Rosemount™ 3051S Series Pressure Transmitter and Rosemount 3051SF Series Flow Meter

with HART® Protocol

Scan here for product documentation and drawings.
Safety messages

NOTICE

This guide provides basic guidelines for Rosemount™ 3051S Series Pressure Transmitters. It also provides the basic electronic guidelines for the Rosemount 3051SFA Reference Manual, Rosemount 3051SFC Reference Manual, and Rosemount 3051SFP Reference Manual. It does not provide instructions for diagnostics, maintenance, service, or troubleshooting. Refer to the Rosemount 3051S HART Reference Manual for more instruction. This document is also available electronically on Emerson.com/Rosemount.

WARNING

Explosions could result in death or serious injury.
- Do not remove the transmitter cover in explosive atmospheres when the circuit is live.
- Both transmitter covers must be fully engaged to meet explosion-proof requirements.
- Ensure device is installed in accordance with intrinsically safe or non-incendive field practices.

Process leaks could result in death or serious injury.
- To avoid process leaks, only use the O-ring designed to seal with the corresponding flange adapter.

Electrical shock could cause death or serious injury.
- Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

Contents

Mount the transmitter..3
Consider housing rotation.. 9
Set switches and jumpers... 10
Connect wiring and power up...12
Verify configuration... 20
Trim the transmitter...24
Safety instrumented systems installation... 26
Rosemount 3051S/3051SFx/3051S-ERS Product Certifications.. 27
Rosemount 3051S Declaration of Conformity.. 43
China RoHS.. 47
1 Mount the transmitter

1.1 Liquid flow applications

Procedure

1. Place taps to the side of the line.
2. Mount beside or below the taps.
3. Mount the transmitter so that the drain/vent valves are oriented upward.

A. Direction of flow

1.2 Gas flow applications

Procedure

1. Place taps in the top or side of the line.
2. Mount beside or above the taps.

A. Direction of flow
1.3 Steam flow applications

Procedure

1. Place taps to the side of the line.
2. Mount beside or below the taps.
3. Fill impulse lines with water.

![Diagram of flow direction](image)

A. Direction of flow

1.4 Using a mounting bracket

If the transmitter requires the use of a mounting bracket, use the images below for instructions on how to properly mount the transmitter using the Emerson™ provided mounting brackets. Use only bolts provided with the transmitter or sold as Emerson spare parts.

1.5 Bolting considerations

If the transmitter installation requires assembly of a process flange, manifold, or flange adapters, follow these assembly guidelines to ensure a tight seal for optimal performance characteristics of the transmitter. Only use bolts supplied with the transmitter or sold by Emerson™ as spare parts. **Figure 1-1** illustrates common transmitter assemblies with the bolt length required for proper transmitter assembly.
Figure 1-1: Common Transmitter Assemblies

A. Transmitter with coplanar flange
B. Transmitter with coplanar flange and optional flange adapters
C. Transmitter with traditional flange and optional flange adapters
D. Transmitter with coplanar flange and optional Rosemount Conventional Manifold and flange adapters

Note
For all other manifolds, contact Customer Central technical support.

Bolts are typically carbon steel or stainless steel. Confirm the material by viewing the markings on the head of the bolt and referencing Table 1-1. If bolt material is not shown in Table 1-1, contact the local Emerson representative for more information.

Use the following bolt installation procedure:

Procedure

1. Carbon steel bolts do not require lubrication and the stainless steel bolts are coated with a lubricant to ease installation. However, no additional lubricant should be applied when installing either type of bolt.
2. Finger-tighten the bolts.
3. Torque the bolts to the initial torque value using a crossing pattern. See Table 1-1 for initial torque value.
4. Torque the bolts to the final torque value using the same crossing pattern. See Table 1-1 for final torque value.
5. Verify the flange bolts are protruding through the sensor module before applying pressure (see Figure 1-2).

Example

Table 1-1: Torque Values for the Flange and Flange Adapter Bolts

<table>
<thead>
<tr>
<th>Bolt material</th>
<th>Head markings</th>
<th>Initial torque</th>
<th>Final torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Steel (CS)</td>
<td></td>
<td>300 in-lb</td>
<td>650 in-lb</td>
</tr>
<tr>
<td>Stainless Steel (SST)</td>
<td></td>
<td>150 in-lb</td>
<td>300 in-lb</td>
</tr>
</tbody>
</table>

Figure 1-2: Proper Bolt Installation

A. Bolt
B. Sensor module
1.6 O-rings with flange adapters

WARNING

Failure to install proper flange adapter O-rings may cause process leaks, which can result in death or serious injury. Only use the O-ring that is designed for its specific flange adapter.

Whenever the flange or adapters are removed, visually inspect the O-rings. Replace them if there are any signs of damage, such as nicks or cuts. If the O-rings are replaced, re-torque the flange bolts and alignment screws after installation to compensate for seating of the O-rings.

1.7 In-line gage transmitter orientation

The low side pressure port (atmospheric reference) on the in-line gage transmitter is located under the sensor module neck label. (See Figure 1-3)

Keep the vent path free of any obstruction, including but not limited to paint, dust, and lubrication by mounting the transmitter so that any contaminants can drain away.
Figure 1-3: In-line Gage Transmitter

A. Low side pressure port (under neck label)
2 Consider housing rotation

To improve field access to wiring or to better view the optional LCD display:

Procedure

1. Loosen the housing rotation set screw.
2. Turn the housing up to 180° left or right of its original (as shipped) position.
3. Re-tighten the housing rotation set screw.

Figure 2-1: Transmitter Housing Set Screw

A. LCD display
B. Housing rotation set screw (3/32-in.)

⚠️ CAUTION

Do not rotate the housing more than 180° without first performing a disassembly procedure. Over-rotation may sever the electrical connection between the sensor module and the electronics.
3 Set switches and jumpers

If alarm and security adjustment option is not installed, the transmitter will operate normally with the default alarm condition alarm “high” and the security “off”.

Procedure

1. Do not remove the transmitter covers in explosive atmospheres when the circuit is live. If the transmitters is live, set the loop to manual and remove power.

2. Remove the electronics compartment cover. On the Plantweb housing the cover is opposite the field terminals side, or on the junction box housing remove the terminal block cover. Do not remove the housing cover in explosive environments.

3. On the Plantweb housing, slide the security and alarm switches into the preferred position by using a small screwdriver (An LCD display or an adjustment module must be in place to activate the switches). On the junction box housing pull the pins out and rotate 90° into desired position to set the security and alarm.

4. Reinstall the housing cover so metal contacts metal to meet explosion-proof requirements.

Figure 3-1: Transmitter Switch and Jumper Configuration (Plantweb)

A. Meter/adjustment module
B. Security
C. Alarm
Figure 3-2: Transmitter Switch and Jumper Configuration (Junction Box)

A. Meter/adjustment module
B. Security
C. Alarm
4 Connect wiring and power up

Procedure

1. Remove and discard orange conduit plugs.
2. Remove the housing cover labeled “Field Terminals.”

Note

Do not connect the power across the test terminals. Power could damage the test diode in the test connection. Twisted pairs yield best results. Use 24–14 AWG wire and do not exceed 5,000 ft. (1,500 m). For single compartment housing (Junction Box housing), shielded signal wiring should be used in high EMI/RFI environments.

3. Connect the positive lead to the “+” terminal, and the negative lead to the “–” terminal.

4. **CAUTION**

 When the enclosed threaded plug is utilized in the conduit opening, it must be installed with a minimum thread engagement in order to comply with explosion-proof requirements. For straight threads, a minimum of seven threads must be engaged. For tapered threads, a minimum of five threads must be engaged.

Plug and seal the unused conduit connection with the provided conduit plug.

5. If applicable, install wiring with a drip loop. Arrange the drip loop so the bottom is lower than the conduit connections and the transmitter housing.

6. Reinstall the housing cover and tighten so the cover is fully seated with metal to metal contact between the housing and cover in order to meet explosion proof requirements.

The figures below show the wiring connections necessary to power a transmitter and enable communications with a hand-held Field Communicator.
4.1 Ground signal wiring

Do not run signal wiring in conduit or open trays with power wiring, or near heavy electrical equipment. Grounding terminations are provided on the sensor module and inside the terminal compartment. These grounds are used when transient protection terminal blocks are installed or to fulfill local regulations.

Procedure

1. Remove the Field Terminals housing cover.
2. Connect the wiring pair and ground as indicated in Figure 4-3.
 - The cable shield should:
 * Be trimmed close and insulated from touching the transmitter housing
• Continuously connect to the termination point
• Be connected to a good earth ground at the power supply end

Figure 4-3: Wiring

3. Replace the housing cover. It is recommended the cover be tightened until there is no gap between the cover and the housing.

4. Plug and seal the unused conduit connection with the provided conduit plug.

4.2 Remote display wiring and power up (if applicable)

The remote mount display and Interface system consists of a local transmitter and a remote mount LCD display assembly. The local Rosemount 3051S assembly includes a Junction Box housing with a three-position terminal block integrally mounted to a sensor module. The remote mount LCD display assembly consists of a dual compartment Plantweb housing with a seven position terminal block. See Figure 4-4 for complete wiring instructions. The following is a list of necessary information specific to the remote mount display system:

- Each terminal block is unique for the remote display system.
- A 316 SST housing adaptor is permanently secured to the remote mount LCD display Plantweb housing, providing an external ground and a means for field mounting with the provided mounting bracket.
- A cable is required for wiring between the transmitter and remote mount LCD display. The cable length is limited to 100 ft.
- 50 ft. (option M8) or 100 ft. (option M9) cable is provided for wiring between the transmitter and remote mount LCD display. Option M7 does not include cable; see recommended specifications below.
Cable type
Recommend Madison AWM Style 2549 cable. Other comparable cable may be used as long as it has independent dual twisted shielded pair wires with an outer shield. The power wires must be 22 AWG minimum and the CAN communication wires must be 24 AWG minimum.

Cable length
The cable length is up to 100 ft. depending upon cable capacitance.

Cable capacitance
The capacitance from the CAN communications line to the CAN return line as wired must be less than 5,000 picofarads total. This allows up to 50 picofarads per foot for a 100 foot cable.

Intrinsic safety consideration
The transmitter assembly with remote display has been approved with Madison AWM Style 2549 cable. Alternate cable may be used as long as the transmitter with remote display and cable is configured according to the installation control drawing or certificate. Refer to appropriate approval certificate or control drawing in Appendix B of the Rosemount 3051S Reference Manual for remote cable IS requirements.

⚠️ CAUTION

Do not apply power to the remote communications terminal. Follow wiring instructions carefully to prevent damage to system components.
Figure 4-4: Remote Mount Display Wiring Diagram

A. Remote mount display
B. Junction box housing
C. 4–20 mA

Note
Wire colors provided are per Madison AWM Style 2549 cable. Wire color may vary depending on cable selected.

Madison AWM Style 2549 cable includes a ground shield. This shield must be connected to earth ground at either the sensor module or the remote display, but not both.

4.3 Quick connect wiring (if applicable)

As standard, the Rosemount 3051S Quick Connect arrives properly assembled to the sensor module and is ready for installation. Cordsets and field wireable connectors (in shaded area) are sold separately.
Figure 4-5: Rosemount 3051S Quick Connect Exploded View

A. Straight field wireable connector (part number 03151-9063-0001), supplied by customer
B. Right angle field wireable connector (part number 03151-9063-0002), supplied by customer
C. Quick Connect housing
D. Cordset, supplied by vendor
E. Coupling nut
F. Quick Connect coupling nut

Important
If Quick Connect is ordered as a Rosemount 300S spare housing or is removed from the sensor module, follow the instructions below for proper assembly prior to field wiring.

Procedure

1. Place the Quick Connect onto the sensor module. To ensure proper pin alignment, remove coupling nut prior to installing quick connect onto the sensor module.
2. Place coupling nut over quick connect and wrench tighten to a maximum of 300 in-lb (34 N-m).
3. Tighten the set screw up to 30 in-lb using a 3/32-in. hex wrench.
4. Install cordset/field wireable connectors onto the Quick Connect. Do not over tighten.
Figure 4-6: Quick Connect Housing Pin-Out

- **A.** Ground
- **B.** No connection

Note
For other wiring details, refer to pin-out drawing and the cordset manufacturer’s installation instructions.

4.4 Conduit electrical connector wiring (option GE or GM)

For Rosemount 3051S with conduit electrical connectors GE or GM, refer to the cordset manufacturer’s installation instructions for wiring details. For FM Intrinsically Safe, non-incendive or FM FISCO Intrinsically Safe hazardous locations, install in accordance with Rosemount drawing 03151-1009. See Appendix B of the Rosemount 3051S Reference Manual.

4.5 Power supply

The DC power supply should provide power with less than two percent ripple. The total resistance load is the sum of the resistance of the signal leads and the load resistance of the controller, indicator, and related pieces.

Note
The resistance of intrinsic safety barriers, if used, must be included.
Figure 4-7: Load Limitation

Maximum loop resistance = 43.5 x (power supply voltage – 10.5)

The Field Communicator requires a minimum loop resistance of 250Ω for communication.
5 Verify configuration

Use any HART-compliant master to communicate with and verify configuration of the Rosemount 3051S.

Field Communicator user interface

Fast Key sequences vary with the device driver revision. Reference Table 5-1 for DD Rev. 8 or older. Reference Table 5-2 for DD Rev. 9 or newer.

Figure 5-1: Traditional Interface - Device Revision 6 or 7 and DD Revision 7

A check (✓) indicates the basic configuration parameters. At a minimum, these parameters should be verified as part of the configuration and startup procedure.

Table 5-1: Fast Key Sequences-Traditional Interface (Device Revision 6 or 7 and DD Revision 7)
Table 5-1: Fast Key Sequences-Traditional Interface (Device Revision 6 or 7 and DD Revision 7) (continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Fast Key sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm and Saturation Levels</td>
<td>1, 4, 2, 7</td>
</tr>
<tr>
<td>Analog Output Alarm Direction</td>
<td>1, 4, 2, 7, 6</td>
</tr>
<tr>
<td>Analog Output Trim</td>
<td>1, 2, 3, 2</td>
</tr>
<tr>
<td>Burst Mode On/Off</td>
<td>1, 4, 3, 3, 3</td>
</tr>
<tr>
<td>Burst Options</td>
<td>1, 4, 3, 3, 4</td>
</tr>
<tr>
<td>✓ Damping</td>
<td>1, 3, 6</td>
</tr>
<tr>
<td>Date</td>
<td>1, 3, 4, 1</td>
</tr>
<tr>
<td>Descriptor</td>
<td>1, 3, 4, 2</td>
</tr>
<tr>
<td>Digital To Analog Trim (4–20 mA Output)</td>
<td>1, 2, 3, 2, 1</td>
</tr>
<tr>
<td>Field Device Information</td>
<td>1, 4, 4, 1</td>
</tr>
<tr>
<td>LCD Display Configuration</td>
<td>1, 3, 7</td>
</tr>
<tr>
<td>Loop Test</td>
<td>1, 2, 2</td>
</tr>
<tr>
<td>Lower Sensor Trim</td>
<td>1, 2, 3, 3, 2</td>
</tr>
<tr>
<td>Message</td>
<td>1, 3, 4, 3</td>
</tr>
<tr>
<td>Number of Requested Preambles</td>
<td>1, 4, 3, 3, 2</td>
</tr>
<tr>
<td>Pressure Alert Configuration</td>
<td>1, 4, 3, 5, 3</td>
</tr>
<tr>
<td>Poll Address</td>
<td>1, 4, 3, 3, 1</td>
</tr>
<tr>
<td>Poll a Multidropped Transmitter</td>
<td>Left Arrow, 3, 1, 1</td>
</tr>
<tr>
<td>Remapping</td>
<td>1, 4, 3, 6</td>
</tr>
<tr>
<td>Rerange- Keypad Input</td>
<td>1, 2, 3, 1, 1</td>
</tr>
<tr>
<td>Saturation Level Configuration</td>
<td>1, 4, 2, 7, 8</td>
</tr>
<tr>
<td>Scaled D/A Trim (4–20 mA Output)</td>
<td>1, 2, 3, 2, 2</td>
</tr>
<tr>
<td>Scaled Variable Configuration</td>
<td>1, 4, 3, 4, 7</td>
</tr>
<tr>
<td>Self Test (Transmitter)</td>
<td>1, 2, 1, 1</td>
</tr>
</tbody>
</table>
Table 5-1: Fast Key Sequences-Traditional Interface (Device Revision 6 or 7 and DD Revision 7) (continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Fast Key sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Information</td>
<td>1, 4, 4, 2</td>
</tr>
<tr>
<td>Sensor Temperature</td>
<td>1, 1, 4</td>
</tr>
<tr>
<td>Sensor Trim</td>
<td>1, 2, 3, 3</td>
</tr>
<tr>
<td>Sensor Trim Points</td>
<td>1, 2, 3, 3, 5</td>
</tr>
<tr>
<td>Status</td>
<td>1, 2, 1, 2</td>
</tr>
<tr>
<td>✓</td>
<td>Tag</td>
</tr>
<tr>
<td>Temperature Alert</td>
<td>1, 4, 3, 5, 4</td>
</tr>
<tr>
<td>Configuration</td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td>Transfer Function (Setting Output Type)</td>
</tr>
<tr>
<td>Transmitter Security</td>
<td>1, 3, 4, 5</td>
</tr>
<tr>
<td>✓</td>
<td>Units (Process Variable)</td>
</tr>
<tr>
<td></td>
<td>Upper Sensor Trim</td>
</tr>
<tr>
<td></td>
<td>Zero Trim</td>
</tr>
</tbody>
</table>

Table 5-2: Fast Key Sequences-Device Dashboard (Device Revision 7 and DD Revision 9)

<table>
<thead>
<tr>
<th>Function</th>
<th>Fast Key sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm and Saturation Levels</td>
<td>2, 2, 1, 7</td>
</tr>
<tr>
<td>Burst Mode Control</td>
<td>2, 2, 4, 2</td>
</tr>
<tr>
<td>Burst Option</td>
<td>2, 2, 4, 3</td>
</tr>
<tr>
<td>Custom Display Configuration</td>
<td>2, 1, 3</td>
</tr>
<tr>
<td>✓</td>
<td>Damping</td>
</tr>
<tr>
<td>Date</td>
<td>2, 2, 5, 4</td>
</tr>
<tr>
<td>Descriptor</td>
<td>2, 2, 5, 5</td>
</tr>
<tr>
<td>Digital to Analog Trim (4-20 mA Output)</td>
<td>3, 4, 2</td>
</tr>
<tr>
<td>Disable Zero & Span Adjustment</td>
<td>2, 2, 7, 2</td>
</tr>
<tr>
<td>Function</td>
<td>Fast Key sequence</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Rerange with Keypad</td>
<td>2, 2, 1, 3, 1</td>
</tr>
<tr>
<td>Loop Test</td>
<td>3, 5, 1</td>
</tr>
<tr>
<td>Lower Sensor Trim</td>
<td>3, 4, 1, 2</td>
</tr>
<tr>
<td>Message</td>
<td>2, 2, 5, 6</td>
</tr>
<tr>
<td>Range Values</td>
<td>2, 2, 1, 3</td>
</tr>
<tr>
<td>Scaled D/A Trim (4–20 mA Output)</td>
<td>3, 4, 2</td>
</tr>
<tr>
<td>Sensor Temperature/Trend (3051S)</td>
<td>3, 3, 3</td>
</tr>
<tr>
<td>Tag</td>
<td>2, 2, 5, 1</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>2, 2, 1, 4</td>
</tr>
<tr>
<td>Transmitter Security (Write Protect)</td>
<td>2, 2, 7, 1</td>
</tr>
<tr>
<td>Units</td>
<td>2, 2, 1, 2</td>
</tr>
<tr>
<td>Upper Sensor Trim</td>
<td>3, 4, 1, 1</td>
</tr>
<tr>
<td>Zero Trim</td>
<td>3, 4, 1, 3</td>
</tr>
</tbody>
</table>
6 **Trim the transmitter**

Transmitters are shipped fully calibrated per request or by the factory default of full scale (lower range value = zero, upper range value = upper range limit).

6.1 **Zero trim**

Prerequisites

Choose your trim procedure

1. Analog zero trim - sets the analog output to 4 mA.
 a. Also referred to as a "rerange", it sets the lower value range (LRV) equal to the measured pressure.
 b. The display and digital HART output remains unchanged.

2. Digital zero trim - recalibrates the sensor zero.
 a. The LRV is unaffected. The pressure value will be zero (on display and HART output). 4 mA point may not be at zero.
 b. The transmitter must be within 3 percent of URL from factory calibrated zero pressure in order to calibrate the zero function.

6.1.1 Use the Field Communicator

Procedure

1. Equalize or vent the transmitter and connect Field Communicator.
2. At the menu, input the Fast Key sequence (refer to Field Communicator user interface).
3. Follow the commands to perform a zero trim.

6.1.2 Use the transmitter zero adjustment button

Procedure

To perform an analog zero trim using the transmitter buttons push and hold the zero adjustment button for at least two seconds but no longer than 10 seconds.
Figure 6-1: Transmitter Adjustment Buttons (Plantweb Housing)

- A. Zero
- B. Span

Figure 6-2: Transmitter Adjustment Buttons (Junction Box Housing)

- A. Zero
- B. Span
7 Safety instrumented systems installation

For safety certified installations, refer to the Rosemount 3051S Reference Manual for installation procedure and system requirements.
8 Rosemount 3051S/3051SFx/3051S-ERS Product Certifications

Rev 2.5

European Directive Information

A copy of the EU Declaration of Conformity can be found at the end of the Quick Start Guide. The most recent revision of the EU Declaration of Conformity can be found at Emerson.com/Rosemount.

Ordinary Location Certification

As standard, the transmitter has been examined and tested to determine that the design meets the basic electrical, mechanical, and fire protection requirements by a nationally recognized test laboratory (NRTL) as accredited by the Federal Occupational Safety and Health Administration (OSHA).

Installing Equipment in North America

The US National Electrical Code® (NEC) and the Canadian Electrical Code (CEC) permit the use of Division marked equipment in Zones and Zone marked equipment in Divisions. The markings must be suitable for the area classification, gas, and temperature class. This information is clearly defined in the respective codes.

8.1 USA

8.1.1 E5 US Explosionproof (XP) and Dust-Ignitionproof (DIP)

Certificate FM16US0090

Markings XP CL I, DIV 1, GP B, C, D; DIP CL II, DIV 1, GP E, F, G; CL III; T5(–50 °C ≤ Ta ≤ +85 °C); Factory Sealed; Type 4X

8.1.2 I5 US Intrinsic Safety (IS) and Nonincendive (NI)

Certificate FM16US0089X

Markings IS CL I, DIV 1, GP A, B, C, D; CL II, DIV 1, GP E, F, G; Class III; Class 1, Zone 0 AEx ia IIC T4; NI CL 1, DIV 2, GP A, B, C, D; T4(–50 °C ≤ Ta ≤ +70 °C) [HART]; T4(–50 °C ≤ Ta ≤ +60 °C) [Fieldbus]; when connected per Rosemount drawing 03151-1006; Type 4X
Special Condition for Safe Use:

1. The Model 3051S/3051S-ERS Pressure Transmitter contains aluminum and is considered to constitute a potential risk of ignition by impact or friction. Care must be taken into account during installation and use to prevent impact and friction.

Note
Transmitters marked with NI CL 1, DIV 2 can be installed in Division 2 locations using general Division 2 wiring methods or Nonincendive Field Wiring (NIFW). See Drawing 03151-1006.

8.1.3 IE US FISCO Intrinsically Safe

Certificate FM16US0089X
Markings IS CL I, DIV 1, GP A, B, C, D; T4(–50 °C ≤ T_a ≤ +60 °C); when connected per Rosemount drawing 03151-1006; Type 4X

Special Condition for Safe Use:

1. The Rosemount 3051S/3051S-ERS Pressure Transmitter contains aluminum and is considered to constitute a potential risk of ignition by impact or friction. Care must be taken into account during installation and use to prevent impact and friction.

8.2 Canada

8.2.1 E6 Canada Explosionproof, Dust-Ignitionproof, and Division 2

Certificate 1143113
Markings Explosionproof Class I, Division 1, Groups B, C, D; Dust-Ignitionproof Class II, Division 1, Groups E, F, G; Class III; suitable for Class I, Zone 1, Group II+B2, T5; suitable for Class I, Division 2, Groups A, B, C, D; suitable for Class I, Zone 2, Group IIC, T5; when connected per Rosemount drawing 03151-1013; Type 4X

8.2.2 I6 Canada Intrinsically Safe

Certificate 1143113
Standards

CAN/CSA C22.2 No. 0-10, CSA Std C22.2 No. 25-1966, CSA Std C22.2 No. 30-M1986, CAN/CSA C22.2 No. 94-M91, CSA Std C22.2 No. 142-M1987, CSA Std C22.2 No. 157-92, ANSI/ISA 12.27.01-2003, CSA Std C22.2 No. 60529:05

Markings

Intrinsically Safe Class I, Division 1; Groups A, B, C, D; suitable for Class 1, Zone 0, IIC, T3C; when connected per Rosemount drawing 03151-1016 [3051S] 03151-1313 [ERS]; Type 4X

8.2.3 **IF Canada FISCO**

Certificate 1143113

Standards

CAN/CSA C22.2 No. 0-10, CSA Std C22.2 No. 30-M1986, CAN/CSA C22.2 No. 94-M91, CSA Std C22.2 No. 142-M1987, CSA Std C22.2 No. 157-92, ANSI/ISA 12.27.01-2003, CSA Std C22.2 No. 60529:05

Markings

FISCO Intrinsically Safe Class I, Division 1; Groups A, B, C, D; suitable for Class 1, Zone 0, IIC, T3C; when connected per Rosemount drawing 03151-1016 [3051S] 03151-1313 [ERS]; Type 4X

8.3 **Europe**

8.3.1 **E1 ATEX Flameproof**

Certificate KEMA 00ATEX2143X

Standards

Markings

II 1/2 G Ex db IIC T6...T4 Ga/Gb, T6(−60 °C ≤ Tₐ ≤ +70 °C), T5/T4(−60 °C ≤ Tₐ ≤ +80 °C)

Table 8-1: Process Temperature

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Process temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>−60 °C to +70 °C</td>
</tr>
<tr>
<td>T5</td>
<td>−60 °C to +80 °C</td>
</tr>
<tr>
<td>T4</td>
<td>−60 °C to +120 °C</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. This device contains a thin wall diaphragm less than 1 mm thickness that forms a boundary between Category 1 (process connection) and Category 2 (all other parts of the equipment). The model code and datasheet are to be consulted for details of the diaphragm material. Installation, maintenance and use shall take into account the
environmental conditions to which the diaphragm will be subjected. The manufacturer’s instructions for installation and maintenance shall be followed in detail to assure safety during its expected lifetime.

2. Flameproof joints are not intended for repair.

3. Non-standard paint options may cause risk from electrostatic discharge. Avoid installations that could cause electrostatic build-up on painted surfaces, and only clean the painted surfaces with a damp cloth. If paint is ordered through a special option code, contact the manufacturer for more information.

4. Appropriate cable, glands and plugs need to be suitable for a temperature of 5 °C greater than maximum specified temperature for location where installed.

8.3.2 I1 ATEX Intrinsic Safety

<table>
<thead>
<tr>
<th>Certificate</th>
<th>BAS01ATEX1303X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markings</td>
<td>Ⅱ1 Г Ex ia IIC T4 Ga, T4(−60 °C ≤ T_a ≤ +70 °C)</td>
</tr>
</tbody>
</table>

Table 8-2: Input Parameters

<table>
<thead>
<tr>
<th></th>
<th>U_i</th>
<th>I_i</th>
<th>P_i</th>
<th>C_i</th>
<th>L_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperModule</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>30 nF</td>
<td>0</td>
</tr>
<tr>
<td>3051S...A; 3051SF...A; 3051SAL...C</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>0</td>
</tr>
<tr>
<td>3051S...F; 3051SF...F</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.3 W</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3051S ...A...M7, M8, or M9; 3051SF ...A...M7, M8, or M9; 3051SAL...C...M7, M8, or M9</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>60 µH</td>
</tr>
<tr>
<td>3051SAL or 3051SAM</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>33 µH</td>
</tr>
<tr>
<td>3051SAL...M7, M8, or M9 3051SAM...M7, M8, or M9</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>93 µH</td>
</tr>
<tr>
<td>RTD Option for 3051SF</td>
<td>5 V</td>
<td>500 mA</td>
<td>0.63 W</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. The Model 3051S Transmitters fitted with transient protection are not capable of withstanding the 500 V test as defined in Clause
6.3.13 \textit{f} EN 60079-11:2012. This must be taken into account during installation.

2. The terminal pins of the Model 3051S SuperModule must be provided with a degree of protection of at least IP20 in accordance with IEC/EN 60529.

3. The Model 3051S enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion if located in a zone 0 area.

8.3.3 IA ATEX FISCO

Certificate BAS01ATEX1303X

Markings ☑ II 1 G Ex ia IIC T4 Ga, T4(−60 °C ≤ \(T_a\) ≤ +70 °C)

Table 8-3: Input Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FISCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (U_i)</td>
<td>17.5 V</td>
</tr>
<tr>
<td>Current (I_i)</td>
<td>380 mA</td>
</tr>
<tr>
<td>Power (P_i)</td>
<td>5.32 W</td>
</tr>
<tr>
<td>Capacitance (C_i)</td>
<td>0</td>
</tr>
<tr>
<td>Inductance (L_i)</td>
<td>0</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. The Model 3051S Transmitters fitted with transient protection are not capable of withstanding the 500 V test as defined in Clause 6.3.13 of EN 60079-11:2012. This must be taken into account during installation.

2. The terminal pins of the Model 3051S SuperModule must be provided with a degree of protection of at least IP20 in accordance with IEC/EN 60529.

3. The Model 3051S enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion if located in a zone 0 area.

8.3.4 ND ATEX Dust

Certificate BAS01ATEX1374X

Standards EN 60079-0: 2012+A11:2013, EN 60079-31: 2009
Markings ☺ II 1 D Ex ta IIIC T105 °C T 500 95 °C Da, (−20 °C ≤ T_a ≤ +85 °C), V_{max} = 42.4 V

Special Conditions for Safe Use (X):

1. Cable entries must be used which maintain the ingress protection of the enclosure to at least IP66.

2. Unused cable entries must be filled with suitable blanking plugs which maintain the ingress protection of the enclosure to at least IP66.

3. Cable entries and blanking plugs must be suitable for the ambient temperature range of the apparatus and capable of withstanding a 7J impact test.

4. The SuperModule(s) must be securely screwed in place to maintain the ingress protection of the enclosure(s).

8.3.5 N1 ATEX Type n

Certificate BAS01ATEX3304X
Markings ☺ II 3 G Ex nA IIC T5 Gc, (−40 °C ≤ T_a ≤ +85 °C), V_{max} = 45 V

Special Condition for Safe Use (X):

1. The equipment is not capable of withstanding the 500 V insulation test required by clause 6.5 of EN 60079-15:2010. This must be taken into account when installing the equipment.

Note
RTD Assembly is not included with the 3051SFx Type n Approval.

8.4 International
8.4.1 E7 IECEx Flameproof and Dust

Certificate IECEx KEM 08.0010X (Flameproof)
Markings Ex db IIC T6...T4 Ga/Gb, T6(−60 °C ≤ T_a ≤ +70 °C), T5/T4(−60 °C ≤ T_a ≤ +80 °C)

Table 8-4: Process Temperature

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Process temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>−60 °C to +70 °C</td>
</tr>
</tbody>
</table>
Table 8-4: Process Temperature (continued)

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Process temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5</td>
<td>–60 °C to +80 °C</td>
</tr>
<tr>
<td>T4</td>
<td>–60 °C to +120 °C</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. This device contains a thin wall diaphragm less than 1 mm thickness that forms a boundary between EPL Ga (process connection) and EPL Gb (all other parts of the equipment). The model code and datasheet are to be consulted for details of the diaphragm material. Installation, maintenance and use shall take into account the environmental conditions to which the diaphragm will be subjected. The manufacturer's instructions for installation and maintenance shall be followed in detail to assure safety during its expected lifetime.

2. Flameproof joints are not intended for repair.

3. Non-standard paint options may cause risk from electrostatic discharge. Avoid installations that could cause electrostatic buildup on painted surfaces, and only clean the painted surfaces with a damp cloth. If paint is ordered through a special option code, contact the manufacturer for more information.

4. Appropriate cable, glands and plugs need to be suitable for a temperature of 5 °C greater than maximum specified temperature for location where installed.

Certificate: IECEx BAS 09.0014X (Dust)

Markings: Ex ta IIC T105 °C T50095 °C Da, (–20 °C ≤ T_a ≤ +85 °C), $V_{\text{max}} = 42.4$ V

Special Conditions for Safe Use (X):

1. Cable entries must be used which maintain the ingress protection of the enclosure to at least IP66.

2. Unused cable entries must be filled with suitable blanking plugs which maintain the ingress protection of the enclosure to at least IP66.

3. Cable entries and blanking plugs must be suitable for the ambient temperature range of the apparatus and capable of withstanding a 7J impact test.
4. The 3051S SuperModule must be securely screwed in place to maintain the ingress protection of the enclosure.

8.4.2 IECEx Intrinsic Safety

<table>
<thead>
<tr>
<th>Certificate</th>
<th>IECEx BAS 04.0017X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markings</td>
<td>Ex ia IIC T4 Ga, T4(−60 °C ≤ T_a ≤ +70 °C)</td>
</tr>
</tbody>
</table>

Table 8-5: Input Parameters

<table>
<thead>
<tr>
<th></th>
<th>U_i</th>
<th>I_i</th>
<th>P_i</th>
<th>C_i</th>
<th>L_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperModule</td>
<td>30</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>30 nF</td>
<td>0</td>
</tr>
<tr>
<td>3051S...A; 3051SF...A; 3051SAL...C</td>
<td>30</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>0</td>
</tr>
<tr>
<td>3051S...F; 3051SF...F</td>
<td>30</td>
<td>300 mA</td>
<td>1.3 W</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3051S ...A...M7, M8, or M9; 3051SF ...A...M7, M8, or M9; 3051SAL...C...M7, M8, or M9</td>
<td>30</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>60 µH</td>
</tr>
<tr>
<td>3051SAL or 3051SAM</td>
<td>30</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>33 µH</td>
</tr>
<tr>
<td>3051SAL...M7, M8, or M9 3051SAM...M7, M8, or M9</td>
<td>30</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>93 µH</td>
</tr>
<tr>
<td>RTD Option for 3051SF</td>
<td>5</td>
<td>500 mA</td>
<td>0.63 W</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. The Model 3051S Transmitters fitted with transient protection are not capable of withstanding the 500 V test as defined in Clause 6.3.13 of EN 60079-11:2012. This must be taken into account during installation.

2. The terminal pins of the Model 3051S SuperModule must be provided with a degree of protection of at least IP20 in accordance with IEC/EN 60529.

3. The Model 3051S enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion if located in a zone 0 area.
8.4.3 I7 IECEx Intrinsic Safety - Group I - Mining (I7 with Special A0259)

Certificate
IECEx TSA 14.0019X

Standards

Markings
Ex ia I Ma (−60 °C ≤ T_a ≤ +70 °C)

Table 8-6: Input Parameters

<table>
<thead>
<tr>
<th></th>
<th>U_i</th>
<th>I_i</th>
<th>P_i</th>
<th>C_i</th>
<th>L_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperModule</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>30 nF</td>
<td>0</td>
</tr>
<tr>
<td>3051S...A; 3051SF...A; 3051SAL...C</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>0</td>
</tr>
<tr>
<td>3051S...F; 3051SF...F</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.3 W</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3051S...A,...M7, M8, or M9; 3051SF...A,...M7, M8, or M9; 3051SAL...C...M7, M8, or M9</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>60 µH</td>
</tr>
<tr>
<td>3051SAL or 3051SAM</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>33 µH</td>
</tr>
<tr>
<td>3051SAL...M7, M8, or M9 3051SAM...M7, M8, or M9</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>93 µH</td>
</tr>
<tr>
<td>RTD Option for 3051SF</td>
<td>5 V</td>
<td>500 mA</td>
<td>0.63 W</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. If the apparatus is fitted with optional 90 V transient suppressor, it is not capable of withstanding the 500 V insulation test required by Clause 6.3.13 of IEC60079-11. This must be taken into account when installing the apparatus.

2. It is a condition of safe use that the above input parameters shall be taken into account during installation.

3. It is a condition of manufacture that only the apparatus fitted with housing, covers and sensor module housing made out of stainless steel are used in Group I applications.

8.4.4 IG IECEx FISCO

Certificate
IECEx BAS 04.0017X

Standards

Markings
Ex ia IIC T4 Ga, T4(−60 °C ≤ T_a ≤ +70 °C)
Table 8-7: Input Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FISCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage U_i</td>
<td>17.5 V</td>
</tr>
<tr>
<td>Current I_i</td>
<td>380 mA</td>
</tr>
<tr>
<td>Power P_i</td>
<td>5.32 W</td>
</tr>
<tr>
<td>Capacitance C_i</td>
<td>0</td>
</tr>
<tr>
<td>Inductance L_i</td>
<td>0</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. The Model 3051S Transmitters fitted with transient protection are not capable of withstanding the 500 V test as defined in Clause 6.3.13 of EN 60079-11:2012. This must be taken into account during installation.

2. The terminal pins of the Model 3051S SuperModule must be provided with a degree of protection of at least IP20 in accordance with IEC/EN 60529.

3. The Model 3051S enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion if located in a zone 0 area.

8.4.5 IG IECEx Intrinsic Safety - Group I - Mining (IG with Special A0259)

Certificate IECEx TSA 04.0019X

Markings FISCO FIELD DEVICE Ex ia I Ma , (−60 °C ≤ T_a ≤ +70 °C)

Table 8-8: Input Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FISCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage U_i</td>
<td>17.5 V</td>
</tr>
<tr>
<td>Current I_i</td>
<td>380 mA</td>
</tr>
<tr>
<td>Power P_i</td>
<td>5.32 W</td>
</tr>
<tr>
<td>Capacitance C_i</td>
<td>0</td>
</tr>
<tr>
<td>Inductance L_i</td>
<td>0</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use (X):

1. If the apparatus is fitted with optional 90 V transient suppressor, it is not capable of withstanding the 500 V insulation test required by
Clause 6.3.13 of IEC60079-11. This must be taken into account when installing the apparatus.

2. It is a condition of safe use that the above input parameters shall be taken into account during installation.

3. It is a condition of manufacture that only the apparatus fitted with housing, covers and sensor module housing made out of stainless steel are used in Group I applications.

8.4.6 N7 IECEx Type n

Certificate
IECEx BAS 04.0018X

Standards
IEC 60079-0: 2011, IEC 60079-15: 2010

Markings
Ex nA IIC T5 Gc,(−40 °C ≤ T_a ≤ +85 °C)

Special Condition for Safe Use (X):

1. The equipment is not capable of withstanding the 500 V insulation test required by clause 6.5 of EN 60079-15:2010. This must be taken into account when installing the equipment.

8.5 Brazil

8.5.1 E2 INMETRO Flameproof

Certificate
UL-BR 15.0393X

Standards

Markings
Ex db IIC T* Ga/Gb, T6(−60 °C ≤ T_a ≤ +70 °C), T5/T4(−60 °C ≤ T_a ≤ +80 °C), IP66

Special Conditions for Safe Use (X):

1. The device contains a thin wall diaphragm less than 1 mm thick that forms a boundary between zone 0 (process connection) and zone 1 (all other parts of the equipment). The model code and datasheet are to be consulted for details of the diaphragm material. Installation, maintenance, and use shall take into account the environmental conditions to which the diaphragm will be subjected. The manufacturer’s instructions for maintenance shall be followed in detail to assure safety during its expected lifetime.

2. Flameproof joints are not intended for repair.

3. Non-standard paint options may cause risk from electrostatic discharge. Avoid installations that could cause electrostatic buildup on painted surfaces, and only clean the painted surfaces with a damp
cloth. If paint is ordered through a special option code, contact the manufacturer for more information.

8.5.2 I2/IB INMETRO Intrinsic Safety/FISCO

Certificate UL-BR 15.0392X

Standards ABNT NBR IEC 60079-0:2013, ABNT NBR IEC 60079-11:2013

Markings Ex ia IIC T4 Ga (−60 °C ≤ Ta ≤ +70 °C), IP66

Special Conditions for Safe Use (X):

1. The surface resistivity of the antenna is greater than 1 GΩ. To avoid electrostatic charge buildup, it must not be rubbed or cleaned with solvents or a dry cloth.

2. The Model 701PBKKF Power Module may be replaced in a hazardous area. The Power Module has a surface resistivity greater than 1 GΩ and must be properly installed in the wireless device enclosure. Care must be taken during transportation to and from the point of installation to prevent electrostatic charge buildup.

3. The 3051S enclosure may be made of aluminium alloy and given a protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion if located in areas that requires EPL Ga.

Table 8-9: Input Parameters

<table>
<thead>
<tr>
<th></th>
<th>U_i</th>
<th>I_i</th>
<th>P_i</th>
<th>C_i</th>
<th>L_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperModule</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>30 nF</td>
<td>0</td>
</tr>
<tr>
<td>3051S...A; 3051SF...A; 3051SAL...C</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>0</td>
</tr>
<tr>
<td>3051S...F; 3051SF...F</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.3 W</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3051S...F...IB; 3051SF...F...IB</td>
<td>17.5 V</td>
<td>380 mA</td>
<td>5.32 W</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3051S ...A...M7, M8, or M9; 3051SF ...A...M7, M8, or M9; 3051SAL...C...M7, M8, or M9</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>60 µH</td>
</tr>
<tr>
<td>3051SAL or 3051SAM</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>33 µH</td>
</tr>
<tr>
<td>3051SAL... M7, M8, or M9 3051SAM... M7, M8, or M9</td>
<td>30 V</td>
<td>300 mA</td>
<td>1.0 W</td>
<td>12 nF</td>
<td>93 µH</td>
</tr>
</tbody>
</table>
Table 8-9: Input Parameters (continued)

<table>
<thead>
<tr>
<th>RTD Option for 3051SF</th>
<th>(U_i)</th>
<th>(I_i)</th>
<th>(P_i)</th>
<th>(C_i)</th>
<th>(L_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3051S</td>
<td>5 V</td>
<td>500 mA</td>
<td>0.63 W</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

8.6 China

8.6.1 E3 China Flameproof and Dust Ignition-proof

Certificate
- 3051S: GYJ16.1249X
- 3051SFX: GYJ16.1466X
- 3051S-ERS: GYJ15.1406X

Standards
- 3051S: GB3836.1-2010, GB3836.2-2010, GB3836.20-2010, GB12476.1-2013, GB12476.5-2013
- 3051SFX: GB3836.1-2010, GB3836.2-2010, GB3836.20-2010, GB12476.1-2013, GB 12476.5-2013
- 3051S-ERS: GB3836.1-2010, GB3836.2-2010, GB3836.20-2010

Markings
- 3051S: Ex d IIC T6...T4; Ex tD A20 T105 °C T_{500} 95 °C; IP66
- 3051SFX: Ex d IIC T4~T6 Ga/Gb; Ex tD A20 IP66 T105 °C T_{500} 95 °C; IP66
- 3051S-ERS: Ex d IIC T4~T6 Ga/Gb

8.6.2 I3 China Intrinsic Safety

Certificate
- 3051S: GYJ16.1250X [Mfg USA, China, Singapore]
- 3051SFX: GYJ16.1465X [Mfg USA, China, Singapore]
- 3051S-ERS: GYJ16.1248X [Mfg USA, China, Singapore]

Standards
- 3051S: GB3836.1-2010, GB3836.4-2010, GB3836.20-2010
- 3051SFX: GB3836.1/4-2010, GB3836.20-2010, GB12476.1-2013, GB12476.5-2013
- 3051S-ERS: GB3836.1-2010, GB3836.4-2010, GB3836.20-2010

Markings
- 3051S: Ex ia IIC T4 Ga
- 3051SFX: Ex ia IIC T4 Ga, Ex tD A20 IP66 T105 °C T_{500} 95 °C
- 3051S-ERS: Ex ia IIC T4 Ga

8.6.3 N3 China Type n

Certificate
- 3051S, 3051SHP: GYJ17.1354X
3051SFX: GYJ17.1355X

Markings
Ex nA IIC T5 Gc

8.7 EAC - Belarus, Kazakhstan, Russia

8.7.1 EM Technical Regulation Customs Union (EAC) Flameproof and Dust Ignition-proof

Certificate
RU C-US.AA87.B.00378

Markings
Ga/Gb Ex d IIC T6...T4 X
Ex tb IIIC T105 °C T500 95 °C Db X
Ex ta IIIC T105 °C T500 95 °C Da X

8.7.2 IM Technical Regulation Customs Union (EAC) Intrinsic Safety

Certificate
RU C-US.AA87.B.00378

Markings
0Ex ia IIC T4 Ga X

8.7.3 IN Technical Regulation Customs Union (EAC) Intrinsic Safety

Certificate:
RU C-US.AA87.B.00378

Markings:
0Ex ia IIC T4 Ga X

8.8 Japan

8.8.1 E4 Japan Flameproof

Certificate
CML 17JPN1147X

Markings
Ex d IIC T6...T4 Ga/Gb

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Ambient temperature</th>
<th>Process temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-40 °C to +70 °C</td>
<td>-60 °C to +70 °C</td>
</tr>
<tr>
<td>T5</td>
<td>-40 °C to +75 °C</td>
<td>-60 °C to +80 °C</td>
</tr>
<tr>
<td>T4</td>
<td>-40 °C to +75 °C</td>
<td>-60 °C to +120 °C</td>
</tr>
</tbody>
</table>

Special Conditions for Safe Use:

1. This device contains a thin wall diaphragm less than 1mm thickness that forms a boundary between EPL Ga (process connection) and EPL Gb (all other parts of the equipment). The model code and datasheet are to be consulted for details of the diaphragm material. Installation, maintenance, and use shall consider the environmental conditions to which the diaphragm will be subjected. The
manufacturer’s instructions for installation and maintenance shall be followed in detail to assure safety during its expected lifetime.

2. Flameproof joints are not intended for repair.

3. Non-standard paint options may cause risk from electrostatic discharge. Avoid installations that could cause electrostatic build-up on painted surfaces, and only clean the painted surfaces with a damp cloth. If paint is ordered through a special option code, contact the manufacturer for more information.

8.9 Republic of Korea

8.9.1 EP Republic of Korea Flameproof

Certificate 12-KB4BO-0180X [Mfg USA], 11-KB4BO-0068X [Mfg Singapore]

Markings Ex d IIC T6...T4

8.9.2 IP Republic of Korea Intrinsic Safety

Certificate 12-KB4BO-0202X [HART - Mfg USA], 12-KB4BO-0204X [Fieldbus - Mfg USA], 12-KB4BO-0203X [HART - Mfg Singapore], 13-KB4BO-0296X [Fieldbus - Mfg Singapore]

Markings Ex ia IIC T4

8.10 Combinations

K1 Combination of E1, I1, N1, and ND
K2 Combination of E2 and I2
K5 Combination of E5 and I5
K6 Combination of E6 and I6
K7 Combination of E7, I7, and N7
KA Combination of E1, I1, E6, and I6
KB Combination of E5, I5, E6, and I6
KC Combination of E1, I1, E5, and I5
KD Combination of E1, I1, E5, I5, E6, and I6
KG Combination of IA, IE, IF, and IG
KM Combination of EM and IM
KP Combination of EP and IP
8.11 Additional Certifications

8.11.1 SBS American Bureau of Shipping (ABS) Type Approval

Certificate 17-RJ1679518-PDA

Intended Use Measure gauge or absolute pressure of liquid, gas or vapor applications on ABS classed vessels, marine, and offshore installations.

8.11.2 SBV Bureau Veritas (BV) Type Approval

Certificate 31910 BV

Requirements Bureau Veritas Rules for the Classification of Steel Ships

Application Class Notations: AUT-UMS, AUT-CCS, AUT-PORT and AUT-IMS.

8.11.3 SDN Det Norske Veritas (DNV) Type Approval

Certificate TAA00000K9

Intended Use Det Norske Veritas' Rules for Classification of Ships, High Speed & Light Craft, and Det Norske Veritas' Offshore Standards

Application

<table>
<thead>
<tr>
<th>Location classes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>3051S</td>
</tr>
<tr>
<td>Temperature</td>
<td>D</td>
</tr>
<tr>
<td>Humidity</td>
<td>B</td>
</tr>
<tr>
<td>Vibration</td>
<td>A</td>
</tr>
<tr>
<td>EMC</td>
<td>A</td>
</tr>
<tr>
<td>Enclosure</td>
<td>D/IP66/IP68</td>
</tr>
</tbody>
</table>

8.11.4 SLL Lloyds Register (LR) Type Approval

Certificate 11/60002

Application Environmental categories ENV1, ENV2, ENV3, and ENV5

8.11.5 D3 Custody Transfer - Measurement Canada Accuracy Approval [3051S Only]

Certificate AG-0501, AV-2380C
Rosemount 3051S Declaration of Conformity

EU Declaration of Conformity
No: RMD 1044 Rev. AD

We,

Rosemount Inc.
8200 Market Boulevard
Chanhassen, MN 55317-9685
USA

declare under our sole responsibility that the product,

Rosemount 3051S Series Pressure Transmitters
Rosemount 3051SFx Series Flowmeter Transmitters
Rosemount 300S Housings

manufactured by,

Rosemount Inc.
8200 Market Boulevard
Chanhassen, MN 55317-9685
USA

to which this declaration relates, is in conformity with the provisions of the European Union Directives, including the latest amendments, as shown in the attached schedule.

Assumption of conformity is based on the application of the harmonized standards and, when applicable or required, a European Union notified body certification, as shown in the attached schedule.

(signature)
Vice President of Global Quality

Chris LaPoint

1-Feb-19; Shakopee, MN USA

(date of issue)
(name - printed)
EMC Directive (2014/30/EU)

Harmonized Standards:
EN 61326-1:2013, EN 61326-2-3:2013

PED Directive (2014/68/EU)

Rosemount 3051S Series Pressure Transmitters

Rosemount 3051S_CA4; 3051S_CD2, 3, 4, 5 (also with P0 & P9 option) Pressure Transmitters

- QS Certificate of Assessment – Certificate No. 12698-2018-CE-USA-ACCREDIA
- Module H Conformity Assessment
- Other Standards Used: ANSI / ISA 61010-1:2004

 Note – previous PED Certificate No. 59552-2009-CE-HOU-DNV

All other Rosemount 3051S Pressure Transmitters

- Sound Engineering Practice

Transmitter Attachments: Diaphragm Seal, Process Flange, or Manifold

- Sound Engineering Practice

Rosemount 3051SFx Series Flowmeter Pressure Transmitters

See DSI 1000 Declaration of Conformity
EU Declaration of Conformity
No: RMD 1044 Rev. AD

ATEX Directive (2014/34/EU)

BAS01ATEX1303X – Intrinsic Safety Certificate
Equipment Group II, Category 1 G
Ex ia IIC T4 Ga
Harmonized Standards Used:

BAS01ATEX3304X – Type n Certificate
Equipment Group II, Category 3 G
Ex nA IIC T5 Gc
Harmonized Standards Used:

BAS01ATEX1374X – Dust Certificate
Equipment Group II, Category 1 D
Ex ta IIIC T105°C T180°C Da
Harmonized Standards Used:
EN 60079-0:2012+A11:2013
Other Standards Used:
EN 60079-31:2009 (a review against EN 60079-31:2014, which is harmonized, shows no significant changes relevant to this equipment so EN 60079-31:2009 continues to represent “State of the Art”)

BAS04ATEX0181X – Mining Certificate
Equipment Group I, Category M1
Ex ia I Ma
Harmonized Standards Used:
EN 60079-0:2012, EN 60079-11:2012

BAS04ATEX0193U – Mining Certificate: Component
Equipment Group I, Category M1
Ex ia I Ma
Harmonized Standards Used:
EN 60079-0:2012, EN 60079-11:2012

KEMA00ATEX2143X – Flameproof Certificate
Equipment Group II, Category 1/2 G
Ex db IIC T6…T4 Ga/Gb
Harmonized Standards:
EU Declaration of Conformity
No: RMD 1044 Rev. AD

PED Notified Body

DNV GL Business Assurance Italia S.r.l. [Notified Body Number: 0496]
Via Energy Park, 14, N-20871
Vimercate (MB), Italy

Note – equipment manufactured prior to 20 October 2018 may be marked with the previous PED Notified Body number; previous PED Notified Body information was as follows:
Det Norske Veritas (DNV) [Notified Body Number: 0575]
Veritasveien 1, N-1322
Hovik, Norway

ATEX Notified Bodies for EU Type Examination Certificate

DEKRA Certification B.V. [Notified Body Number: 0344]
Utrechtseweg 310
Postbus 5185
6802 ED Arnhem
Netherlands

SGS FIMCO OY [Notified Body Number: 0598]
P.O. Box 30 (Särkiniementie 3)
00211 HELSINKI
Finland

ATEX Notified Body for Quality Assurance

SGS FIMCO OY [Notified Body Number: 0598]
P.O. Box 30 (Särkiniementie 3)
00211 HELSINKI
Finland
List of Rosemount 3051S Parts with China RoHS Concentration above MCVs

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Hazardous Substances</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics Assembly</td>
<td>Lead (Pb)</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Mercury (Hg)</td>
<td></td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Housing Assembly</td>
<td>Cadmium (Cd)</td>
<td></td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Sensor Assembly</td>
<td>Hexavalent Chromium (Cr +6)</td>
<td></td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Polybrominated biphenyls (PBB)</td>
<td></td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Polybrominated diphenyl ethers (PBDE)</td>
<td></td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

This table is proposed in accordance with the provision of SJ/T11364.

O: Indicate that said hazardous substance in all of the homogeneous materials for this part is below the limit requirement of GB/T 26572.

X: Indicate that said hazardous substance contained in at least one of the homogeneous materials used for this part is above the limit requirement of GB/T 26572.