Rosemount™ TankMaster™

Floating Roof Monitoring
Contents

Section 1: Introduction
1.1 Safety messages ... 1
1.2 Manual overview ... 2

Section 2: Overview
2.1 Introduction ... 3
2.1.1 Drain sump monitoring and hydrocarbon detection 3
2.2 System overview .. 4
2.2.1 Shell mounted installation at top of tank 4
2.2.2 Installation on tank roof .. 5
2.3 Installation procedure ... 8

Section 3: Installation
3.1 Safety messages ... 9
3.2 Installation considerations .. 10
3.3 Mechanical installation ... 11
3.3.1 Installation on tank shell .. 11
3.3.2 Installation on tank roof ... 16
3.3.3 Tilt gauge position ... 19
3.3.4 Drain sump monitoring .. 20
3.3.5 Hydrocarbon detection .. 20

Section 4: Configuration
4.1 Safety messages ... 21
4.2 Introduction ... 22
4.2.1 Inventory calculations ... 22
4.3 Floating roof monitoring setup .. 23
4.3.1 TankMaster WinSetup workspace .. 23
4.3.2 To enable floating roof monitoring 24
4.3.3 Shell mounted with level reference 26
4.3.4 Shell mounted without level reference 31
4.3.5 Roof mounted .. 33
4.3.6 Drain gauge ... 35
4.3.7 Hydrocarbon gauge ... 36
4.3.8 Alarm setup ... 37
Section 5: Operation

5.1 Introduction .. 39
5.2 Tank view .. 39
5.3 Alarm limits .. 42
 5.3.1 Floating roof alarm limits 43
5.4 Alarm disconnect .. 44
5.5 Roof monitoring group view 45
 5.5.1 To create a group view 46
5.6 Roof monitoring historical data 48
 5.6.1 Sample setup .. 49
 5.6.2 View setup .. 50
5.7 Roof status .. 51
5.8 Alarm priority .. 56

Section 6: Service and Troubleshooting

6.1 Safety messages ... 57
6.2 Troubleshooting ... 58

Appendix A: Commissioning Checklist
NOTICE

Read this manual before working with the product. For personal and system safety, and for optimum product performance, make sure you thoroughly understand the contents before installing, using, or maintaining this product.

For equipment service or support needs, contact your local Emerson Process Management/Rosemount Tank Gauging representative.

Spare Parts

Any substitution of non-recognized spare parts may jeopardize safety. Repair, e.g. substitution of components etc, may also jeopardize safety and is under no circumstances allowed.

Rosemount Tank Radar AB will not take any responsibility for faults, accidents, etc caused by non-recognized spare parts or any repair which is not made by Rosemount Tank Radar AB.

⚠️ CAUTION

The products described in this document are NOT designed for nuclear-qualified applications. Using non-nuclear qualified products in applications that require nuclear-qualified hardware or products may cause inaccurate readings.

For information on Rosemount nuclear-qualified products, contact your local Rosemount Sales Representative.
1.1 Safety messages

Procedures and instructions in this manual may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (⚠️). Refer to the safety messages listed at the beginning of each section before performing an operation preceded by this symbol.

WARNING

Failure to follow these installation guidelines could result in death or serious injury.

- Make sure only qualified personnel perform the installation.
- Use the equipment only as specified in this manual. Failure to do so may impair the protection provided by the equipment.

Explosions could result in death or serious injury.

- Verify that the operating environment of the transmitter is consistent with the appropriate hazardous locations certifications.
- Before connecting a hand held communicator in an explosive atmosphere, make sure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.
- Do not remove the gauge cover in explosive atmospheres when the circuit is alive.

Electrical shock could cause death or serious injury.

- Use extreme caution when making contact with the leads and terminals.
1.2 Manual overview

This manual provides installation, configuration, and maintenance information for a Rosemount™ TankMaster™ Floating Roof Monitoring system. The manual is based on a typical Rosemount Tank Gauging system with a Rosemount 2410 Tank Hub connected to supported level and temperature measuring devices.

Typically, a Rosemount Floating Roof Monitoring system is based on using Rosemount 3308 Level Transmitters or Rosemount 5900 radar gauges for roof tilt monitoring. In addition to that, level gauges and temperature transmitters are used for standard level measurements and inventory calculations.

Section 2: Overview provides a brief description of the Rosemount Tank Gauging floating roof monitoring system and recommended installation procedure.

Section 3: Installation covers installation considerations and mechanical installation.

Section 4: Configuration describes how to configure a Rosemount Tank Gauging floating roof monitoring system by using the Rosemount TankMaster software package.

Section 5: Operation describes how to operate the floating roof system by using various tank view functions in the Rosemount TankMaster WinOpi program.

Section 6: Service and Troubleshooting covers troubleshooting a Rosemount Tank Gauging floating roof system.

Appendix A: Commissioning Checklist provides a list of installation and configuration actions to check prior to putting the system in operation.
Section 2 Overview

2.1 Introduction

The floating roof monitoring function in Rosemount™ TankMaster detects whether a roof in a storage tank is stuck, sinking, floating higher or lower than normal, covered by water or product, or is tilted.

TankMaster uses three to six tilt gauges to track inclination of a floating tank roof. Roof floating high/low status may be monitored as well. The monitoring function is based on using Rosemount 3308 wireless level transmitters mounted on the tank roof, or shell mounted free propagation radar level gauges measuring distance to the tank roof.

If roof inclination exceeds a maximum alarm limit, TankMaster triggers an alarm. Also, if the tank roof floats higher or lower than normal, it may indicate that the roof is stuck or is about to sink. An alarm is triggered in TankMaster if the floating roof passes high or low alarm limits.

One or two extra transmitters can be used to detect if the roof drain gets plugged or if there is any hydrocarbons (product) present on the tank roof. The drain gauge can be either a Rosemount 3308 wireless transmitter providing an online level value of tank roof drain sump, or a wireless vibrating fork which will act as a high level alarm switch.

Hydrocarbons may be detected by any hydrocarbon detection system which can provide a digital output signal to be connected with a Rosemount 702 Wireless Discrete Transmitter.

The roof monitoring function is enabled by an option in the Rosemount TankMaster hardware key. Also, in TankMaster WinSetup a tank must be configured as a Floating Roof Tank in order to be able to use the floating roof monitoring function.

Level radars are installed at multiple points, spaced evenly around the perimeter of the roof. The following installation options are available:

- Shell mounted with/without level reference
- Roof mounted

2.1.1 Drain sump monitoring and hydrocarbon detection

A drain gauge and/or a hydrocarbon gauge can be added to the floating roof monitoring system. The drain gauge is installed in the drain sump and detects if the drain clogs and water does not run off. Rosemount 3308 Wireless Guided Wave Radar or Rosemount 2160 Wireless Vibrating Fork can be used for drain sump monitoring.

Installed at the floating roof, the hydrocarbon gauge detects potential hydrocarbons on the roof. Typically, a Rosemount 702 Wireless Discrete Transmitter with Liquid Hydrocarbon Detection is used.
2.2 System overview

The floating roof monitoring function is based on using one of two tilt gauge installation options:
- shell mounted at the top of the tank
- on the tank roof

The shell mounted version is also suitable for fixed roof tanks with inner floating roof.

2.2.1 Shell mounted installation at top of tank

Three to six non-contacting level gauges are installed at the top of the tank. The gauges are mounted on brackets and measure distance to reflector plate on top of the tank roof.

Roof tilt is monitored by comparing distance to the tank roof measured by the different tilt level gauges.

Tank roof floating high/low calculations can be done by comparing distance to floating roof with distance to the product surface measured by a reference level gauge in a still-pipe.

Figure 2-1. Shell Mounted Tilt Gauges Installed at the Top of the Tank

A. Tilt gauge mounted on top of tank
B. Reflector
C. Reference gauge for product level measurements
D. Floating roof
2.2.2 Installation on tank roof

Three to six tilt gauges are installed on the tank roof. Probes penetrate the tank roof measuring distance from roof to product surface.

By comparing the distance to the product surface measured by each tilt gauge, both roof tilt and buoyancy can be monitored.

Wireless Rosemount 3308 tilt gauges communicate with the host system via a repeater at the top of the tank.

Figure 2-2. Roof Mounted Wireless Rosemount 3308 Transmitters

A. Tilt gauge mounted on tank roof
B. Radar gauge for product level measurements
C. Floating roof
D. Repeater
Figure 2-3. Floating Roof Monitoring System with Shell Mounted and Roof Mounted Tilt Gauges

A. Tilt gauge
B. Reference level gauge for product level measurements
C. Reflector
D. Repeater
E. Rosemount 2410 Tank hub
F. Rosemount 2460 System Hub
G. Emerson Wireless 1420 Gateway
H. Rosemount TankMaster host
I. Emerson Wireless 775 THUM Adapter
Table 2-1. Floating Roof Tank Installation Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Shell mounted with/without level reference</th>
<th>Roof mounted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radar device</td>
<td>Rosemount 5900C Non-contacting Radars</td>
<td>Rosemount 3308 Wireless Guided Wave Radars</td>
</tr>
<tr>
<td>Number of radar devices</td>
<td>Minimum three, maximum six</td>
<td>Minimum three, maximum six</td>
</tr>
<tr>
<td>Installation</td>
<td>Installed at top of tank shell<sup>(1)</sup></td>
<td>Directly on floating roof</td>
</tr>
<tr>
<td></td>
<td>Also suitable for fixed roof tanks with inner floating roof</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Measures distance to the floating roof</td>
<td>Measures distance to the liquid</td>
</tr>
<tr>
<td>Tilt</td>
<td>Tracks tilt by comparing measured distance from radars to the floating roof</td>
<td>Tracks tilt by comparing measured distance to the liquid</td>
</tr>
<tr>
<td>Roof floating</td>
<td>Tracks roof floating high/low by referencing liquid surface<sup>(2)</sup></td>
<td>Tracks roof floating high/low by measuring distance to the liquid</td>
</tr>
<tr>
<td>Possible alerts/alarms</td>
<td>- Roof tilt</td>
<td>- Roof tilt</td>
</tr>
<tr>
<td></td>
<td>- Roof floating high/low<sup>(2)</sup></td>
<td>- Roof floating high/low</td>
</tr>
<tr>
<td></td>
<td>- Drain sump full with water<sup>(3)</sup></td>
<td>- Drain sump full with water<sup>(3)</sup></td>
</tr>
<tr>
<td></td>
<td>- Hydrocarbons detected<sup>(4)</sup></td>
<td>- Hydrocarbons detected<sup>(4)</sup></td>
</tr>
<tr>
<td>Data transmission to control room</td>
<td>Wired connection from level gauge to tank hub</td>
<td>Wireless communication</td>
</tr>
<tr>
<td></td>
<td>Wired or wireless communication from tank hub to control room</td>
<td></td>
</tr>
</tbody>
</table>

1. Local site license may be required for compliance to frequency spectrum approval.
2. Requires level reference (inventory level gauge in still-pipe).
3. Requires drain sump gauge.
4. Requires hydrocarbon detection gauge.
2.3 Installation procedure

Follow these steps for proper installation of the Rosemount TankMaster Roof Monitoring system:

1. Make sure that a site plan is available with tank tags, device tags, and device addresses.

2. Review mounting considerations for the devices ("Installation considerations" on page 10).

3. Install the devices ("Mechanical installation" on page 11).

4. Wire and power up the devices.

5. Configure the devices.

Section 3 Installation

3.1 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (⚠️). Please refer to the following safety messages before performing an operation preceded by this symbol.

⚠️ WARNING

Failure to follow safe installation and servicing guidelines could result in death or serious injury.

Make sure only qualified personnel perform the installation.

Use the equipment only as specified in this manual. Failure to do so may impair the protection provided by the equipment.

Do not perform any service other than those contained in this manual unless you are qualified.

To prevent ignition of flammable or combustible atmospheres, disconnect power before servicing.

Substitution of components may impair Intrinsic Safety.
3.2 Installation considerations

- Verify that the tank roof is designed to allow tilt gauge installation according to requirements.
- Ensure that roof mounted tilt gauges are installed properly to allow reliable measurements when the roof tilts or sinks.
- Ensure that shell mounted tilt gauges are installed at a sufficient distance from the highest roof position.

See “Mechanical installation” on page 11 for instructions on how to install tilt gauges in a Rosemount Tank Gauging system.

Note
Local site license may be required for compliance to frequency spectrum approval.
3.3 Mechanical installation

The **Floating Roof Monitoring** system is based on using a number of tilt gauges which measure the distance to the tank roof. There is also an option which is based on installing level gauges on the tank roof in order to monitor the distance between tank roof and product surface. Throughout this manual we will refer to these two versions:

- Shell mounted
- Roof mounted

3.3.1 Installation on tank shell

This option uses three to six tilt gauges mounted on brackets. It is recommended that tilt gauges are mounted on a bracket arm and not a wide plate.

In case there is a level gauge for product level measurements as well, it can be used as a reference for tank roof floating high/low calculations.

Figure 3-1. Floating Roof With Tilt Gauges on Top of Tank

- A. Tilt gauge mounted on top of tank
- B. Reflector
- C. Reference level gauge
- D. Temperature transmitter
It is important that each tilt gauge is installed at a position where the roof and reflector can not come into contact with the antenna.

Ensure that the bracket is long enough to fulfill minimum recommendations for distance from wall to tilt gauge.

The tilt gauge should be installed at zero degrees vertical inclination as shown in "Inclination" on page 15.

Figure 3-2. Installation Recommendations

A. Tilt gauge
B. Reflector (see “Reflector design” on page 13)
C. Antenna (see “Antenna orientation” on page 14)
D. Minimum distance 800 mm (31.5 in.)
E. Recommended free space 800 mm (31.5 in.). Minimum distance 500 mm (19.7 in.)
Reflector design

Shell mounted tilt gauges measure the distance to a reflector(1) placed on the tank roof. Ensure that the reflector meets recommended design specifications in order to prevent contamination build-up. The gap (B) between ridges will ensure that water and snow can drip off the reflector.

Note
It is recommended to regularly make visual inspections to verify that each reflector is placed in the right position.

Figure 3-3. Reflector for Measuring Distance to Tank Roof

A. 130 mm (5.12 in.)
B. 35 mm (1.4 in.)
C. 260 mm (10.2 in.)
D. 40 mm (1.6 in.)
E. 500 mm (19.7 in.)
F. 1200 mm (47.2 in.)
G. 780 mm (30.7 in.)

1. The reflector is designed for radar gauge using FMCW 10 GHz technology.
Antenna orientation

Figure 3-4. Antenna Orientation with Transmitter Head as Reference

A. Tilt gauge
B. Reflector (see “Reflector design” on page 13)
C. Tank wall
Inclination

Make sure that the tilt gauge is vertically aligned with the reflector. This will ensure that maximum signal strength is reflected back to the gauge.

Figure 3-5. Antenna Inclination

A. Tilt gauge

B. Reflector (see “Reflector design” on page 13)
3.3.2 Installation on tank roof

Three to six tilt gauges can be installed on the tank roof allowing tilt and roof floating high/low measurements. A repeater at the top of the tank ensures proper communication between the wireless tilt gauges and the gateway.

Note
Make sure that battery power is regularly verified by, for example, using the gateway web interface. Wireless network communication should be verified according to IEC 62591 (WirelessHART) standards best practice.

Figure 3-6. Tilt gauges on Tank Roof

A. Tilt gauge mounted on tank roof; Rosemount 3308 Wireless Guided Wave Radar transmitter
B. Reference level gauge for product level measurements
C. Floating roof
D. Repeater
Free space

Make sure that there is free space underneath the probe when the roof has landed at the bottom of the tank.

It is recommended that the nozzle is ventilated for pressure equalization. This will ensure that pressure build-up is released in case the roof sinks. A flushing ring connection can be used in case the nozzle is not ventilated.

Figure 3-7. Rosemount 3308 Installation on Tank Roof

A. Rosemount 3308 tilt gauge
B. Free space
C. Probe
D. Nozzle
E. Pontoon
F. Roof support
G. Liquid
H. Floating roof
Geometry

It is important that the nozzle is high enough to ensure that the product surface does not reach the level transmitter’s Blind Zone in case the roof tilts or sinks. Make sure that there is sufficient measuring range margin as illustrated in Figure 3-8.

See the Rosemount 3308 Series Reference Manual for more information on Blind Zones.

Normal Distance is a configuration parameter that designates the distance between the upper reference point and the product surface when the tank roof floats freely and is horizontal with no tilt. A deviation from Normal Distance indicates that the roof is stuck or sinking.

Prior to putting the Floating Roof Monitoring system in operation, it is recommended to hand dip each tilt gauge nozzle in order to find the exact Normal Distance. This value will be needed in the Floating Roof Monitoring setup as described in “Roof mounted” on page 33. The hand dip value allows you to verify that the tilt gauge is measuring on the actual product surface.

Note
Make sure all roof monitoring alarm limits are configured inside the measuring range.

Figure 3-8. Blind Zone and Measuring Range

A. Rosemount 3308 tilt gauge
B. Blind Zone
C. Measuring range
D. Normal distance. This parameter is configured in the Floating Roof Monitoring Setup window (see “Normal distance” on page 34).
E. Minimum nozzle height=200 mm
F. Floating roof
G. Liquid
3.3.3 Tilt gauge position

It is recommended that the tilt gauges are installed in such a way that they are spread out evenly around the tank roof as illustrated below. You may use a minimum of three tilt gauges. Up to six tilt gauges may be used if required.

Figure 3-9. Position on Tank Roof

A. Distance to tank wall
B. Tilt gauge
3.3.4 Drain sump monitoring

A Rosemount 3308 Wireless Guided Wave Radar or a Rosemount 2160 Wireless Vibrating Fork can be used for drain sump monitoring.

Figure 3-10. Drain Sump Gauges

3.3.5 Hydrocarbon detection

A Rosemount 702 Wireless Discrete Transmitter with Liquid Hydrocarbon Detection can be used for detecting hydrocarbons on the roof.

Figure 3-11. Hydrocarbon Gauge
Section 4 Configuration

4.1 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (⚠️). Please refer to the following safety messages before performing an operation preceded by this symbol.

⚠️ WARNING

Failure to follow safe installation and servicing guidelines could result in death or serious injury. Make sure only qualified personnel perform the installation.

Use the equipment only as specified in this manual. Failure to do so may impair the protection provided by the equipment.

Do not perform any service other than those contained in this manual unless you are qualified.

To prevent ignition of flammable or combustible atmospheres, disconnect power before servicing. Substitution of components may impair Intrinsic Safety.
4.2 Introduction

It is important that configuration is properly prepared by providing the appropriate information that is needed for setting up a Rosemount Tank Gauging system. For example, you will need tank geometry parameters, antenna type for level gauges, Unit Id and Modbus communication addresses.

Prior to setting up a Rosemount TankMaster Floating Roof Monitoring system, all devices need to be installed, wired, and configured according to the standard procedure.

The purpose of tank configuration is to associate level gauges and other devices to specific tanks. In a Floating Roof Monitoring system you will need to configure reference gauge for level measurements as well as tilt gauges for floating roof monitoring. Drain and Hydrocarbon gauges may also be used and therefore need to be installed prior to setting up the floating roof monitoring system. Tank configuration is part of the standard installation procedure for a Rosemount Tank Gauging system.

4.2.1 Inventory calculations

Note that for tilt gauge mounting type Shell mounted with Level Reference and Roof mounted you will need to make sure that inventory calculations are setup. This is required for calculating floating roof status such as Landed, Partially Landed, and Roof Floating High/Low.

For more information on setting up inventory calculations, see the Rosemount TankMaster WinOpi Reference Manual.
4.3 **Floating roof monitoring setup**

Prior to setting up the Floating Roof Monitoring function, make sure that reference level gauge and tilt gauges are configured according to the standard procedure for Rosemount radar level gauges. Also, in case drain gauge and/or hydrocarbon gauge will be used, you will have to install these devices too and ensure that proper communication is established with the host computer system.

It is important that the roof floats horizontally in its normal position when setting up the roof monitoring function. The roof must float freely and may not be stuck at the tank wall.

4.3.1 **TankMaster WinSetup workspace**

The WinSetup workspace shows installed tanks and devices. A Floating Roof tank with tilt gauges for roof monitoring will appear as shown in Figure 4-1 below. Tilt gauges, as well as associated devices such as level gauges and temperature transmitters, will be shown.

Figure 4-1. Associated devices and tilt gauges appear in the WinSetup workspace

<table>
<thead>
<tr>
<th>A. Tilt gauges</th>
<th>B. Level gauge and temperature transmitter associated with the tank</th>
</tr>
</thead>
</table>

A. Tilt gauges

B. Level gauge and temperature transmitter associated with the tank
4.3.2 To enable floating roof monitoring

The Floating Roof Monitoring function requires hardware key option **Roof Monitoring Setup**.

To enable Floating Roof Monitoring:

1. Open the Rosemount TankMaster WinSetup program.
2. In the WinSetup workspace, select the desired tank icon.

3. Click the right mouse button on the tank icon and select **Floating Roof Monitoring**.
4. In the Floating Roof Monitoring Setup window (see Figure 4-2 on page 25), select the **Enable...** check box in the upper left-hand corner.
5. Select the mounting type that corresponds to your installation. Available options are:
 - shell mounted with reference gauge
 - shell mounted without reference gauge
 - roof mounted
6. Configure tilt gauges, drain gauge, and hydrocarbon gauge if available.
The Floating Roof Monitoring Setup window lets you enable and configure the monitoring system.

Table 4-1. Floating Roof Monitoring Setup

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting type</td>
<td>- Shell, with reference level gauge</td>
</tr>
<tr>
<td></td>
<td>- Shell, without reference level gauge</td>
</tr>
<tr>
<td></td>
<td>- Roof mounted</td>
</tr>
<tr>
<td>Tilt gauge</td>
<td>Number of tilt gauges, tilt gauge source device.</td>
</tr>
<tr>
<td>Drain gauge</td>
<td>Source, input, type.</td>
</tr>
<tr>
<td>Hydrocarbon gauge</td>
<td>Source, input.</td>
</tr>
<tr>
<td>Alarm settings</td>
<td>Roof tilt, Roof floating, Drain sump.</td>
</tr>
</tbody>
</table>
4.3.3 Shell mounted with level reference

This option includes tilt gauges and a level reference gauge. Prior to setting up the Floating Roof Monitoring system, the reference gauge needs to be installed and configured according to the standard procedure for Rosemount radar level gauges.

In case reference gauge tank geometry needs to be adjusted at a later stage, make sure that the floating roof monitoring setup is updated as well.

For the tilt gauges you should use the same **Tank Reference Height (R)** as the Reference Level gauge. Start by using the following parameter settings for the tilt gauges prior to setting up the floating roof monitoring function.

Table 4-2. Initial Tank Geometry Parameters for Tilt Gauges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank Reference Height (R)</td>
<td>Same as for the Level Reference Gauge.</td>
</tr>
<tr>
<td>Gauge Reference Distance (G)</td>
<td>0 This value will be changed later when setting up the floating roof monitoring function.</td>
</tr>
<tr>
<td>Minimum Level Distance (C)</td>
<td>0</td>
</tr>
<tr>
<td>Calibration Distance</td>
<td>0</td>
</tr>
</tbody>
</table>

These parameters may be changed at a later stage of the configuration procedure.

Figure 4-3. Tank Geometry Settings

Note: R, G, and C are positive as shown. G and C can be positive or negative.
Floating Roof Monitoring Setup

Ensure that Floating Roof Monitoring is enabled. Select the Shell-Mounted with Level Reference option.

Figure 4-4. Mounting Type

![Figure 4-4. Mounting Type](image)

You may use three to six tilt gauges. Prior to setting up the Floating Roof Monitoring function, make sure that the tilt gauges are properly installed and configured. Check that all tilt gauges are available and appear in the **Source** drop-down list.

Since the tilt gauges may be installed at slightly different heights on the tank shell, in most cases the measured distance to the reflector on the tank roof will differ. Make sure that each tilt gauge is calibrated to show **Difference** equal to zero (Reference Distance - Actual Distance = 0), see "Calibration" on page 28.

Figure 4-5. Tilt Gauge Configuration for Shell Mounted with Level Reference Gauge

![Figure 4-5. Tilt Gauge Configuration for Shell Mounted with Level Reference Gauge](image)

Number of tilt gauges

Ensure that number of tilt gauges corresponds to the actual number of tilt gauges installed on the tank roof. You may use up to six tilt gauges.
Source

For each tilt gauge, select the desired gauge from the Source drop-down list.

Verify that the selected tilt gauge corresponds to the actual gauge on the tank roof.

Calibration

Each tilt gauge needs to be calibrated prior to using the Floating Roof Monitoring function. This means that Difference is set equal to zero (Reference Distance - Actual Distance = 0).

The Reference Level gauge measures distance to the product surface. Each shell-mounted tilt gauge measures the distance to a reflector placed on the tank roof. Tilt gauges and reference level gauge may be installed at different heights, in most cases the Actual Distance measured by a tilt gauge will differ from the Reference Distance measured by the reference gauge. Roof floating and tilt calculations are based on monitoring the difference between Actual Distance and Reference Distance. As long as the roof floats horizontally in its normal position, the difference between Actual Distance and Reference Distance will remain constant. If the roof gets stuck, sinks, or tilts, the difference will change.

Note

Prior to calibrating, ensure that the roof is floating in its normal stable position in the product liquid. Ensure that it is not stuck on the tank wall. No filling or emptying may occur during the calibration procedure.

Ensure that all gauges that will be used as tilt gauges are installed and available in the Source drop-down list. For each tilt gauge, select the desired source device as illustrated in Figure 4-5 on page 27.

Reference distance is the distance from the Gauge Reference Point of the Reference Level Gauge to the product surface.

Actual distance is the distance from the Tilt Gauge Reference Point to the reflector.

Difference is equal to the difference between Reference distance and Actual distance.

See Figure 4-7 on page 30 for more information on tank geometry.

Tilt gauge configuration

Configure the tilt gauges so that Difference = 0 when the floating roof is horizontal and floats at its normal position:

1. In the Floating Roof setup window, check the Difference parameter. This value is equal to Reference Distance - Actual Distance.
2. Click the right mouse button on the tilt gauge icon, and select Properties.
3. Select the Geometry tab (Rosemount 5900).
4. In the Gauge Reference Distance (G) input field, enter the current value for the Difference parameter which appears in the Floating Roof Monitoring Setup window.
5. Click the Apply button.
6. Wait a couple of minutes to allow the level gauge to settle.
7. In the Floating Roof Monitoring Setup window, check that Difference=0. If it is not you may need to slightly adjust the Reference Distance (G) again.

An example of how to perform a calibration is illustrated in Figure 4-6 on page 29.
The Gauge Reference Distance (G) parameter is used as a calibration offset in order to ensure that the distance to the reflector (C) measured by the tilt gauge equals the distance to the product surface (L) measured by the reference level gauge. This will compensate for different mounting positions of tilt and reference level gauges, and for different position of reflector and product surface.
Figure 4-7. Tank Geometry for Tilt Gauge and Reference Level Gauge

A. Tilt gauge.
B. Reference level gauge.
C. **Actual distance**: distance from tilt gauge to reflector + Reference Distance (G)
D. **Reference distance**: distance from reference level gauge to product surface.
G. Gauge Reference Distance (G).
H. Gauge Reference Point for the level reference gauge.
L. Reflector.
R. Tank Reference Height (R).

Alarm Setup

See “Alarm setup” on page 37 for information on how to configure alarm limits for roof tilt, roof floating high/low, and drain sump.
4.3.4 Shell mounted without level reference

With this option, TankMaster WinSetup supports roof tilt monitoring only. Roof floating high/low can not be calculated since no reference level gauge is available.

Prior to setting up the Floating Roof Monitoring system, the tilt gauges have to be installed and configured according to the standard procedure for Rosemount radar level gauges.

Figure 4-8. Mounting Type

Tilt gauge configuration

You may use three to six tilt gauges. Prior to setting up the Floating Roof Monitoring function, make sure that the tilt gauges are properly installed and configured. Check that all tilt gauges are available and appear in the Source drop-down list.

Since the tilt gauges may be installed at slightly different heights on the tank shell, the measured distance to the reflector on the tank roof will differ.

Figure 4-9. Tilt Gauge Configuration for Shell Mounted without Level Reference

Number of tilt gauges

Ensure that number of tilt gauges corresponds to the actual number of tilt gauges installed on the tank roof. You may use up to six tilt gauges.

Source

For each tilt gauge, select a gauge from the Source drop-down list.
Calibration

Make sure that the tilt gauges are calibrated to show the same distance to the reflector in the *Floating Roof Monitoring Setup* window. This distance is presented as the **Actual distance**.

1. In TankMaster WinSetup, open the *Floating Roof Monitoring Setup* window.
2. Check that all tilt gauges are up and running and present an **Actual Distance**.
3. Note **Actual Distance** for one of the tilt gauges as a reference.
4. In the TankMaster WinSetup workspace, right-click the device icon for the next tilt gauge.
5. Click **Properties** and select the **Geometry** tab.
6. Adjust **Reference Distance (G)** so the tilt gauge presents the same **Actual Distance** as the first one.
7. Repeat this procedure until all tilt gauges are configured.

Alarm Setup

See “Alarm setup” on page 37 for information on how to configure alarm limits for roof tilt.
4.3.5 Roof mounted

Rosemount 3308 transmitters are used as tilt gauges for mounting type Roof Mounted.

Prior to setting up the Floating Roof Monitoring system, the tilt gauges have to be installed and configured according to the standard procedure for Rosemount radar level gauges.

Note
Ensure that Primary Variable (PV)=Distance for all Rosemount 3308 tilt gauges.

Tilt gauge configuration

You may use three to six tilt gauges. Prior to setting up the Floating Roof Monitoring function, make sure that the tilt gauges are properly installed and configured. Check that all tilt gauges are available and appear in the **Source** drop-down list.

Number of tilt gauges

Ensure that number of tilt gauges corresponds to the actual number of tilt gauges installed on the tank roof. You may use up to six tilt gauges.

Source

For each tilt gauge, select a gauge from the **Source** drop-down list. Tilt gauges appear in the TankMaster WinSetup workspace as shown in Figure 4-12 below.
Normal distance

In the **Normal Distance** field, enter the actual distance value shown when the tank roof floats horizontally in its normal position. This value will be used as a reference value for roof buoyancy calculations. The **Normal Distance** value is the actual distance the tilt gauge measures to the product surface when the roof floats horizontally in its normal position and without being tilted.

Figure 4-13. Calibrating Normal Distance for Roof Mounted Tilt Gauges

<table>
<thead>
<tr>
<th>Number of Tilt Gauges</th>
<th>Source</th>
<th>Tilt Gauge 1</th>
<th>Normal dist</th>
<th>Actual dist</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wi-3308A</td>
<td>Normal dist 0.000 m</td>
<td>Actual dist 0.109 m</td>
<td>Difference -0.109 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wi-3308C</td>
<td>Normal dist 0.000 m</td>
<td>Actual dist 0.295 m</td>
<td>Difference -0.295 m</td>
<td></td>
</tr>
</tbody>
</table>

Alarm Setup

See “Alarm setup” on page 37 for information on how to configure alarm limits for roof tilt, roof floating high/low, and drain sump.
4.3.6 Drain gauge

A drain gauge can be configured in the Floating Roof Monitoring system. Typically, a Rosemount 3308 transmitter or a wireless vibrating fork is used. Other suitable devices may be used as well and installed as generic device in TankMaster WinSetup.

Click the check box to enable drain sump measurements. You may choose one of two types of drain gauge as source device:

- level gauge
- On/Off switch

Figure 4-14. Enabling Drain Gauge

![Figure 4-14](image)

Figure 4-15. Drain Gauge Options

![Figure 4-15](image)

Table 4-3. Drain Gauge Configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Level gauge or On/Off switch</td>
</tr>
<tr>
<td>Input</td>
<td>PV, SV, TV, QV</td>
</tr>
<tr>
<td>Type</td>
<td>Level or On/Off</td>
</tr>
</tbody>
</table>
4.3.7 Hydrocarbon gauge

A hydrocarbon detecting transmitter can be configured to detect possible product leakage into the sump water from the tank roof drain. The transmitter must support WirelessHART® in order to be used in the Floating Roof Monitoring system. Typically, a Rosemount 702 Wireless Discrete Transmitter with Liquid Hydrocarbon Detection may be used.

Figure 4-16. Enabling Hydrocarbon Gauge

![Figure 4-16. Enabling Hydrocarbon Gauge](image)

Figure 4-17. Hydrocarbon Gauge Options

![Figure 4-17. Hydrocarbon Gauge Options](image)

Table 4-4. Hydrocarbon Gauge Configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Select a wireless device</td>
</tr>
<tr>
<td>Input</td>
<td>PV, SV, TV, QV</td>
</tr>
<tr>
<td>Type</td>
<td>On/Off switch</td>
</tr>
</tbody>
</table>
4.3.8 Alarm setup

Requires hardware key option Roof Monitoring Setup.

To access the alarm settings:

1. In the Floating Roof Monitoring Setup window, click the Alarm Settings button:

 ![Alarm Settings Button](image)

2. Enter the desired alarm limits. Available options may vary depending on mounting type and whether drain and hydrocarbon gauges are installed or not.

 Note
 When using roof mounted Rosemount 3308 transmitters, ensure that Blind Zones are considered when specifying alarm limits (see Figure 4-18 on page 38).

 Roof Tilt
 This alarms is used for setting the maximum roof tilt that may be allowed. Hysteresis and delay can be used to handle temporary movements that may exceed alarm limit for short periods of time.

 Roof Floating
 This option is available for Shell-mounted with Level Reference and for Roof Mounted installations.

 Drain Sump
 For drain gauge of level type, such as the Rosemount 3308 level transmitter, you may specify High alarm, Hysteresis, and Delay time.

 For drain gauge of On/Off type you may specify Delay time.

 Alarm limits
 The detailed view of the Roof Monitoring window (see “Tank view” on page 39) may be helpful as a tool to find out how to set proper alarm limits for roof tilt and roof floating.

 As the product level moves up and down, the History pane shows data of maximum roof tilt as well as minimum and maximum deviation of roof floating position. This may give you an idea of the range of roof tilt and floating positions, and provides useful input for specifying appropriate alarm limits.

 1. See “Floating roof alarm limits” on page 43 for a description of how to use the detailed view of the Roof Monitoring window to find proper alarm limits.

 2. Ensure that floating roof monitoring alarm limits are within the transmitter’s measuring range as shown in Figure 4-18 on page 38.
Figure 4-18. Alarm Limits and Measuring Range

A. Rosemount 3308 tilt gauge
B. Blind Zone
C. Measuring range
D. Normal distance
E. Roof Floating **Low** alarm zone
F. Roof Floating **High** alarm zone
5.1 Introduction

This chapter provides information about operating a Rosemount™ TankMaster™ Floating Roof Monitoring system.

5.2 Tank view

Tanks setup for Floating Roof Monitoring can be monitored in Rosemount TankMaster WinOpi. The current roof status is easily accessible:

1. Ensure that Rosemount TankMaster WinOpi is up and running.
2. In the WinOpi workspace, click the right mouse button on the desired tank and select the Floating Roof Monitoring option.
The Floating Roof Monitoring window presents the current status and measurement data. Various status options are presented in “Roof status” on page 51.

Pressing the More Details button shows tilt gauge data and historical data in the Roof Monitoring view.
Figure 5-3. Roof Monitoring Detailed View
5.3 Alarm limits

To configure alarm limits for a Rosemount Tank Gauging floating roof monitoring system:
1. Ensure that Rosemount TankMaster WinOpi program is up and running.
2. In the WinOpi workspace, select the desired tank.
3. Click the right mouse button and select **Alarm Entry > Alarm Limits**.
4. Click the **Roof Monitoring Alarm Limits** button to configure alarms for tilt, drain, and hydrocarbon gauges. See Figure 5-5 and “Floating roof alarm limits” on page 43.

Figure 5-4. Alarm Limits Window in TankMaster WinOpi

Figure 5-5. Alarm Limits for Floating Roof Monitoring
5.3.1 Floating roof alarm limits

Since each tank is unique, you will need to find proper floating roof alarm limits individually for each tank roof. The detailed view of the Roof Monitoring window (see Figure 5-3 on page 41) may be helpful as a tool to find out how to set proper alarm limits for roof tilt and roof floating.

As the product level moves up and down, the History pane shows maximum roof tilt as well as minimum and maximum deviation of floating position. This may give you an idea of the range of roof tilt and roof floating which can serve as useful input for specifying appropriate alarm limits.

Make sure that alarm limits are configured within the transmitter’s measuring range and that the product surface does not reach the Blind Zone (see “Installation on tank roof” on page 16).

Figure 5-6. Detailed View in Roof Monitoring Window

![Figure 5-6. Detailed View in Roof Monitoring Window](image)

A. Graphical view of tank and tilt gauge positions
B. Current tilt gauge data. Value=distance to product surface. Difference=deviation from Normal Distance.
C. Historical tilt data

The **Value** column shows the current tilt value.

The **Difference** column shows the deviation between current tilt value and the calibrated value as specified in the Floating Roof Setup window (see “Floating roof monitoring setup” on page 23).
5.4 Alarm disconnect

The Alarm Disconnect window lets you disconnect various tank variable alarms as well as Floating Roof Monitoring alarms such as Roof Tilt, Roof Floating, Drain Sump, and Hydrocarbon Detection alarms:

1. In the WinOpi workspace, select the desired tank.
2. Click the right mouse button and select **Alarm Entry > Alarm Disconnect**.
3. Check the alarms to be disconnected.
4. Click **Apply** to activate the disconnect function. Click **OK** to close the window.

Figure 5-7. Alarm Limits Window in TankMaster WinOpi

![Alarm Disconnect Window](image)
5.5 **Roof monitoring group view**

In TankMaster WinOpi it is possible to create a specific group view for all tanks with roof monitoring function enabled. You can design the group view to include any particular floating roof parameters that you are interested in.

Figure 5-8. Group View for Floating Roof Monitoring
5.5.1 To create a group view

1. Open the Rosemount TankMaster WinOpi program.
2. Open **Tools>Options**.
3. Select the **Group Templates** tab.
4. In the left-hand column, select **View Group** and click the **Clone** button.

![Operator's Interface Options](image)

5. Select the duplicated group template.
6. Click the **Edit** button. Now the **Edit Group Template** window appears.
7. Under **Menu Item** you may enter a title to appear under the **View>Group** menu. Under **View Title** you may type a title for the new group view.

8. In the **Available Parameters** pane on the left-hand side, select the desired parameters to add to the new group view. In the above example Roof Tilt, Roof Floating, Roof Drain, and Hydrocarbons are selected. You may select several parameters at the same time by using the **Shift** or the **Ctrl** button and clicking the left mouse button. Available parameters for floating roof monitoring are:

- Roof Tilt
- Roof Floating
- Roof Drain
- Hydrocarbons
- Roof Status

9. Click the **Select** button to move the parameters to the **Selected Parameters** pane.

10. Click **OK** to close the **Edit Group Template** window.

11. Click **OK** to close the **Options/Group Templates** window.
5.6 **Roof monitoring historical data**

The *Historical View* window lets you view roof floating and roof tilt history.

Prior to viewing historical data you will have to specify which parameters and tanks to sample and start the actual data sampling (Sample Setup). You will also have to configure how historical data is presented (View Setup).

Figure 5-9. Historical View

![Historical View](image)

The **Sample Setup** button lets you configure what tanks and parameters to be sampled.

The **View Setup** button lets you configure how tank parameters are displayed in the *Historical View* window.
5.6.1 Sample setup

The Sample Setup window lets you specify which parameters to sample for the Historical View. This is a brief overview of sample setup. See the Rosemount TankMaster WinOpi reference manual for more information.

Figure 5-10. Historical View Sample Setup

A. Server Setup
B. All Tanks
C. Tank Setup

Server setup

Allows you to select a TankMaster server.

All tanks

Allows you to select blocks and to configure sample interval and start time for all tanks.

Tank setup

Lets you select tank and blocks to be monitored, and to configure sample interval and start time for individual tanks. In addition to the standard blocks, the following blocks are available for floating roof monitoring:

- Roof Floating
- Roof Tilt
- Roof Drain
Starting and stopping data sampling

You may start sampling all tanks at once by pressing the **Start All** button. In case you would like to start the current tank only, press the **Start Tank** button.

Figure 5-11. Sampling Started

5.6.2 View setup

The **View Setup** window lets you configure how tank parameters are displayed in the **Historical View** window. See the Rosemount TankMaster WinOpi [reference manual](#) for more information on how to set up presentation of historical data.
5.7 **Roof status**

The *Roof Monitoring* window shows the current status of the floating tank roof. Each condition is presented with an image and text that presents tilt, roof floating high/low, hydrocarbon, and drain sump.

Table 5-1. Roof Status in Roof Monitoring Window

<table>
<thead>
<tr>
<th>Roof status</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Level: 21.141 m</td>
<td></td>
</tr>
<tr>
<td>Roof Tilt Status: OK, Status: 0.014 m Limit: 0.300 m</td>
<td></td>
</tr>
<tr>
<td>Roof Floating Status: OK, Difference: 0.008 m High Limit: 0.500 m Low Limit: -0.300 m</td>
<td></td>
</tr>
<tr>
<td>Roof Drain Sump Status: OK, Level: 0.270 m Limit: 0.300 m</td>
<td></td>
</tr>
<tr>
<td>Hydrocarbons Detection Status: OK, Level: Dry</td>
<td></td>
</tr>
<tr>
<td>Good. Status OK.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Level: 21.140 m</td>
<td></td>
</tr>
<tr>
<td>Roof Tilt Status: Roof Tilt, Status: 0.213 m High Limit: 0.100 m</td>
<td></td>
</tr>
<tr>
<td>Roof Floating Status: OK, Difference: 0.137 m High Limit: 0.500 m Low Limit: -0.300 m</td>
<td></td>
</tr>
<tr>
<td>Roof Drain Sump Status: OK, Level: 0.269 m Limit: 0.300 m</td>
<td></td>
</tr>
<tr>
<td>Hydrocarbons Detection Status: OK, Level: Dry</td>
<td></td>
</tr>
<tr>
<td>Roof tilt exceeds alarm limits. Roof might be stuck or one or several pontoons may be damaged.</td>
<td></td>
</tr>
</tbody>
</table>
Roof status

Roof is floating lower than configured alarm limit. There may be product or water on top of the roof, or pontoons may be damaged.

Roof is floating higher than configured alarm limit. The roof might be stuck.
Product may have leaked to tank roof.

Drain Sump may be clogged.
Incorrect configuration or invalid data from one or several transmitters.

Roof partially landed.
Roof status

<table>
<thead>
<tr>
<th>Status</th>
<th>Value</th>
<th>Limit</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof Tilt</td>
<td>OK</td>
<td>0.209 m</td>
<td>0.300 m</td>
</tr>
<tr>
<td>Roof Floating</td>
<td>OK</td>
<td>0.135 m</td>
<td>0.580 m</td>
</tr>
<tr>
<td>Roof Drain Sump</td>
<td>OK</td>
<td>0.269 m</td>
<td>0.300 m</td>
</tr>
<tr>
<td>Hydrocarbons Detection</td>
<td>OK</td>
<td>Dry</td>
<td></td>
</tr>
</tbody>
</table>

Roof landed.

Operation

May 2018
5.8 Alarm priority

The various status options are displayed in an order that depends on their respective priority as listed in Table 5-2.

Table 5-2. Alarm Priority for Floating Roof Status

<table>
<thead>
<tr>
<th>Priority</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Roof tilted</td>
</tr>
<tr>
<td>2</td>
<td>Roof Floating High/Low</td>
</tr>
<tr>
<td>3</td>
<td>Hydrocarbons Detected</td>
</tr>
<tr>
<td>4</td>
<td>Drain Sump Full</td>
</tr>
<tr>
<td>5</td>
<td>Unknown</td>
</tr>
<tr>
<td>6</td>
<td>Roof landed/partially landed</td>
</tr>
<tr>
<td>7</td>
<td>OK</td>
</tr>
</tbody>
</table>
Section 6 Service and Troubleshooting

6.1 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (⚠️). Please refer to the following safety messages before performing an operation preceded by this symbol.

⚠️ WARNING

Failure to follow safe installation and servicing guidelines could result in death or serious injury:
Make sure only qualified personnel perform the installation.
Use the equipment only as specified in this manual. Failure to do so may impair the protection provided by the equipment.
Do not perform any service other than those contained in this manual unless you are qualified.

⚠️ WARNING

Explosions could result in death or serious injury:
Verify that the operating environment of the transmitter is consistent with the appropriate hazardous locations certifications.
Before connecting a Field Communicator in an explosive atmosphere, make sure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.
Do not remove the gauge cover in explosive atmospheres when the circuit is alive.
6.2 Troubleshooting

This troubleshooting chart covers issues related to floating roof monitoring. For other issues see the reference manual for the respective device.

Table 6-1. Troubleshooting Chart

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm is not triggered as expected</td>
<td>Incorrect alarm limit configuration</td>
<td>Make sure that alarm limits are properly set. You may use detailed view in the Roof Monitoring window to use historical data as input to find the appropriate alarm limits.</td>
</tr>
<tr>
<td>Roof floating low/high reversed sign</td>
<td>Primary variable (PV) configured as Level for the Rosemount 3308 transmitter</td>
<td>Configure Primary Variable to Distance (PV=Distance).</td>
</tr>
<tr>
<td>Status “Unknown”</td>
<td>Incorrect inventory setup</td>
<td>- Check gauge status for tilt gauge, drain gauge, and hydrocarbon gauge</td>
</tr>
<tr>
<td></td>
<td>Communication failure</td>
<td>- Check floating roof status in Tank Inventory window</td>
</tr>
<tr>
<td></td>
<td>Invalid level</td>
<td>- Check Tank Capacity Table (TCT)</td>
</tr>
<tr>
<td></td>
<td>Configuration error</td>
<td>- Check Average Temperature</td>
</tr>
<tr>
<td></td>
<td>Incorrect configuration or invalid data from one or several transmitters.</td>
<td>- Check inventory configuration in Tank Inventory window</td>
</tr>
<tr>
<td>False High/Low alarms for floating roof</td>
<td>Incorrect tank geometry configuration for reference level gauge</td>
<td>Make sure that tank geometry is configured with correct values.</td>
</tr>
<tr>
<td></td>
<td>Measurement updates from tilt gauges out of sync</td>
<td>- Add alarm delay time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Change alarm limit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Increase update time for tilt gauges</td>
</tr>
<tr>
<td></td>
<td>A reflector is moved out of correct position</td>
<td>Make sure that each reflector is properly placed under the tilt gauge.</td>
</tr>
<tr>
<td></td>
<td>Tank roof has landed on its support legs</td>
<td>Normal function. TankMaster does not automatically disable floating roof high alarm when tank roof has landed.</td>
</tr>
<tr>
<td></td>
<td>Hardware error. Wrong transmitter head is mounted on probe after maintenance.</td>
<td>Make sure that the transmitter head is mounted on the correct probe and roof position.</td>
</tr>
<tr>
<td>Wireless network is slow and unstable</td>
<td>Low battery in one or several wireless devices</td>
<td>Verify battery status by e.g. using the gateway web interface</td>
</tr>
<tr>
<td></td>
<td>One or several wireless devices off line</td>
<td>Verify that all wireless devices (including repeaters) are online</td>
</tr>
<tr>
<td></td>
<td>Wireless field network does not comply with IEC 62591 (WirelessHART) best practice</td>
<td>Verify wireless network communication according to IEC 62591 (WirelessHART) standards best practice.</td>
</tr>
</tbody>
</table>
Appendix A Commissioning Checklist

This check list may be used as a tool to ensure that you have walked through all steps of the Floating Roof Monitoring setup.

Table A-1. Checklist

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>See section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verify all mechanical requirements.</td>
<td>Ch. 3.3.1 (Shell mounted) Ch. 3.3.2 (Roof mounted)</td>
</tr>
</tbody>
</table>
| 2 | Make sure that all transmitters are configured:
 ◼ Communication
 ◼ Tank geometry
 ◼ Device specific data | See reference manual for respective transmitter. |
| 3 | Verify tilt gauge and reference level gauge measurements. Hand dipping is recommended to ensure that level readings are correct. | N/A |
| 4 | Configure alarm limits for floating roof monitoring. Verify that alarm limits are properly setup relating to maximum roof tilt and roof floating high/low. | Ch. 4.3.8 Ch. 5.3.1 |
Index

A
- Actual distance ... 32
- Alarm Disconnect .. 44
- Alarm limits ... 18, 42
- Alarm priority .. 56
- Alarm settings ... 37
- Alarm Settings button 37
- Alarm setup ... 37
- Antenna inclination 15
- Antenna Orientation 14

B
- Battery power .. 16
- Blind Zone ... 18
- Bracket .. 12

C
- Calibration ... 28, 32
- Configuration ... 22
- Configuration/Operation 21
- Creating a group view 46

D
- Drain gauge ... 35
- Drain sump ... 20

F
- Floating Roof Monitoring setup 23, 24
- Floating roof status 22
- Flushing ring connection 17
- Free space ... 12, 17

G
- Group view ... 45, 46

H
- Hand dip ... 18
- Historical data .. 48
- Hydrocarbon detecting transmitter 36
- Hydrocarbon detection 20

I
- Inclination .. 15
- Installation Recommendations 12
- Inventory calculations 22

M
- Measuring range ... 18
- Minimum nozzle height 18
- More Details button 40

N
- Normal Distance .. 18, 34
- Nozzle height .. 18

P
- Priority .. 56

R
- Reference level gauge 11
- Reflector ... 13
- Roof Monitoring Alarm Limits button 42
- Roof Monitoring view 40
- Roof Monitoring window 51
- Roof Mounted .. 33
- Roof status ... 51

S
- Setup ... 23
- Shell mounted with level reference 26
- Shell mounted without level reference 31
- Status ... 51

T
- Tank geometry .. 26
- Tank Reference Height 26
- Tank shell .. 11
- TankMaster WinOpi 39
- Tilt gauge ... 11
- Tilt gauge position 19

V
- Ventilated nozzle .. 17

W
- WinOpi .. 39
- WinSetup workspace 23