Smart Commissioning

Smart Commissioning is a technology-enabled approach for streamlining the commissioning of field instrumentation connected to a DeltaV™ Distributed Control System (DCS) or Safety Instrumented System (SIS). It reduces the effort and time for commissioning HART devices by automating most of the associated tasks involved. The benefits of Smart Commissioning extend beyond the site work; it changes the way automation projects are executed. For one part, it reduces schedule dependencies between engineering and field work during the engineering phase. For another part, easily binds the physical I/O with the control logic during the commissioning phase. Smart Commissioning reduces the time and effort for commissioning field devices, and positively impacts the overall project execution schedule.

Some of the functionality enabling Smart Commissioning became available starting with DeltaV v13 and it was greatly improved in DeltaV v14. This whitepaper describes the Smart Commissioning features for HART devices as in DeltaV v14 with feature pack 1.
Table of Contents

- The Smart Approach for Device Commissioning ... 3
- Decoupling the I/O Physical Design .. 3
- Installation of Field Enclosures ... 4
- Late Binding ... 4
- Automatic Late Binding of HART Devices .. 5
- Field Device is the Tag Master (Emerson recommended approach) 5
- System is the Tag Master (alternate tagging approach) ... 5
- Hybrid (alternate tagging approach) .. 6
- Automatic Configuration of HART devices ... 6
- Automated Loop Tests .. 7
- Applicability to SIS ... 8
- Applicability to WirelessHART Devices ... 8
- Smart Commissioning Software Applications .. 9
- Detailed Workflows for Commissioning HART Devices ... 11
- Planning for Smart Commissioning ... 14
- Parallel Execution .. 15
- Recommended Capacity Limits for Smart Commissioning .. 16
- Conclusions ... 17
The Smart Approach for Device Commissioning

While automation expenditures are only a small portion of the overall project cost, any delay in the commissioning of the automation system can cost millions of dollars. Smart Commissioning drastically reduces time and effort in commissioning HART devices by taking full advantage of the intelligence of those devices. Traditional commissioning practices seldom use HART communications. There are four main aspects on the Smart Commissioning approach:

1. **Automatic Device Identification.** Devices are identified by the device tag. The wiring or channel position is no longer relevant for device identification purposes. It does not matter if the device was pre-tagged by the vendor or tagged on site before mechanical completion.

2. **Automatic binding to control or safety logic.** Once the device has been identified is automatically bound to the right control strategy based on the device tag.

3. **Automatic device configuration.** Either late configuration changes or the whole device configuration can be applied on site in just a few minutes.

4. **Automatic loop test.** Devices are tested using HART commands to set the device output and the response verified all the way to the control or safety logic.

Smart Commissioning not only reduces the time and effort for commissioning field devices, it complements and leverages other DeltaV functionality to change the way automation projects are executed.

Decoupling the I/O Physical Design

Electronic Marshalling enables control and safety logic configuration to proceed independently from the design and installation of the physical I/O and field instrumentation. There are three key features of DeltaV DCS (or DeltaV SIS) that enables the decoupling of the physical I/O design from the control strategy (or safety logic) design:

1. Control strategies and safety logic can be configured using just the Device Signal Tags (DST), eliminating the need to define the physical location of the I/O during the configuration phase. DeltaV DSTs are unique identifiers for device signal references.

2. Electronic Marshalling provides an unprecedented flexibility in both control system I/O topology and SIS I/O topology. Each individual channel is characterized for the requirements of the field device via a single channel component called a CHARacterization Module (CHARM). DeltaV Electronic Marshalling helps reduce overall system costs by eliminating internal cabinet cross wiring, reducing overall footprint, simplifying I/O channel assignments, and reducing Factory Authorized Testing activities.

3. Fully decoupling software and hardware is only possible if control and safety logic can be tested without the need of hardware and independently of the physical I/O design. Virtualization capabilities enable testing of both control and safety logic without physical control hardware present. Simulation by DST rather than by the physical channel location maintains the independence between software and hardware.

As soon as the initial process design is available, typically on a Piping and Instrumentation Diagram (P&ID) and/or on an instrument index, the project team can start configuring control strategies based only on the DSTs. Each I/O function block is linked to a DST that is not assigned to any particular I/O channel. In a traditional configuration approach, I/O references within the control strategies are bound to specific channels creating unnecessary dependencies in the project schedule. DeltaV v14 provides the ability to configure HART devices and the associated CHARM properties even before the specific CHARM location is known.
Installation of Field Enclosures

While the system configuration is being done at the project office, and the field devices are being specified and procured by the engineering firm, field installation activities can be executed in parallel. Thanks to the flexibility provided by Electronic Marshalling, the quantities of standard I/O enclosures can be determined based only on the expected I/O quantity per location without knowing what type of I/O will be connected. Specifically, Configure-To-Order (CTO) field enclosures can be procured and sent to the site for installation early in the design cycle. The use of standard field enclosures eliminates custom cabinet design thereby reducing engineering labor and shortening the schedule. However, the use of CTO cabinets is not required to receive the benefits of Smart Commissioning.

Based on the physical location of the field enclosures, field devices can be associated with a given enclosure. Not spending time on detailed design for multicore cables is a considerable time saver as well as the elimination of loop drawings. Thanks to the broad range of I/O types, practically all field devices can be connected to the DeltaV CHARacterization Module (CHARM) I/O subsystem without the need of external components. A large variety of signal types (e.g. RTD, T/C, 120VAC, etc.) can all be used within the same field enclosure. The installer only needs to select the proper CHARM and terminal block, based on the signal type. All this field work can be done without any information about the logical I/O assignment within the control strategies. One key feature of Electronic Marshalling is the ability for the DeltaV controllers to utilize I/O from many CHARM I/O Card (CIoC), which further simplifies design consideration for allocating devices to field enclosures. In DeltaV SIS, all inputs are directly available to any CHARM Smart Logic Solver (CSLS) within the same safety network which greatly simplify device allocation.

Once all the CHARMs have been installed, the next step is to auto-sense the CHARMs. Each CHARM is automatically identified by the DeltaV system with no need for the user to define the type for each I/O channel. DeltaV v14 introduces the ability to specify user-defined CHARM templates, allowing users to define all the properties for each CHARM type practically eliminating manual configuration of CHARMS. This feature not only reduces effort but also reduces errors during CHARM configuration. Field devices can be terminated either before or after auto-sensing CHARMs.

Once the CHARMS have been auto-sensed, HART field devices can automatically be identified. Another key improvement introduced in DeltaV 14 is the auto-sensing of multiple devices at the same time. Users are able to select a CIoC or CSLS and initiate the auto-sense of all HART devices connected.

Late Binding

Decoupling software and hardware has great benefits in project schedule but it could introduce complications unless there is an efficient way to bring the software and hardware together. In DeltaV, when controls strategy and safety logic are merged with the physical I/O designs, the logical signal references are automatically bound to the physical I/O references without any additional intervention by the user.

Late binding delays the assignment of the physical I/O references until the field devices are installed and commissioned on site. The device and CHARM configuration performed prior the assignment to a physical I/O reference is preserved once the late binding has been completed.

DeltaV allows late binding for all type of signals based on the instrument tag. For HART devices, the binding of I/O references is performed automatically once the device is connected to a physical I/O channel and has been discovered by DeltaV system. For other type of signals, the user could manually allocate the proper DST based on the connected device either using drag and drop functionality or bulk edit capabilities.
Auto-matic Late Binding of HART Devices

DeltaV can auto-sense HART devices and extract relevant device information. This information includes the manufacturer, type, and revision, as well as the tag and description unique to each device. If the discovered field device tag matches a configured DST within the system, the proper I/O function block is automatically bound to the right field device.

There are three main approaches for handling tags within HART instruments:

- Field device is the tag master (Emerson recommended approach)
- System is the tag master
- Hybrid approach

Field Device is the Tag Master (Emerson recommended approach)

In this approach, HART devices are either pre-tagged at the factory or tagged on-site before/after device installation depending on the characteristic of the field device. Specialized devices such as control or safety valves are pre-tagged at the factory. Generic field devices can be purchased in bulk and installed in any applicable location, being tagged in place. The generic field device approach simplifies warehousing and management of instruments during construction since there is no need to track individually tagged devices.

Regardless of when the field device is tagged, the tag in the device is uploaded during the commissioning process into the system and used to bind device reference to control and safety logic. When the I/O channel senses a field device the tag in the field device becomes the channel DST. The advantages of this approach are:

- Field devices can be connected to any CHARM of the proper type. Smart field devices are automatically detected based on their tag. Checking the wire to confirm what smart device is connected to the right I/O channel is no longer needed. The right channel is any channel of the proper type.
- There is no need to pre-configure the DST under CHARMs since the DST is generated from the field device tag and bound to the proper control or safety logic automatically.

There are two options in DeltaV v14 for using device tags:

- Use of the device short-tag (8-character tag) – In this case, the device short-tag becomes the CHARM DST.
- Use of an up to 16-character tag automatically extracted from the HART long tag (32-character) - The extracted tag becomes the CHARM DST. DeltaV provides an expression editor to define the extraction rule for extracting the 16-character tag from the HART long tag. HART long tag is only available on HART 6 or HART 7 devices. To extend Smart Commissioning to HART 5 devices, DeltaV provide an option to use the standard message field as replacement of the HART long tag. A extracted tag could be generated from the message field in the same as in generated from HART long tags.

System is the Tag Master (alternate tagging approach)

Emerson realizes that changing work practices sometimes takes time, especially when there are multiple companies involved, with this in mind, Smart Commissioning can support other approaches for handling tags.

In this alternate approach, devices are not pre-tagged before delivery to site. Instead, the device tag is written by the DeltaV system to the field instrument based on the DST name configured on the channel. When the HART field device is autosensed, the DST is written to the device and the device information (manufacturer, type, and revision) is uploaded to the DeltaV system.
While this approach also allows devices to be purchased in bulk and installed in any applicable location. The disadvantage is that CHARMs must be configured with the DST of the appropriate device which reduces some flexibility. This approach could be utilized when I/O design is fully completed before starting the system configuration.

Hybrid (alternate tagging approach)

This approach is a combination of the first two options. Devices are pre-tagged at the factory or on-site before installation, and the CHARM channels are also configured with the proper DST. When the channel is auto-sensed, the DST name should agree with the field device tag, confirming that the proper device has been installed in the proper location. Any discrepancies can be resolved on the spot and corrected in either the device or the channel configuration.

This approach could be utilized on modernization projects where the device tags are known as well as the specific location for each device.

Smart Commissioning supports all of these approaches, so the user can select the method that best fits the specific project.

Automatic Configuration of HART devices

One of the activities that demand the highest manpower effort during instrument commissioning is the configuration and setup of individual field devices. Traditionally, this is done one device at a time using either AMS Device Manager or a handheld communicator. As intelligent field devices become more complex, the number of parameters that must be configured increases dramatically, resulting in a corresponding increase in the amount of configuration time required and the risk of errors. In addition, manual device configuration makes difficult to establish and maintain consistency throughout the plant areas or insuring an “approved” configuration is reliably loaded on each field device.

The phrase “define once, use many times” describes a more efficient method of configuring HART devices using AMS Device Manager Bulk Transfer. The AMS Device Manager Bulk Transfer process consists of four major elements:

1. **User Configuration Development** - The first element is the development of standardized user configurations (AMS device templates) that define the specific configuration of a particular device class. Each of these user configurations (device templates) is associated with a particular manufacturer, type and revision. There can be multiple user configurations for each manufacturer, type, and revision that reflects the different ways that the device might be used (e.g. different applications for the same device type). User configurations can be created well ahead of the installation of field devices, and used as the configuration standard beyond the project timeline and across different sites.

2. **Device Mapping** - Once the user configurations have been developed, the next step is the mapping of individual devices to a particular user configuration. This is done in an Excel file and loaded into AMS Device Manager with the Bulk Transfer Utility. This concludes the pre-site activities.

3. **Configuration Transfer** - When a device is auto-sensed on site and a valid user configuration mapping exists, the user configuration can automatically be sent to the device. Alternatively, multiple devices can be selected and their User Configurations will be transferred with the Bulk Transfer Utility. DeltaV v14 provides the ability to initiate the configuration transfer as part of the commissioning process and select which devices will be configured through the Bulk Transfer Utility: all HART devices, only new devices (devices that AMS Device Manager is not aware of), none of the devices, or on a case-by-case basis.

4. **Device Verification** - Reporting tools provided with the Bulk Transfer Utility and the AMS QuickCheck Snap-On can be used to validate that transmitter configurations match the user configurations.

Bulk transfer of device configurations using the AMS Device Manager Bulk Transfer functionality has been shown to reduce instrument configuration activities by more than 75%. This offers significant opportunity to reduce the overall commissioning schedule, leading to earlier start-ups.
Automated Loop Tests

Once the device tag has been bound with the control strategies and the field devices have been properly configured, a final loop test is generally required. This is designed to test the entire loop from the transmitter to the output of the associated function block, so the range of the process variable is validated to be accurate in the process control graphics and faceplates. This has traditionally been done using two technicians; one in the field and the other at the DCS console. The field technician would simulate an analog value at the transmitter and the console technician would check the corresponding value at the DCS. This approach is time consuming and manpower intensive.

Computer-assisted loop tests have been used in previous versions of DeltaV producing considerable manpower savings (more than 50%). DeltaV v14 introduces fully automated loop tests which lead to even greater manpower savings. Estimated time savings on loop tests are around 75%.

With automated loop testing, a single technician at a DeltaV workstation can remotely initiate an automatic loop test for either a single HART device or multiple devices. The DeltaV system will check the function block output to confirm proper operation of the entire loop. This verification includes lower and upper ranges as well as engineering units. The automated loop test functionality will force the transmitter to go through a series of pre-configured outputs and automatically confirm the proper value based on pre-defined expected values.

DeltaV v14 also provides high-level reports for the loop test results indicating whether a field device passed the test, failed the test or the test has not been performed yet. Other reports are available, including list of auto-sensed devices, list of devices configured through AMS Bulk Transfer, and an issue list (e.g. detected devices not referenced by any control module, devices referenced in control modules but not detected, and devices not configured due to a tag mismatch).

Figure 1. Project Execution with Smart Commissioning (I/O relevant tasks).
Applicability to SIS

DeltaV v14 provides the same level of Smart Commissioning functionality for DeltaV SIS:

- Tag-based configuration
- Testing of safety logic in a virtual environment. Management of change functionality allows to easily identify and manage configuration modification via a Cyclic Redundancy Check (CRC) for each SIS modules. DeltaV v14 introduces a new CRC that is not affected by the location of the I/O which facilitates the verification that safety logic did not change after the late binding. The existing module CRC is still available and it will flag any change in the SIS module.
- Automatic late binding
- Automatic configuration of HART devices through the AMS Bulk Transfer functionality
- Automated loop tests for input devices

Applicability to WirelessHART Devices

The following functionality is available for WirelessHART devices:

- Tag-based configuration
- Testing of control logic in a virtual environment
- Automatic late binding
- Automatic configuration of WirelessHART devices through the AMS bulk transfer functionality
- Automated tests
Smart Commissioning Software Applications

The feature pack 1 for DeltaV v14 introduces two new software applications to support Smart Commissioning. The first application, I/O Studio, is intended to support the preparation phase. The second application, DeltaV Device Commissioner, is intended to support the field work.

1. **I/O Studio** – This application enables you to fully define I/O details —both CHARMs configuration and device information— even before the physical design is completed, which fully decouples software and hardware design.

 DeltaV I/O Studio is fully integrated with DeltaV Explorer and lets you define and apply pre-configured settings for both CHARMs properties and HART device properties, reducing configuration time considerably. The pre-configured settings for HART devices can even be applied automatically once a device has been auto-sensed.

 Using DeltaV I/O Studio, you can pre-define the settings for the DeltaV Device Commissioner application, and perform “one-click” commissioning for HART devices.

 ![Image of I/O Studio](image_url)

 Figure 2. I/O Studio.
2. **DeltaV Device Commissioner** – This is the software application for performing commissioning work. Once all the settings have been defined, the user simply need to select the nodes and start the commissioning process. No other work is required. The traditional task-intensive commissioning process is a thing of the past.

Any device with a commissioning issue is sent to a punch list so the user can investigate and troubleshoot. Once the proper correction has been done, the user just need to re-start the commissioning process for the affected devices.

![DeltaV Device Commissioner](image)

Figure 3. DeltaV Device Commissioner.
Detailed Workflows for Commissioning HART devices

This section describes the overall workflow for commissioning of HART devices on a given CIOC, CSLS or WIOC.

Emerson’s Recommended Workflow – Field device is the tag master

Assumptions:
- HART devices have been pre-tagged at either the factory or before/during installation.
- Configuration of control and/or safety logic have been completed and tested. Configuration of control strategies and safety logic only include DST references rather than assignments to specific I/O channels.

Configuration prior Device Installation:
- Commissioning policy is set so the field device tag will become the DeltaV DST during the auto-sensed process.
- Tag-extraction policy is defined (optional).
- AMS Device Manager User Configurations have been created and mapped to unallocated device placeholders.
- Loop test templates have been defined and assigned to the proper device placeholders. The test templates specify the number of steps as well as step increments (e.g. 5-point tests consisting of 0, 25, 50, 75, and 100 percent of the process variable).
- Expected values for commissioning tests have been defined.

Workflow:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Installation and Wiring</td>
<td>Devices are installed and verified to ensure the right device is installed in the right process connection and there is no issues in the installation or connection to the process (mechanical completion). Device is wired to the proper field enclosure as defined in a device allocation list per field enclosure. Installer selects the proper terminal block and CHARM based on the device list for the enclosure. Devices are wired per a typical wiring diagram.</td>
</tr>
<tr>
<td>Starting Automatic Process for the given I/O node (CIOC, CSLS or WIOC)</td>
<td>User launches the DeltaV Device Commissioner, selects the proper node(s), and start the commissioning process. From here all the rest of the tasks are performed automatically by the commissioning application.</td>
</tr>
<tr>
<td>Auto-sensing CHARMS</td>
<td>The DeltaV system identifies the type for each CHARM. CHARMs configuration templates are applied once devices are bound which eliminates manual CHARM configuration.</td>
</tr>
<tr>
<td>Auto-Sensing HART Devices</td>
<td>HART devices are auto-sensed and tags are reconciled per the commissioning policy (in this case, the device tag becomes the DeltaV DST). All device references are automatically bound to the control strategies.</td>
</tr>
<tr>
<td>Bulk Device Configuration</td>
<td>The DeltaV Device Commissioner initiates the AMS bulk transfer for automatic device configuration.</td>
</tr>
<tr>
<td>Automatic Loop Tests</td>
<td>The new DeltaV loop test functionality is used to generate device signals in step increments (e.g. 0, 25, 50, and 100 percent of the process variable). The system automatically verifies that appropriate indication is correct at each test point based on the defined expected results. A single technician can set and check functionality from a DeltaV workstation. DeltaV automatically documents the loop checks steps and provide the ability to generate commissioning reports.</td>
</tr>
</tbody>
</table>
Alternate Workflow 1 – DeltaV DCS is the Tag Master

While Emerson recommend the workflow above, Smart Commissioning is flexible enough to accommodate other workflows.

Assumptions:

- The HART devices tag is ignored on this workflow. Typically, this means that devices were not tagged prior to connecting to control system.
- Configuration has been completed and tested prior to shipment to site. Configuration of control strategies includes DST references assigned to specific I/O channels.

Configuration prior Device Installation:

- Commissioning policy is set so the DeltaV DST will become the field device tag during the auto-sensed process.
- AMS Device Manager User Configurations have been created and mapped to unallocated device placeholders.
- Loop test templates have been defined and assigned to the proper device placeholders. The test templates specify the number of steps as well as step increments (e.g. 5-point tests consisting of 0, 25, 50, 75, and 100 percent of the process variable).
- Expected values for commissioning tests have been defined.

<table>
<thead>
<tr>
<th>Device Installation and Wiring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devices are installed and verified that right device is installed in the right process connection and there is no issues in the installation or connection to the process (mechanical completion). If generic devices are used, this means that the device is from the right class. The device is wired to the proper I/O CHARM, based on the cable schedule. Installer selects the proper terminal block and CHARM based on cable schedule. Device is wired per a typical wiring diagram.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Starting Automatic Process for the given I/O node (CIOC, CSLS or WIOC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-sensing HART devices</td>
</tr>
<tr>
<td>User launches the DeltaV Device Commissioner, selects the proper node(s), and start the commissioning process.</td>
</tr>
<tr>
<td>HART devices are auto-sensed and tags are reconciled per the commissioning policy (in this case, the DeltaV DST becomes the field device tag). All device references bound to the control strategies are preserved.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bulk Device Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as workflow 1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Automatic Loop Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as workflow 1.</td>
</tr>
</tbody>
</table>
Alternate Workflow 2 – Hybrid

This workflow could be utilized during modernization and retrofit projects where both device tag and device location are known.

Assumptions:

- HART devices have a tag that needs to be preserved.
- Configuration has been completed and tested prior to shipment to site. Configuration of control strategies includes DST references assigned to specific I/O channels.

Configuration prior Device Installation:

- Commissioning policy is set to only proceed if the DeltaV DST matches the field device tag.
- Tag-extraction policy is defined (optional).
- AMS Device Manager User Configurations have been created and mapped to unallocated device placeholders.
- Loop test templates have been defined and assigned to the proper device placeholders. The test templates specify the number of steps as well as step increments (e.g. 5-point tests consisting of 0, 25, 50, 75, and 100 percent of the process variable).
- Expected values for commissioning tests have been defined.

<table>
<thead>
<tr>
<th>Device Installation and Wiring</th>
<th>Devices are installed and verified that right device is installed in right process connection and there is no issues in the installation or connection to the process (mechanical completion). The device is wired to the proper I/O CHARM, based on the cable schedule. Installer selects the proper terminal block and CHARM based on cable schedule. Device is wired per a typical wiring diagram.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-sensing HART devices</td>
<td>HART devices are auto-sensed and tags are reconciled per the commissioning policy. In this case, the commissioning process will proceed for all devices where the DST matches the device tag, any discrepancy will be flagged and will require user intervention.</td>
</tr>
<tr>
<td>Bulk Device Configuration</td>
<td>Same as workflow 1.</td>
</tr>
<tr>
<td>Automatic Loop Tests</td>
<td>Same as workflow 1.</td>
</tr>
</tbody>
</table>
Planning for Smart Commissioning

Traditionally, device commissioning is mainly considered as field work and not much preparation is involved. Most commissioning tasks are left to the on-site phase. The issue with the approach is that most commissioning tasks remain in the critical path. The Smart Commissioning approach moves certain tasks to the preparation phase. While the preparation effort increases, this effectively removes work from the critical path. The result is a shorter and more efficient execution phase that leads to a shorter overall process.

![Figure 4. Workflow for Device Commissioning.](image)

A key aspect in improving efficiency is standardization. The Smart Commissioning software application enables the standardization of device configuration as well as the standardization on the commissioning workflow.

Standardization of configuration is related to creating templates for the I/O configuration, the device alarm settings and loop test procedures (loop test templates). The intent is to create off-line templates that could be applied to multiple devices during the execution phase.
The workflow standardization is related to defining the proper work practices for maximum efficiency, this includes defining the device tagging approach and the loop test approach among other work practices. A device commissioning policy defines the way to perform sensing, binding, configuration and testing of HART devices. For example, the commissioning policy can be set to:

- Sensing only new devices, instead of all devices under a given I/O node
- Define that the field device is the tag master
- Exclude output devices from the automatic loop test, so output devices can be loop tested later

The commissioning policy also defines what to do on a conflict. For example, what would happen if the device tag has invalid characters or if the device information does not match the device placeholder. The goal is that during execution, the user does not need to answer prompts or take decisions.

Parallel Execution

In a traditional commissioning approach one commissioning team works on one device at a time. Commissioning a single device could take a couple of hours. In a facility with thousands of devices this will represent significant effort.

With Smart Commissioning, a device can be commissioned in about 5 minutes and the benefits become even more significant when doing multiple devices in parallel. Smart Commissioning can commission six devices in about six minutes. In a test done in a lab environment, 60 devices connected to two different CIOCs (30 devices each) were commissioned in 30 minutes.
Execution-HART Device Commissioning

![Diagram showing traditional versus Smart Commissioning approach]

Figure 6. Smart Commissioning savings in execution phase.

Recommended Capacity Limits for Smart Commissioning

One of the main benefits delivered by Smart Commissioning is the ability to execute commissioning tasks simultaneously on multiple devices and multiple nodes, however it is recommended to be mindful about the number of concurrent sessions for the DeltaV Device Commissioner. Running too many current sessions could negatively impact the overall commissioning performance. While there is no enforced limits, it is recommended the following:

- **Maximum number of simultaneous HART devices per node** – DeltaV Device Commissioner can handle up 96 HART devices per CIOC or CSLS and up to 100 wireless HART devices per WIOC. The application throttles the process and automatically groups the devices in sets for processing. No special consideration is needed for commissioning 96 devices from one instance of DeltaV Device Commissioner.

- **Maximum number of simultaneous nodes from one instance of DeltaV Device Commissioner** – The DeltaV Device Commissioner application can process multiple nodes at the same time, however the performance could decrease if a large number of nodes are processed simultaneously, especially during the binding and configuration phases due to the database transactions and higher rate of HART communications. Executing too many nodes at the same time from a single DeltaV Device Commissioner could lead to binding errors and longer times for device configuration (i.e. AMS Device Manager’s bulk transfer process). It is recommended to limit the simultaneous commissioning process to no more than 6 nodes at the same time. It is fine to have more than 6 nodes acquired at the same time but is recommended to process no more than 6 nodes at the same time.
Smart Commissioning streamlines the commissioning of field instrumentation to a DeltaV™ Distributed Control System (DCS) or Safety Instrumented System (SIS). It reduces effort and time for commissioning HART devices by automating most of the associated tasks involved. The benefits of Smart Commissioning extend beyond the site work; it changes the way automation projects are executed.

The following table summarizes the recommended limits for Smart Commissioning:

<table>
<thead>
<tr>
<th>Smart Commissioning Capacities</th>
<th>Fix Limit</th>
<th>Recommended Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simultaneous HART devices per CIOC or CSLS</td>
<td>96</td>
<td>-</td>
</tr>
<tr>
<td>Simultaneous wireless HART devices per WIOC</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Simultaneous nodes from either same instance or different instances of DeltaV Device Commissioner</td>
<td>None</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 1. Recommended Capacity Limits for Smart Commissioning

Conclusions

Smart Commissioning streamlines the commissioning of field instrumentation to a DeltaV™ Distributed Control System (DCS) or Safety Instrumented System (SIS). It reduces effort and time for commissioning HART devices by automating most of the associated tasks involved. The benefits of Smart Commissioning extend beyond the site work; it changes the way automation projects are executed.