ENV1, ENV2, ENV3, and ENV5

8.13.5 C5 Custody Transfer - Measurement Canada Accuracy Approval

Certificate AG-0226; AG-0454; AG-0477
8.14 EU Declaration of Conformity

We,

Rosemount Inc.
8200 Market Boulevard
Chanhassen, MN 55317-9685
USA

declare under our sole responsibility that the product,

Rosemount™ Models 3051D and 3051G Pressure Transmitters

manufactured by,

Rosemount Inc.
8200 Market Boulevard
Chanhassen, MN 55317-9685
USA

to which this declaration relates, is in conformity with the provisions of the European Community Directives, including the latest amendments, as shown in the attached schedule.

Assumption of conformity is based on the application of the harmonized standards and, when applicable or required, a European Community notified body certification, as shown in the attached schedule.

(signature)
Vice President of Global Quality
(function name - printed)
Chris LaPoint
(name - printed)
1-Feb-19; Shakopee, MN USA
(date of issue)
EU Declaration of Conformity
No: RMD 1089 Rev. I

EMC Directive (2014/30/EU)
All Models 3051D and 3051G Pressure Transmitters
EN 61326-1:2013
EN 61326-2-3:2013

PED Directive (2014/68/EU)
Models 3051DP2, 3, 4, 5 with C-276 Isolators or options P7 or P9 Pressure Transmitters
Moduli H Conformity Assessment
Other Standards Used: ANSI/ISA61010-1:2004
Note – previous PED Certificate No. 59552-2009-CE-HOU-DNV
All other model 3051D and 3051G Pressure Transmitters
Sound Engineering Practice
Transmitter Attachments: Diaphragm Seal - Process Flange - Manifold
Sound Engineering Practice

ATEX Directive (2014/34/EU)
Model 3051D Pressure Transmitter
Baseefa12ATEX0189X - Intrinsic Safety Certificate
Equipment Group II Category 1 G
Ex ia IIC T4 Ga (-60°C ≤ Ta ≤ +70°C)
Ex ia IIC T5 Ga (-60°C ≤ Ta ≤ +40°C)
Harmonized Standards Used:

Baseefa12ATEX0190X - Type n Certificate
Equipment Group II Category 3 G
Ex na IIC T5 Gc (-40°C ≤ Ta ≤ +70°C)
Harmonized Standards Used:
EU Declaration of Conformity
No: RMD 1089 Rev. 1

Baseefa12ATEX0191 - Dust Certificate
Equipment Group II Category 1 D
Ex ta IIC T95°C Tso=105°C Da (-20°C ≤ Ta ≤ +85°C)
Harmonized Standards Used:

DEKRA12ATEX0212X - Flameproof Certificate
Equipment Group II Category 1/2 G
Ex db IIC T6 Ga/Gb (-50°C ≤ Ta ≤ +65°C)
Ex T5 Ga/Gb (-50°C ≤ Ta ≤ +70°C)
Harmonized Standards Used:

Model 3051G Pressure Transmitter

BAS00ATEX1166X - Intrinsic Safety Certificate
Equipment Group II Category 1 G
Ex ia IIC T5 Ga (-55°C ≤ Ta ≤ +40°C)
Ex ia IIC T4 Ga (-55°C ≤ Ta ≤ +70°C)
Harmonized Standards Used:

BAS00ATEX3167X - Type n Certificate
Equipment Group II Category 3 G
Ex nA IIC T5 Ge (-40°C ≤ Ta ≤ 70°C)
Harmonized Standards Used:

BAS01ATEX1427 - Dust Certificate
Equipment Group II Category 1 D
Ex t IIC T50°C Tso=60°C Da
Harmonized Standards Used:

KEMA97ATEX2378X Flameproof Certificate
Equipment Group II Category 1/2 G
Ex db IIC T6…T4 Ga/Gb
Harmonized Standards Used:
EU Declaration of Conformity
No: RMD 1089 Rev. I

PED Notified Body

DNV GL Business Assurance Italia S.r.l. [Notified Body Number: 0496]
Via Energy Park, 14, N-20871
Vimercate (MB), Italy
Note – equipment manufactured prior to 20 October 2018 may be marked with previous PED Notified Body number; previous PED Notified Body information was as follows:
Det Norske Veritas (DNV) [Notified Body Number: 0575]
Veritasveien 1, N-1322
Hovik, Norway

ATEX Notified Bodies for EC Type Examination Certificate

DEKRA [Notified Body Number: 0344]
Meander 1051, 6825 MJ Arnhem
P.O. Box 5185, 6802 ED Arnhem
The Netherlands
Postbank 6794687

SGS FIMCO OY [Notified Body Number: 0598]
P.O. Box 30 (Särkiniementie 3)
00211 HELSINKI
Finland

ATEX Notified Body for Quality Assurance

SGS FIMCO OY [Notified Body Number: 0598]
P.O. Box 30 (Särkiniementie 3)
00211 HELSINKI
Finland
8.15 China RoHS table

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Hazardous Substances</th>
</tr>
</thead>
<tbody>
<tr>
<td>电子组件 Electronics Assembly</td>
<td>铅（Pb） 汞（Hg） 锰（Cd） 六价铬（Cr +6） 多溴二苯醚（PBB） 多溴联苯醚（PBDE）</td>
</tr>
<tr>
<td>套体组件 Housing Assembly</td>
<td>X O O X O O</td>
</tr>
<tr>
<td>传感器组件 Sensor Assembly</td>
<td>X O O X O O</td>
</tr>
</tbody>
</table>

本表格系根据SJ/T11364的规定而制作。This table is proposed in accordance with the provision of SJ/T11364.

O: 意为该部件的所有均质材料中该有害物质的含量均低于GB/T 26572所规定的限量要求。
O: Indicate that said hazardous substance in all of the homogeneous materials for this part is below the limit requirement of GB/T 26572.

X: 意为在该部件所使用的所有均质材料中，至少有一类均质材料中该有害物质的含量高于GB/T 26572所规定的限量要求。
X: Indicate that said hazardous substance contained in at least one of the homogeneous materials used for this part is above the limit requirement of GB/T 26572.